Facilitating youth diabetes studies with the most comprehensive epidemiological dataset available through a public web portal

Authors
Catherine McDonough¹, Yan Chak Li¹, Nita Vangeepuram²,³, Bian Liu³*, Gaurav Pandey¹*
Email: gaurav.pandey@mssm.edu; bian.liu@mountsinai.org

Affiliations
¹Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
²Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
³Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA

Abstract
The prevalence of type 2 diabetes mellitus (DM) and prediabetes (preDM) is rapidly increasing among youth, posing significant health and economic consequences. To address this growing concern, we created the most comprehensive youth-focused diabetes dataset to date derived from National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2018. The dataset, consisting of 15,149 youth aged 12 to 19 years, encompasses preDM/DM relevant variables from sociodemographic, health status, diet, and other lifestyle behavior domains. An interactive web portal, POND (Prediabetes/diabetes in youth ONline Dashboard), was developed to provide public access to the dataset, allowing users to explore variables potentially associated with youth preDM/DM. Leveraging statistical and machine learning methods, we conducted two case studies, revealing established and lesser-known variables linked to youth preDM/DM. This dataset and portal can facilitate future studies to inform prevention and management strategies for youth prediabetes and diabetes.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction

Type 2 diabetes mellitus (DM) is a complex disease influenced by several biological and epidemiological factors (1, 2), such as obesity (3), family history (4), diet (1, 5), physical activity level (1, 6), and socioeconomic status (7, 8). Prediabetes, characterized by elevated blood glucose levels below the diabetes threshold, is a precursor condition to diabetes (9). There has been an alarming increasing trend in the prevalence of youth with prediabetes and DM (preDM/DM) both in the United States (10–16) and worldwide (17, 18), and the numbers of newly diagnosed youth living with preDM/DM are also expected to increase (10, 17, 19). The latest estimate based on nationally representative data showed that the prevalence of preDM/DM among youth increased from 11.6% in 1999-2002 to 28.2% in 2015-2018 in the United States (20). This growth is particularly concerning because preDM/DM disproportionately affects racial and ethnic minority groups and those with low socioeconomic status (7, 8, 19, 21–23), leading to significant health disparities. Having preDM/DM at a younger age also confers a higher health and economic burden resulting from living with the condition for more years and a higher risk of developing other cardiometabolic diseases (14, 24–28). This serious challenge calls for increased research into factors associated with preDM/DM among youth and how they can collectively affect disease risk and inform prevention strategies.

In particular, the most critically needed research is exploring the collective impact of various risk factors across multiple health-related domains. While clinical factors, such as obesity, have been mechanistically linked to insulin resistance (29), it is important to consider the broader perspective. There is an increasing recognition that social determinants of health (SDoH) play a significant role in amplifying the risk of diabetes and diabetes-related disparities. For example, factors such as limited access to healthcare, food and housing insecurity, and the neighborhood-built environment have been identified as influential contributors (7, 8, 21, 30). However, to gain a comprehensive understanding, it is essential to delve into other less studied variables, such as screen time, acculturation, or frequency of eating out, and examine how they interact to increase the risk of preDM/DM among youth (2).

One of the major challenges that has limited research into youth preDM/DM risk factors is that there are no publicly available, easily accessible data comprehensively profiling interrelated epidemiological factors for young individuals (2). Specifically, most available public diabetes data portals focus on providing aggregated descriptive trends, such as preDM/DM prevalence for the entire population or subgroups stratified by race and ethnicity (31–35), which does not allow in-depth examination of the relationships between multiple risk factors and preDM/DM risk using individual level data. While there do exist a few individual-level public diabetes datasets (36–40), they include mainly clinical measurements, while other important risk factors such as those related to diet, physical activity, and SDoH are limited. In addition, these datasets are not available for youth populations, as they either focus exclusively on adult populations and not on youth specifically (36, 38–40). Furthermore, these datasets are not accompanied by any user-friendly online portals that can help explore or analyze these data to reveal interesting knowledge about youth preDM/DM. This shows that there is a lack of a comprehensive dataset that includes multiple epidemiological variables to study youth preDM/DM, and easily usable functionalities to explore and analyze data.

