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Abstract: 

 (1) Background: kidney and cardiovascular diseases are responsible for a large fraction of 

population morbidity and mortality. Early, targeted, personalized intervention represents the ideal 

approach to cope with this challenge. Proteomic/peptidomic changes are largely responsible for 

onset and progression of these diseases and should hold information about optimal means for 

treatment and prevention. 

(2) Methods: we investigated prediction of renal or cardiovascular events using previously defined 

urinary peptidomic classifiers CKD273, HF2 and CAD160 in a cohort of 5585 subjects in a 

retrospective study. 

 (3) Results: we demonstrate highly significant prediction of events with HR of 2.59, 1.71, and 4.12 

for HF, CAD and CKD respectively. We applied in silico treatment, implementing on each patient 

urinary profile, changes onto the classifiers corresponding to exactly defined peptide abundance 

changes following commonly used interventions (MRA, SGLT2i, DPP4i, ARB, GLP1RA, olive oil and 

exercise), as defined in previous studies. Applying the proteomic classifiers after in silico treatment 

indicated individual benefits of specific interventions on a personalized level. 

(4) Conclusions: the in-silico evaluation may provide information on the future impact of specific 

drugs and intervention on endpoints, opening the door to a precision medicine approach. 

Investigation of the extent of the benefit of this approach in a prospective clinical trial is 

warranted. 

  



1. Introduction 

Cardiovascular diseases, including coronary artery disease (CAD) and heart failure (HF), along with 

chronic kidney disease (CKD), are leading causes of morbidity and mortality worldwide [1,2]. These 

conditions place a significant burden on affected individuals and healthcare systems globally. Efforts 

to reduce known cardiovascular and kidney risk factors, such as hypertension, high cholesterol levels, 

sedentary lifestyle, diabetes, obesity, and smoking, help prevent disease progression in some 

patients [2,3]. Advances in medical care and novel treatments have improved the prognosis of 

individuals affected with these chronic diseases [1,4,5] . Despite this progress, the factors associated 

with disease progression in individual patients are poorly understood. While traditional clinical risk 

factors and underlying molecular mechanisms explain a significant part of attributable risk [6,7] , their 

predictive power for future cardiovascular or kidney events is limited or has not been evaluated and, 

in certain cases, may not be readily applicable in clinical setting [7–11].  

Furthermore, CAD, HF and CKD require complex treatment regimen comprising multiple drugs 

combinations. Randomised trials demonstrate the value of different individual treatments in 

preventing future cardiac or kidney events, reducing mortality, and man-aging symptoms [12–16]. 

However, the benefit of a treatment is only detected in some patients and, a substantial number of 

individuals still progress to terminal organ failure, despite the treatment. Commonly recommended 

treatments include lifestyle interventions including dietary changes, antiplatelet therapy, β-blockers, 

angiotensin-converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARB), 

mineralocorticoid receptor antagonists (MRAs), glucagon-like peptide-1 receptor agonists (GLP1 

RAs), dipeptidyl peptidase-4 inhibitors (DPP4i), and sodium-glucose co-transporter 2 inhibitors 

(SGLT2i) [17,18]. However, while these drugs demonstrably have an impact on notional targets, such 

as reduction of blood pressure or blood glucose, the targets are often surrogates for the real reason 

to treat -that is, preventing (or delaying) end-organ damage. That is more difficult to assess and 

needs a much longer time scale than days or weeks. There are currently no methods to predict 

treatment success in individuals or to give guidance on the optimal therapy for an individual patient.  

Recent advances in biomarker research have contributed to the development of predictive classifiers 

that are more accurate markers of the progression towards adverse outcomes, including severe 

disease or mortality [7,19,20]. Multidimensional urinary peptides profiles seem to be particularly 

helpful in predicting outcome at early stage and can show the effect of treatment in different chronic 

diseases at molecular level [7,21–24]. 

To the best of our knowledge, no study has yet investigated the potential ability of a bi-omarker-

based information to predict the potential impact of different interventions in decreasing the risk of 

events (critical progression or death) from cardiovascular or kidney diseases on a personalized level. 

The objective of this study was 1) to assess the efficacy of three previously developed urinary 

peptide-based classifiers as biomarkers for predicting CAD, HF or CKD events, and 2) to investigate in 

silico the individual impact of prophylactic or therapeutic interventions with specific active agents, 

with the hypothesis that the treatment that shows the most pronounced effect in silico, should 

present the optimal personalized therapeutic strategy. 