To directly address this data gap, we turned to the National Health and Nutrition Examination Survey (NHANES), which offers a promising path for examining preDM/DM among the US youth population by providing a rich source of individual- and household-level epidemiological factors. As a result, NHANES has been a prominent data source for studying youth preDM/DM trends and associated factors (15, 41–44). However, the utilization of NHANES data requires extensive data processing that is laborious and time-intensive (45). This represents a major challenge for the wide-spread use of these high-quality and extensive data for studying youth preDM/DM.
We processed data from 10 survey cycles (1999-2018) from the National Health and Nutrition Examination Survey (NHANES), which yielded 15,149 youth with known prediabetes/diabetes (preDM/DM) status. We extracted 95 variables that were relevant to preDM/DM and organized them into 4 domains: sociodemographic, health status, diet, and other lifestyle behaviors. We made the dataset easily accessible to the public through the user-friendly POND (Prediabetes/diabetes in youth Online Dashboard) web portal, enabling users to navigate, visualize, and download the data. Additionally, we provided two case studies with complementary statistical and machine learning methods. Both analyses identified predictive variables associated with youth diabetes, and the results can be explored in POND. (Some images in this figure were obtained from the open-source collection at https://www.flaticon.com and were made by Freepik.)

In this work, we directly addressed the above challenges by processing NHANES data from 1999 to 2018 into a large-scale youth diabetes-focused dataset that covers a variety of relevant variable domains, namely sociodemographic factors, health status indicators, diet and other lifestyle behaviors. We also provided public access to this high-quality comprehensive youth preDM/DM dataset, as well as functionalities to explore and analyze it, through the user-friendly Prediabetes/diabetes in youth Online Dashboard (POND, https://rstudio-connect.hpc.mssm.edu/POND/). We demonstrated the dataset’s utility and potential through two case studies that employed statistical analyses and machine learning (ML) approaches, respectively, to identify a variety of epidemiological factors associated with youth preDM/DM. Through this work, we aimed to enable researchers to investigate the multifactorial variables associated with youth preDM/DM, which may drive advancements in prevention and management strategies.

Results

Fig. 1 shows the workflow of this study, including the processing of NHANES data, the development of POND, and the case studies we conducted.
Fig. 2. Flow chart showing the inclusion and exclusion criteria applied to 1999-2018 NHANES participants that yielded the study population included in our youth preDM/DM dataset. PreDM/DM status was defined by the current American Diabetes Association biomarker criteria, i.e., elevated levels of one of two preDM/DM biomarkers (fasting plasma glucose (FPG) ≥100 mg/dL or hemoglobin A1c (HbA1c) ≥5.7%). NHANES = National Health and Nutrition Examination Survey.

Youth preDM/DM-focused dataset

Our study population consists of 15,149 youth aged 12 to 19 years who participated in the 1999-2018 NHANES cycles and met our selection criteria (Fig. 2). Approximately 13.2% of US youth were at risk of preDM/DM according to the clinically standard criteria for defining preDM/DM per the American Diabetes Association (ADA) guidelines (fasting plasma glucose (FPG)≥100 mg/dL and/or hemoglobin A1c (HbA1c)≥5.7%) (Table 1). The survey-weighted prevalence of preDM/DM in US youth rose substantially from 4.1% in 1999 to 22.0% in 2018 (Fig. S1).
Table 1. Unweighted study population characteristics. Unweighted statistics of some key variables describing the study population in the youth preDM/DM dataset overall and by preDM/DM status. More detailed statistics for all the variables in our dataset can be found in the Data Exploration section of POND.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Overall (n=15,149)</th>
<th>With preDM/DM (n=2,010)</th>
<th>Without preDM/DM (n=13,139)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>15 (13, 17)</td>
<td>15 (13, 17)</td>
<td>16 (14, 17)</td>
</tr>
<tr>
<td>Female Sex</td>
<td>7430 (49.0)</td>
<td>691 (34.4)</td>
<td>6739 (51.3)</td>
</tr>
<tr>
<td>Race/ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>5565 (36.7)</td>
<td>711 (35.4)</td>
<td>4854 (36.9)</td>
</tr>
<tr>
<td>White, Non-Hispanic</td>
<td>4033 (26.6)</td>
<td>431 (21.4)</td>
<td>3602 (27.4)</td>
</tr>
<tr>
<td>Black, Non-Hispanic</td>
<td>4292 (28.3)</td>
<td>676 (33.6)</td>
<td>3616 (27.5)</td>
</tr>
<tr>
<td>Other</td>
<td>1259 (8.3)</td>
<td>192 (9.6)</td>
<td>1067 (8.1)</td>
</tr>
<tr>
<td>Insurance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private</td>
<td>6392 (43.0)</td>
<td>744 (37.7)</td>
<td>5648 (43.8)</td>
</tr>
<tr>
<td>Medicare, government, or single Service</td>
<td>2026 (13.6)</td>
<td>268 (13.6)</td>
<td>1758 (13.6)</td>
</tr>
<tr>
<td>Medicaid/CHIP*</td>
<td>3637 (24.4)</td>
<td>564 (28.6)</td>
<td>3073 (23.8)</td>
</tr>
<tr>
<td>No insurance</td>
<td>2821 (19.0)</td>
<td>395 (20.0)</td>
<td>2426 (18.8)</td>
</tr>
<tr>
<td>Authorized for food stamps</td>
<td>7833 (69.4)</td>
<td>1037 (61.1)</td>
<td>6796 (70.8)</td>
</tr>
<tr>
<td>Health status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Body Mass Index (BMI) percentile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Underweight (BMI %ile < 5th)</td>
<td>462 (3.1)</td>
<td>40 (2.0)</td>
<td>422 (3.2)</td>
</tr>
<tr>
<td>Normal weight (5th ≤ BMI %ile < 85th)</td>
<td>8516 (56.8)</td>
<td>933 (46.8)</td>
<td>7583 (58.4)</td>
</tr>
<tr>
<td>Overweight (85th ≤ BMI %ile < 95th)</td>
<td>2788 (18.6)</td>
<td>356 (17.9)</td>
<td>2432 (18.7)</td>
</tr>
<tr>
<td>Obese (95th ≤ BMI %ile)</td>
<td>3214 (21.5)</td>
<td>663 (33.3)</td>
<td>2551 (19.6)</td>
</tr>
<tr>
<td>Hypertensive†</td>
<td>2552 (17.4)</td>
<td>502 (26.1)</td>
<td>2050 (16.1)</td>
</tr>
<tr>
<td>High total cholesterol (≥ 170 mg/dL)</td>
<td>4951 (33.2)</td>
<td>707 (35.6)</td>
<td>4244 (32.8)</td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dL)</td>
<td>93 (88, 98)</td>
<td>102 (100, 106)</td>
<td>91 (86, 95)</td>
</tr>
<tr>
<td>Hemoglobin A1c (%)</td>
<td>5.2 (5.0, 5.4)</td>
<td>5.5 (5.2, 5.7)</td>
<td>5.2 (5.0, 5.3)</td>
</tr>
<tr>
<td>Diet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meals eaten out per week</td>
<td>2 (1, 3)</td>
<td>2 (1, 3)</td>
<td>2 (1, 3)</td>
</tr>
<tr>
<td>Total grain (oz eq.) intake 24 hours prior</td>
<td>6.55 (4.24, 9.66)</td>
<td>6.43 (4.19, 9.58)</td>
<td>6.57 (4.25, 9.67)</td>
</tr>
<tr>
<td>Total fruits (cup eq.) intake 24 hours prior</td>
<td>0.38 (0.00, 1.44)</td>
<td>0.26 (0.00, 1.37)</td>
<td>0.40 (0.00, 1.45)</td>
</tr>
<tr>
<td>Total vegetable (cup eq.) intake 24 hours prior</td>
<td>0.88 (0.39, 1.58)</td>
<td>0.84 (0.37, 1.54)</td>
<td>0.89 (0.39, 1.59)</td>
</tr>
<tr>
<td>Total protein (oz eq.) intake 24 hours prior</td>
<td>5.29 (2.71, 9.15)</td>
<td>4.73 (2.46, 8.37)</td>
<td>5.38 (2.76, 9.34)</td>
</tr>
<tr>
<td>Added sugar (tsp eq.) intake 24 hours prior</td>
<td>20.42 (11.49, 32.49)</td>
<td>20.09 (11.15, 31.89)</td>
<td>20.48 (11.57, 32.59)</td>
</tr>
<tr>
<td>Other lifestyle behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical activity minutes per week</td>
<td>209 (45, 488)</td>
<td>210 (49, 476)</td>
<td>209 (45, 491)</td>
</tr>
<tr>
<td>Screen time hours per day</td>
<td>5 (3, 8)</td>
<td>5 (3, 8)</td>
<td>5 (2, 7)</td>
</tr>
<tr>
<td>Exposed to secondhand smoke at home</td>
<td>3297 (21.9)</td>
<td>469 (23.6)</td>
<td>2828 (21.7)</td>
</tr>
</tbody>
</table>