 

2. Materials and Methods 



Study participants and study design  

This study included 5585 datasets from previous studies: PRIORITY, DIRECT, FLE-MENGHO, CACTI, 

CardioRen, CAD prediction, Generation Scotland, HOMAGE, SUNmacro, and UZ-Gent. Detailed 

information on the designs and the methods used in these studies are available in previous 

publications [11,25–37]. Inclusion criteria were availability of estimated glomerular filtration rate 

(eGFR, calculated using the CKD Epidemiology Collaboration (CKD-EPI) formula), information on 

cardiovascular events, and availability of follow-up information. The endpoints were defined as 

follows: for coronary artery disease, the event was defined as non-fatal and fatal acute myocardial 

infarction. A heart failure event was defined as hospitalisation or death from heart failure. For CKD, 

an event was defined as a decline of ≥40% in eGFR values during follow-up, and the date when this 

decline was observed was considered as the duration of follow-up. Only one (the first) endpoint per 

patient was allowed: if an endpoint was reached, further endpoints was censored.  

All individuals with urine samples at the baseline visit were included in the analysis. Several 

covariables including body mass index, age, sex, blood pressure and eGFR, were determined at the 

time of the baseline assessment. The median follow-up was 3.74 ±3.36 years. The study was 

conducted according to the guidelines of the Declaration of Helsinki and all datasets were fully 

anonymized. This study was approved by the ethics committee of the Hannover Medical School 

Germany under the reference number 3116-2016. 

 

Peptide-based classifiers and prediction of events 

The classifier CKD273 was used for prediction of CKD events and impact of treatments [20] . The 

predictive capacity of, and impact of treatments on, the classifiers, HF2 and CAD-160-marker, were 

assessed for HF and CAD, respectively [30,38]. The scores for each classifier were calculated using a 

support vector machine (SVM) algorithm, integrated into the MosaCluster software [39] . All 

statistical tests were performed in R statistical software (R version 4.1.0, R Foundation for Statistical 

Computing, Vienna, Austria). The Kaplan-Meier estimator was applied to assess the association of 

longitudinal survival with each classifier. Corresponding hazard ratios (HR) were estimated using Cox 

regression models and log-rank tests were used to assess the hypothesis of no group differences in 

hazard functions. All survival analyses were carried out using the R package “survival”. 

 

In-silico impact of treatments 

To assess the impact of various treatments on the classifiers for CAD, HF and CKD, the impact on 

urinary peptidomic profiles from five different drug-based interventions (MRA, SGLT2i, GLP1RA, 

DPP4i and ARB), one dietary intervention (olive oil) or from exercise was applied. These data were 

generated in previous studies that were either published, submitted for publication studies [24,40–

42], or unpublished (exercise). Briefly, the effect of the interventions on the urinary peptidomic 

profiles was assessed and the fold change values (as a result of the intervention) were determined. 

To predict the impact of treatment, these fold changes were then used to multiply the intensities of 

the respective peptides in each patient, and the predictor (CKD273, HF2, CAD-160-marker) scores 

were re-calculated. A decrease in the classifier score is indicative of a positive impact of the 



treatment on the outcome, as depicted in Figure 1. The results were visually represented using 

heatmaps generated with the R package “ComplexHeatmap”. 

 

Figure 1. Schematic depiction of the study design. The relative abundance of 5071 se-quenced urinary 

peptides was investigated using CE-MS. Data on some selected peptides (ID) for 1 subject are shown. 

Several of these peptides were previously identified as being associated with the respective 

pathophysiology and combined into classifiers, CKD273, CAD160, and HF2. Some of these peptides are 

labelled with the respective color. In the first step, the patient receives a score for progression to 

event using the predefined urinary classifiers. Of the peptides shown, 3, labelled in bold, were found 

to be affected by SGLT2i treatment. In the second step, abundance of these 3 peptides is adjusted 

based on the observed fold change as a result of the treatment (“in silico treatment”). The classifier 

score is then re-calculated (labelled *) and the result is compared to the initial scoring; decrease in the 

scoring indicates benefit of the treatment. In this example, relevant impact of the SGLT2i treatment 

on CKD and HF event is predicted, but not impact on CAD. 