*CHIP = Child Health Insurance Program.
†Hypertensive was defined by blood pressure ≥ 90th percentile or ≥ 120/80 mm Hg for children ≥ 13 years (2).
We extracted 95 epidemiological variables from NHANES, and organized them into four preDM/DM-related domains, namely sociodemographic, health status, diet, and other lifestyle behaviors (Table S1). Table 1 shows the unweighted statistics of some key study population characteristics. Non-Hispanic black youth were disproportionately affected by preDM/DM as they comprised 33.6% of those with preDM/DM while representing only 27.4% of those without preDM/DM. Non-Hispanic white youth represented 21.4% of the preDM/DM youth as compared to 27.4% of the youth without preDM/DM. Hispanic youth showed similar proportions of those with and without preDM/DM at 35.4% and 36.9%, respectively. Youth categorized as Other represented 9.6% and 8.1% of those with and without preDM/DM, respectively. Approximately, half of the population were females, and they represented 34.4% of those with preDM/DM. Approximately 32.4% of the youth had a family income below poverty level, and 69.4% were from households receiving food stamps. The proportion of youth covered by private insurance was higher among those with than without preDM/DM (43.8% vs 37.7%). Overall, 21.5% of the youth were obese as defined by having a BMI at or above the 95th percentile based on age and gender, and the proportion was 33.3% among youth with preDM/DM. Youth with preDM/DM tended to have less fruit and vegetable intake and ate lower amounts of protein and total grains than those without. Youth with and without preDM/DM showed similar amounts of physical activity with 209 and 210 minutes per week, respectively (Table 1).

Fig. 3. Screenshots of different functionalities available in POND (Prediabetes/diabetes in youth ONline Dashboard). (A) Detailed dictionary of the 95 variables included in our youth preDM/DM database organized by four domains, (B) Data exploration section showing the distribution of user selectable variables by preDM/DM status, (C) Case study section detailing the results of bivariate association analyses and the prediction of youth preDM/DM status from machine learning approaches and (D) Download section, where the dataset and the code used in the current study are publicly available to facilitate reproducibility and further exploration for interested users.
PreDM/DM in youth ONline Dashboard (POND)

To facilitate other researchers’ use of our youth preDM/DM dataset and make our methodology transparent and reproducible, we developed an interactive web portal named POND, https://rstudio-connect.hpc.mssm.edu/POND/. Users can navigate POND through its built-in functionalities. For example, users are able to explore the details of the 95 individual variables and their distributions by preDM/DM status, as well as examine the risk factors of youth preDM/DM identified from the case studies described below (Fig. 3). POND also allows users to easily download the data to conduct their own analyses and explore other youth preDM/DM-related research questions. In addition, we make available all the code used to develop the dataset, our case studies, and POND itself.

Case studies using our dataset to better understand youth preDM/DM

We demonstrated the utility of the processed dataset for studying youth preDM/DM by two complementary types of data analyses. We first conducted exploratory bivariate analyses to investigate the statistical associations between individual variables and preDM/DM status using the Chi-squared and Wilcoxon rank-sum bivariate tests for categorical and continuous variables, respectively. In the second analysis, we examined the individual variable’s ability to predict preDM/DM status of youth using machine learning approaches. The results of these analyses are provided below.

Identifying individual variables associated with preDM/DM status

We found 27 variables to be significantly (p≤0.0005) associated with preDM/DM status, after Bonferroni adjustment for multiple testing (Fig. 4, Table S1). These variables spanned all four domains, and included gender, race/ethnicity, use of food stamps, health insurance status, body mass index (BMI), total protein intake and screen time. Similar results were found when repeating these bivariate association tests after accounting for NHANES survey weights (Table S1).

![Fig. 4. Individual variables associated with youth preDM/DM status based on bivariate analyses.](image)

This volcano plot shows the p-values and the effect sizes of the associations between the individual variables and youth preDM/DM status. Categorical and continuous variables were tested for association using Chi-square and Wilcoxon rank sum tests, respectively. Effect size was measured by Cramer’s V for categorical variables and Wilcoxon’s r-value (73) for continuous ones. After Bonferroni adjustment for multiple hypothesis testing, we found 27 variables to be significantly (p≤0.0005; blue dotted line) associated with youth preDM/DM status. These are named above the blue dotted line in this plot, and colored by the domain they belong to.
Predicting youth preDM/DM status

We used a machine learning framework, Ensemble Integration (EI) (46), which leverages the multi-domain nature of our dataset to predict youth preDM/DM status. We compared the predictive performance of EI with three alternative approaches (details in Materials and Methods): (i) A modified form of the American Academy of Pediatrics/American Diabetes Association screening guideline (47), (ii) single-domain derived EI predictors: sociodemographic, health status, diet and other lifestyle behaviors, and (iii) eXtreme Gradient Boosting (XGBoost) (48) using our full multi-domain dataset. The performance of EI and all the alternative approaches were assessed in terms of the commonly used Area Under the ROC Curve (AUC) and Balanced Accuracy (average of specificity and sensitivity) (50) measures (Fig. 5). The performance of the machine learning-based prediction approaches, namely multi- and single-domain EI and XGBoost, were evaluated in a five-fold cross-validation setting repeated ten times (51). These performances were statistically compared using the Wilcoxon rank sum test, and the resultant p-values were corrected for multiple hypothesis testing using the Benjamini-Hochberg procedure to yield false discovery rates (FDRs) (52).

The best-performing multi-domain EI methodology, stacking (53) using Logistic Regression, predicted youth preDM/DM status (AUC=0.67, BA=0.62) more accurately than all the alternative approaches, namely XGBoost (AUC=0.64, BA=0.60, Wilcoxon rank-sum FDR=1.7x10^{-4} and 1.8x10^{-4}, respectively), the ADA/AAP pediatric screening guidelines (AUC=0.57, BA=0.57; Wilcoxon rank-sum FDR=1.7x10^{-4} and 1.8x10^{-4}, respectively), and EI applied to the four single domains (AUC=0.63-0.54, BA=0.60-0.53; FDR<1.7x10^{-4} and 1.8x10^{-4}, respectively).
Fig. 6. Variables associated with youth preDM/DM selected by bivariate analyses and the multi-domain EI approaches. Venn diagram summarizing the overlap between the 27 significant variables identified in the bivariate analyses and the 27 most predictive variables identified from the multidomain EI model. We found 16 variables overlapped between the two methods (Fisher’s p=7.06x10^{-6}), and were drawn from all four domains (shown in different colors), indicating the multifactorial nature of youth preDM/DM.

The multi-domain EI also identified 27 variables (the same as the number of significant variables from bivariate analyses) that contributed the most to predicting youth preDM/DM status. Among these variables, 17 overlapped with those identified from the bivariate statistical analyses (Fig. 6; Fisher’s p of overlap=7.06x10^{-6}). These variables identified by both approaches included some established preDM/DM risk factors like BMI and high total cholesterol, as well as some less-recognized ones like screen time and taking prescription drugs (2).

Discussion

Leveraging the rich information in NHANES spanning nearly 20 years, we built the most comprehensive epidemiological dataset for studying youth preDM/DM. We accomplished this by selecting and harmonizing variables relevant to youth preDM/DM from sociodemographic, health status, diet and other lifestyle behaviors domains. This youth preDM/DM dataset, as well as several functionalities to explore and analyze it, are publicly available in our user-friendly web portal, POND. We also conducted case studies using the dataset with both traditional statistical methods and machine learning approaches to demonstrate the potential of using this dataset to identify factors relevant to youth preDM/DM. The combination of the comprehensive public dataset and POND provide avenues for more informed investigations of youth preDM/DM.