 

3. Results 

3.1 Clinical characteristics of population 

A total of 5585 datasets was extracted from the database. Baseline characteristics are shown in Table 

1  

Characteristic N = 55851 Study information 

Duration of follow-up (years) 3.75 (0.38, 7.11)  

Study 



CACTI 19 (0.34%) Adults with type 1 diabetes 

CADPredictions 147 (2.63%) Adults with acute coronary syndromes 

CardioRen 116 (2.08%) Adults with heart failure with reduced ejection fraction 

DIRECT 769 (13.77%) Adults with type 2 diabetic cohort with normoalbuminuria 

EPOGH 826 (14.79%) Adults with type 2 diabetes treated with basal insulin 

FLEMENGHO 65 (1.16%) General population 

Generation Scotland 450 (8.06%) Adults with and without coronary artery disease (CAD) 

HOMAGE 354 (6.34%) Adults with heart failure 

Predictions Groningen_Prag 38 (0.68%) Adults with type 2 diabetic cohort 

PRIORITY 1761 (31.53%) Adults with type 2 diabetes, normal urinary albumin 

excretion, and preserved renal function 

SUNmacro 580 (10.38%) Adults with type 2 diabetic nephropathy 

UZ-Gent 460 (8.24%) Adults with chronic kidney disease 

Clinic characteristics 

Age 62 (28, 82.3)  

Female 3410 (61.06%)  

sBP (mm Hg) 133 (105, 171)  

dBP (mm Hg) 79 (58, 98)  

Hypertension 2381 (42.63%)  

Diabetes 3330 (59.62%)  

eGFR (mL/min/1.73m²) 81.89 (23, 117)  

BMI (kg/m2) 28.4 (19.8, 41)  

Urinary peptide-based classifiers 

HF2 -0.29 (-0.76, 0.21)  

CAD 160-marker -0.32 (-0.71, 0.03)  

CKD273 -0.50 (-0.84,-0.01)   

1 Median (95% IC); n (%) 

Abbreviations: eGFR, estimated glomerular filtration rate (mL/min per 1.73 m²); MI, body mass index; sBP, systolic 

blood pressure; dBP, diastolic blood pressure 

Table 1. Studies information and baseline characteristics of study participants.  

 

3.2 Peptide-based classifiers and prediction of events 

The association between the classifiers and the risk of cardiovascular/kidney events is detailed in 

Table 2. Individuals were divided into quintiles with different relative risk according to their classifier 

scores (Table S1). The event rates for the outcome of cardio-vascular/kidney events varied across the 

five score subgroups. There was a stepwise in-crease in the risk of an adverse event with each 

quintile, that is, individuals with higher classifier scores, as represented in the 5th quintile, had higher 



rates of the primary out-come compared to individuals in the lower quintile of the classifier (1st 

quintile) (Figure 2).  

 

 
Figure 2. Urinary peptidomics classifiers and primary outcomes. Kaplan-Meier curves for the primary 

outcome; classifier scores from lowest (1) to highest (5) quintile, for risk of heart failure events as 

assessed by HF2 (A), coronary artery disease events as assessed by CAD160 (B), and chronic kidney 

disease progression as assessed by CKD273 (C). 

 

 Events/at risk (%) Model unadjusted 
Model (adjusted for age, BP, BMI, 

sex, and eGFR) 

HF2 HF events HR (95% CI) P-value HR (95% CI) P-value 

Per 1-SD 

increment 
472/5200 (9.08) 2.59±0.047 <2e-16 1.64±0.056 1.72E-18 

Quintile 1 25/1041 (2.40) Reference Reference Reference Reference 

Quintile 2 38/1040 (3.65) 1.81±0.26 0.02 1.15±0.26 0.60 

Quintile 3 59/1040 (5.67) 3.17±0.24 1.42E-06 1.51±0.24 0.09 

Quintile 4 119/1040 (11.44) 7.21±0.22 4.60E-19 2.53±0.23 5.92E-05 

Quintile 5 231/1039 (22.23) 16.20±0.21 3.15E-39 3.84±0.23 5.64E-09 

CAD-160-

marker 
CAD events     

Per 1-SD 384/5112 1.72±0.050 <2e-16 1.33±0.057 5.55E-07 



increment 

Quintile 1 46/1024 (4.49) Reference Reference Reference Reference 

Quintile 2 55/1020 (5.39) 1.84±0.20 2.45E-03 1.39±0.20 0.11 

Quintile 3 71/1026 (6.92) 2.93±0.19 2.77E-08 2.13±0.20 1.25E-04 

Quintile 4 91/1019 (8.90) 3.92±0.19 2.65E-13 2.53±0.19 1.32E-06 

Quintile 5 121/1023 (11.83) 4.73±0.18 4.93E-18 2.82±0.19 3.32E-08 

CKD273 CKD events     

Per 1-SD 

increment 
113/3635 (3.11) 4.19±0.094 <2e-16 3.18±0.121 1.03E-21 

Quintile 1 6/732 (0.82) Reference Reference Reference Reference 

Quintile 2 11/722 (1.52) 2.02±0.51 0.17 1.96±0.50 0.18 

Quintile 3 11/730 (1.51) 2.13±0.51 0.14 1.80±0.51 0.25 

Quintile 4 22/724 (3.04) 5.58±0.46 2.07E-04 5.33±0.47 3.55E-04 

Quintile 5 63/727 (8.67) 35.47±0.43 1.61E-16 19.59±0.47 7.32E-11 

Table 2. Risk of HF events, CAD events and CKD outcomes by baseline urinary peptidomics classifier 

 

3.3 Personalized in-silico prediction of treatment efficacy 

Having established a highly significant association between the classifiers scores and outcomes, we 

investigated whether the in-silico treatment effect (e.g., adjustment of the peptide intensities based 

on the treatment response) as described in the Methods section, had an impact on the classifiers. 

The in-silico treatment, had a significant impact on the classifiers, as shown in Figures 3, 4 and 5 and 

also given in Table S1. The heatmap representation of the sorted scores before the in-silico 

treatment revealed an alignment of HF events, CAD events, and CKD progression with higher scores 

(Figure 3. 4 and 5). This observation reinforces the predictive capability of the scores and their 

association with HF and CAD events and CKD progression. 

 

After the in-silico treatment, there was a positive effect of MRA, SGLT2i, and ARB treatments on the 

HF2 classifier in individuals with higher scores, suggesting a potential beneficial impact of treatment 

especially in those at higher baseline risk (and likely more advanced disease (Figure 3A). Olive oil and 

GLP1R agonist treatment showed a positive impact mostly in individuals at low risk of HF events. 

DPP4i and exercise had inconsistent effects across different scores, making its impact on patients 

with high risk of HF events less evident. Predictions showed individual differences in the treatment 

impact (Figure 3B). 



 

Figure 3. HF2 classifier treatment responses. HF2 scores were z-scaled across samples for 

visualisation. Heatmap HF2 classifier treatment responses of 5585 patients (A). The top of the 

heatmap shows event information. Samples (columns) were ordered based on HF2 score prior to in 

silico treatment; from lower scores (left) to higher scores (right). Zoomed heatmap shows the 

treatment response of HF2 in 10 patients (B). Patients who were already receiving one of the 

treatments at the beginning of the study are depicted in grey.  

 

  

 

Regarding the CAD-160-marker classifier, distinctly different treatment responses were observed 

when comparing the CAD-160-marker score-high and CAD-160-marker score-low groups (Figure 4A). 

Among individuals with higher scores, olive oil, DPP4i, and especially ARB treatments were predicted 

to present positive impacts, with ARB treatment being notably effective for patients at high risk of 

CAD events. Nonetheless, individual predictions displayed unique differences, emphasizing the 

personalized nature of pre-diction of treatment response (Figure 4B). 



 

Figure 4. CAD-160-marker classifier treatment responses. CAD-160-marker scores were z-scaled 

across samples for visualisation. Heatmap CAD-160-marker classifier treatment responses of 5585 

patients (A). The top of the heatmap shows event information. Samples (columns) were ordered 

based on CAD-160-marker score prior to in silico treatment; from lower scores (left) to higher scores 

(right). Zoomed heatmap shows the treatment response of the CAD-160-marker classifier in 10 

patients (B). Patients who were already receiving one of the treatments at the beginning of the study 

are depicted in grey. 