The future impact of preDM/DM research, facilitated by comprehensive datasets like the one developed in this study, holds significant promise for advancing our understanding of the disease and its risk factors among youth. By enabling researchers to investigate multifactorial variables associated with preDM/DM, this dataset can contribute to several areas of research and have a broader impact on the scientific community. Firstly, the dataset’s comprehensive nature allows researchers to explore the collective impact of various risk factors across multiple health domains. By incorporating sociodemographic factors, health status indicators, diet, and lifestyle behaviors, researchers can gain a holistic understanding of the interplay...
ultimately leading to improved health outcomes for at-risk populations. Furthermore, the dataset provides an opportunity to delve into less-studied variables and their interactions in relation to preDM/DM risk. Variables such as screen time, acculturation, or frequency of eating out, which are often overlooked in traditional research, can be examined to uncover their potential influence on preDM/DM risk among youth. This expands the scope of research and enhances our understanding of the multifaceted nature of the disease.

One of the major contributions of our work was POND, our publicly available web portal, which provided access to all materials related to our dataset and analyses, thus enabling transparency and reproducibility. Although several such portals are available in other biomedical areas, such as genomics (54–56), there is a general lack of such tools in epidemiology and public health. We hope that, in addition to facilitating studies into preDM/DM, POND illustrates the utility of such portals for these areas as well.

The results of the case studies we conducted are also consistent with existing literature, identifying known preDM/DM risk factors, such as gender (11, 13–16), race/ethnicity (2, 7, 21, 23), health measures (BMI, hypertension and cholesterol) (2, 47), income (7, 8, 21), insurance status (7, 21) and healthcare availability (7, 21), thus affirming the validity of the dataset. In addition, our analyses revealed some less studied variables, such as screen time, home ownership status, self-reported health status, soy and nut consumption, and frequency of school meal intake, that may influence youth preDM/DM risk. Further study of these variables may reveal new knowledge about preDM/DM among youth. More generally, such novel findings further demonstrate the utility of our dataset and data-driven methods for further discoveries about this complex disorder.

Although our work has several strengths and high potential utility for youth preDM/DM studies, it is not without limitations. First, as our dataset is derived from NHANES, we adopt limitations to the survey in our dataset. Since NHANES is a cross-sectional survey, the preDM/DM status and its related variables only provide consecutive snapshots of youth in the U.S. over time across the available survey cycles, and the associations identified are better suited for hypothesis generation purposes, which require in-depth investigation using prospective longitudinal and randomized trial designs. Additionally, we modified the APA/AAP guideline according to variable availability. Due to the high missingness of 45% in family history (DIQ170) and the complete missingness of maternal history (DIQ175S) from 1999-2010 in the raw NHANES data, we were unable to include family history of diabetes in the dataset. NHANES does not provide data regarding every condition associated with insulin resistance. Therefore, we used hypertension and high cholesterol as proxies for insulin resistance. On the other hand, as our main purpose is to use POND as a conduit between this comprehensive youth preDM/DM database and interested researchers, our method can be adopted to longitudinal data sets should they become available in the future. Second, for the prediction of preDM/DM status, EI’s performance was found to be significantly better than the alternative approaches, including a modified form of the suggested guideline (44). However, this performance assessment was only based on cross-validation, which is no substitute for validation on external datasets that is necessary for rigorous assessment. Finally, while our preliminary case study analyses identified a wide range of variables associated with youth prediabetes and diabetes, other known risk factors, such as current asthma status (57–59), added sugar consumption (60–64), sugary fruit and juice intake (60–65), and physical activity per week (5, 71, 72), were not identified. This limitation can be addressed by employing other data analysis methods beyond our bivariate testing and machine learning approaches, highlighting more potential use cases of our dataset.

Overall, the future impact of preDM/DM research facilitated by comprehensive datasets like ours extends beyond individual studies. It creates opportunities for interdisciplinary collaboration and reproducibility, strengthens evidence-based decision-making, and supports the development of targeted interventions for the prevention and management of preDM/DM among youth. By fostering a collaborative research environment, it enables researchers to build upon existing knowledge and push the boundaries of preDM/DM research, ultimately leading to improved health outcomes for at-risk populations.
Materials and Methods

Fig. 1 shows the overall study design and workflow. Below, we detail the components of the workflow.

Data source and study population

We built the youth preDM/DM dataset based on NHANES data (68) spanning the years 1999 to 2018. Developed by the Centers for Disease Control and Prevention (CDC), NHANES is a serial cross-sectional survey that gathers comprehensive health-related information from nationally representative samples of the non-institutionalized population in the United States. The survey employs a multi-stage probability sampling method and collects data through questionnaires, physical examinations, and biomarker analysis. Each year, approximately 5,000 individuals are included in the survey, and the data are publicly released in 2-year cycles.

Fig. 2 details the process used to define our study population. Briefly, of the total 101,316 participants in 1999-2018 NHANES, we excluded individuals who (i) were not within the 12–19-year age range, (ii) did not have either of the biomarkers used to define preDM/DM status, and (iii) answered, “Yes,” to “Have you ever been told by a doctor or health professional that you have diabetes?” The final study population included 15,149 youth. Youth were considered at risk of preDM/DM if their Fasting Plasma Glucose (FPG) was at or greater than 100 mg/dL or their glycated hemoglobin (HbA1C) was at or greater than 5.7% according to the current ADA guidelines (2).

Development of youth preDM/DM dataset

Based on the most recent ADA standard of care recommendations including factors related to preDM/DM risk and management (2), we selected 27 potentially relevant NHANES questionnaires and grouped them into four domains: sociodemographic, health status, diet, and other lifestyle behaviors. For example, under the health status domain, body mass index (BMI) was included as a potential risk factor for youth preDM/DM (2). Similarly, lifestyle and behavioral variables included factors, such as diet and physical activity, that have been shown to be critical for preDM/DM prevention in both observational studies and randomized clinical trials (67, 69, 70). Our sociodemographic domain included demographic variables and other social determinants of health (e.g., age, gender, poverty status, and food security). Except for commonly available clinical measurements, such as blood pressure and total cholesterol, we did not include laboratory data (e.g., triglycerides, transferrin, CRP, IL-6, WBC, etc.), since these measurements were not collected for all NHANES participants.

From the selected modules, we identified a list of 95 variables. The process of extracting these variables involved extensive examination of the questions that were asked, consultation of the literature, and discussions to reach consensus within the study team. The details of this process are provided in Section A of Supplemental Methods. We used SAS (version 9.4) and R (version 4.2.2; R Core Team, 2022) in R Studio (version 4.2.2; R Core Team, 2022) for data processing and dataset development. All the code developed and processed data are available in POND.

Building the preDM/DM in youth ONline Dashboard (POND)

We built POND to share our processed dataset and enable users to understand and explore the data on their own. The web portal was developed using R markdown and the flexdashboard package (71), and was published as a Shiny application (72). Table S2 in Section B of Supplemental Methods provides details of all the R packages used to develop POND, and the related code is available on the portal’s download page.

Case studies in using the dataset to better understand youth preDM/DM

To examine the utility of our dataset for studying youth preDM/DM, we conducted two complementary data analyses. We first conducted bivariate analyses to assess the statistical associations between each of the 95 variables and youth preDM/DM status. In the second analysis, we used machine learning methods to
examine the ability to predict preDM/DM status of youth based on the 95 variables. The methodological
details of these analyses are provided below.