 

In the context of CKD, no major impact was observed for spironolactone and for GLP1RA. In patients 

with high CKD273 scoring, many of these having eGFR values less than 60 mL/min per 1.73 m², 

SGLT2i, olive oil, exercise, and ARB treatments exhibited treatment responses, with SGLT2i and ARB 

treatments showing a more pronounced impact. In contrast, olive oil treatment seemed to have a 

positive impact mostly in patients with lower scores (Figure 5A and B). The impact of DPP4i varies 

among patients, and in certain cases, it demonstrates a positive effect in advanced stages of the 

disease.  



 

Figure 5. CKD273 classifier treatment responses. CKD273 scores were z-scaled across samples for 

visualisation. Heatmap CKD273 classifier treatment responses of 5585 pa-tients (A) The top of the 

heatmap shows baseline eGFR values information. Samples (columns) were ordered based on CKD273 

score prior to in silico treatment; from lower scores (left) to higher scores (right). Zoomed heatmap 

shows the treatment response of the CKD273 classifier in 10 patients (B). Patients who were already 

receiving one of the treatments at the beginning of the study are depicted in grey. 

 

4. Discussion 

The identification of biomarkers that aid physicians in decision-making and treatment planning for 

patients with cardiovascular or kidney disease will serve a major clinical need. Early diagnosis of 

cardiovascular and CKD is challenging, as patients may remain asymptomatic in the early stages, 

leading to late-stage clinical presentations and diagnosis/detection. Additionally, considering the 

significant interindividual variability in response to different treatments, uncertainty remains about 

whether the development of an event can be avoided in a patient during drug prescription. While a 

substantial number of studies demonstrated potential value of biomarkers in predicting disease 

progression and renal as well as cardiovascular events [7-11], these studies typically did not 

investigate the in fact more relevant topic (from the patient point-of-view): prediction of optimal 

intervention. Prediction of drug response on a population-based level was proposed by the group 

from Heerspink [43], but not on an individual level. Therefore, the crucial need for non-invasive 

biomarkers for early disease detection and to understand the impact of different treatments 

becomes evident, enabling timely treatment and prevention of chronic progression. 

 



Multiple drugs are available that impact on risk factors like elevated blood pressure, blood glucose or 

cholesterol. Normalization of these parameters can generally be easily and rapidly assessed. 

However, the question if normalization of these parameters has a beneficial impact on target organ 

damage on an individual level cannot be easily answered and would require long-term follow-up, not 

compatible with clinical practice. What is needed would be an approach to assess, ideally even 

predict the impact of the drug on outcome, on the target organ damage. In this study, we assessed 

three established urinary peptide-based classifiers: HF2, CAD-160-marker, and CKD273 [20,30,38], 

designed to predict the risk of major complications or mortality in individuals at high risk of, or 

already suffering from chronic cardiovascular or kidney disease conditions and we investigated the 

potential impact of different interventions on reducing the occurrence of these events. 

The study presented here has two main results. The first result is the demonstration of the 

prognostic value of the three applied urinary peptide classifiers. This result further confirms the 

previous reports [20,30,38] in large cohorts. While such prognosis is valuable in guiding treatment 

and management, it obviously lacks specific guidance on the treatment. This fact leads to the second 

main result: applying the previously established impact of specific treatment on the urinary peptides 

allows implementation of “in-silico treatment”, which may be used to guide, personalized 

intervention, based on the predicted response. Using this in-silico approach, we achieved 

individualised prediction of the effects of seven different treatment approaches based on the urinary 

peptide-based classifiers. These findings offer a novel approach towards personalised treatment 

strategies and risk management for patients at risk of cardiovascular or kidney diseases, based on the 

predicted molecular impact of the specific treatment. 

Previous studies have already demonstrated the predictive performance of the HF2 model, the CAD-

160-marker model and the CKD273 model in different populations for the respective clinical 

conditions [20,30,38]. In our larger population, we observed effective risk stratification based on 

model scores, successfully identifying patients at higher risk of cardiovascular/kidney events. 

Specifically, individuals in the lower score group exhibited a reduced risk of HF, CAD and CKD events 

compared to those in the higher score group. 

Regarding the individualised prediction of treatment impact, we observed significant effects with 

interventions such as SGLT2i, ARB, MRA, DPP4i, and lifestyle interventions. The overall observations 

are consistent with the results from previous intervention studies. Specifically, it appears that a 

benefit of ARB in CKD is most prominent in subjects with the highest risk, likely in late-stage disease, 

which is in agreement with failure to demonstrate a significant benefit of ARB at early-stage disease 

[44]. We also detect more pronounced benefit of SGLT2i, particularly in subjects with high risk of HF 

and CKD, but to a much lesser degree in the context of CAD, which is in very good agreement with 

the respective intervention studies [45–48]. Impact in the context of CAD appears most prominent 

for ARB in subjects with increased risk, which was also observed in the intervention trials [49,50] . 

MRA is a recommended treatment in HF for individuals with reduced and preserved ejection fraction. 

Notably, our findings revealed a benefit effect of MRA in HF among individuals at the highest risk but 

not as clear in CAD or CKD, in line also with the results of the PRIORITY trial [11]. Our results are 

consistent with previous clinical trials, supporting the potential efficacy of MRA improve HF 

outcomes [51]. However, the impact of MRA in CAD or CKD is not clearly demonstrated. In CKD, MRA 

showed an early effect on renal function changes but did not have longer-term effects [52].  

 



Several studies have investigated the potential beneficial effects of GLP1RA and DPP4i in 

cardiovascular and kidney disease [53–56]. Some clinical studies have suggested that these drugs 

may have a beneficial impact on the progression of these conditions, but data from clinical trials 

remain somewhat controversial [57]. In our study, we observed a positive impact in individuals with 

higher risk of CAD. However, further trials with appropriate power and design are necessary. Larger 

and well-controlled clinical trials will provide a clearer understanding of the potential benefits of 

these drugs. 

Lifestyle modification is generally recommended for the management of cardiovascular and kidney 

diseases. However, when it comes to CKD and CAD, physical activity recommendations should be 

carefully considered depending on the patient's condition due to the potential risk of impairing 

kidney function and increasing proteinuria, or triggering cardiovascular events during exercise 

[58,59]. As for olive oil in the diet, some evidence suggested that this intervention may have a 

beneficial impact in preventing cardiovascular or kidney events [60,61]. Specifically, our observations 

revealed that the impact of the lifestyle intervention seems to have an individual pattern, with a 

positive impact in patients at both low and high risk. Regarding exercise, we observe a positive 

impact in individuals at lower risk of CAD events and in some individuals at high risk. Meanwhile, it 

seems to have a preventive effect on HF and CKD events in individuals at high risk, which is 

consistent with findings from previous studies [62,63].  

The study also has shortcomings and the results should be interpreted with caution. First, this is a 

retrospective study based on data collected in the context of multiple different previous studies. 

However, the large number of subjects included is expected to counteract potential bias introduced 

by some of the specific previous cohorts. Further, the results observed are fully in line with previous 

observations, further supporting the validity. Second, the impact of treatment on the urinary 

proteome by the different means of intervention is not fully comparable, number of subjects in these 

previous studies, demographic characteristic, and duration of intervention differed. To counteract 

these issues, data were normalized to Z-scores to prevent dominance of one specific intervention. 

Given the results, that some types of intervention are predicted to be specifically beneficial in certain 

situations (e.g., SGLT2 inhibition indicating benefit in most patients with a high risk of HF and CKD 

events, but not in subjects with high risk of CAD events), and that this observation is in very good 

agreement with the observations in the intervention trials reported, further support the validity of 

the approach. At the same time, inter-individual variability is observed which highlights the 

personalized aspect of the presented in-silico predictor, to be further tested in the context of a 

prospective clinical intervention trial. Along the same lines, we have not formally demonstrated that 

the prediction of the best suited intervention does in fact give a significant benefit to patients with 

respect to preventing experiencing any of the patient-relevant endpoints. Such a benefit can only be 

demonstrated in a prospective trial. However, based on the data available, we feel that using this 

approach may well be justified in a situation when guidance on the ideal intervention is missing. In 

addition, we are currently in the process of initiating the prospective trial that would demonstrate a 

significant benefit. 

In conclusion, the in-silico evaluation of the impact of different drugs in an individual`s urinary 

peptidomics signature may provide information on the future impact of specific drugs on hard 

endpoints in this individual, opening the door to a precision medicine approach to select the optimal 

treatment for individuals with or at risk of CAD, HF or CKD progression. The performance of this in-

silico test should be validated in a prospective clinical trial. 



 

 

Supplementary Materials: Table S1: Classifier score before and after the in-silico treatment. 
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