Bivariate analyses to identify variables associated with preDM/DM status

We examined associations between individual variables and youth preDM/DM status using Chi-square and
Wilcoxon rank sum tests for categorical and continuous variables, respectively. We applied Bonferroni
correction for multiple hypothesis testing (n=95 tests) at an alpha level of 0.05 to determine the statistical
significance of each association at the adjusted alpha level of 0.0005 (i.e., approximately 0.05/95). Finally,
we used a volcano plot ([Fig. 4](#)) to visualize the results, where the y-axis is the log transformed p-value,
and the x-axis is the effect size of the bivariate association. We used Cramer’s V and Wilcoxon R-values (73)
as the effect size measures for categorical and continuous variables, respectively. To better compare with
results from the machine learning approach, the main bivariate analyses did not account for NHANES survey
design; thus, the results were only applicable to the study population included in the analytical sample, not
generalizable to the entire U.S. youth population through survey weighting. For completeness, we provided
the survey-weighted analyses in Section C of Supplemental Methods.

Prediction of preDM/DM status using machine learning algorithms

Several machine learning algorithms have been employed to predict adult preDM/DM status using NHANES
data (74–76), and we have previously utilized these algorithms to predict preDM/DM status specifically
among youth (41). However, to properly take into account the multi-domain nature of our dataset to build an
effective and interpretable predictive model of youth preDM/DM, we leveraged our recent Ensemble
Integration (EI) framework (46). EI incorporates both consensus and complementarity among the domains in
our dataset by inferring local predictive models from the individual domains, and then integrating them into a
global model using heterogeneous ensemble algorithms (77). EI also enables the identification of the most
predictive variables in the final model, thus offering deeper insights into the outcome being predicted.

We used both the above capabilities of EI to build and interpret a predictive model of youth preDM/DM
status based on our dataset. We also compared the predictive performance of the model with three alternative
approaches: (i) a modified form of the AAP/ADA screening guideline (47), which is based on BMI, total
cholesterol level, hypertension, and race/ethnicity, to assess the utility of data-driven screening for youth
preDM/DM, (ii) EI applied to individual variable domains, namely sociodemographic, health status, diet and
other lifestyle behaviors, to assess the value of multi-domain data for youth preDM/DM prediction, and (iii)
eXtreme Gradient Boosting (XGBoost) (48) applied to our full dataset as a representative alternate machine
learning algorithm that is considered the most effective for tabular data (78). More details of EI, the
alternative approaches and the evaluation methodology, including cross-validation, model selection and
comparison, are available in Section D of Supplemental Methods.

Finally, we used EI’s interpretation capabilities (46) to identify the variables in our dataset that were the
most predictive of youth preDM/DM status. We selected the top 27 ranked predictors to compare to the 27
variables identified from the bivariate association analyses described above.
Acknowledgements

The study was enabled in part by computational resources provided by Scientific Computing and Data at the Icahn School of Medicine at Mount Sinai. The Ensemble Integration used in this work was implemented by Jamie J.R. Bennett.

Funding:

National Institute of Health, NIH grant # R21DK131555
National Institute of Health, NIH grant # R01HG011407.

Author Contributions:

Conceptualization: NV, BL, GP
Methodology: CM, YCL, NV, BL, GP
Software: CM, YCL, BL
Validation: CM, YCL, NV, BL, GP
Formal analysis: CM, YCL
Investigation: CM, YCL, NV, BL, GP
Resources: BL, GP
Data curation: CM, YCL
Writing – original draft: CM, YCL
Writing – review & editing: CM, YCL, NV, BL, GP
Visualization: CM, YCL
Supervision: NV, BL, GP
Project administration: NV, BL, GP
Funding acquisition: NV, BL, GP

Competing interests: The authors declare that they have no competing interests.

Data and materials availability:

The data and scripts used in this work were uploaded on Zenodo: https://zenodo.org/record/8206576. The web portal POND is hosted on https://rstudio-connect.hpc.mssm.edu/POND.

References

32. U.S. Chronic Disease Indicators: Diabetes | Chronic Disease and Health Promotion Data & Indicators, (available at https://chronicdata.cdc.gov/Chronic-Disease-Indicators/U-S-Chronic-Disease-Indicators-Diabetes/f8ti-h92k).

37. Type 2 Diabetes Knowledge Portal, (available at https://t2d.hugeamp.org/).

64. B. M. Popkin, Patterns of beverage use across the lifecycle. Physiol. Behav. 100, 4–9 (2010).

78. R. Shwartz-Ziv, A. Armon, Tabular data: Deep learning is not all you need. Inf. Fusion. 81, 84–90 (2022).