Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Genome-wide analyses reveal widespread genetic overlap between neurological and psychiatric disorders and a convergence of biological associations related to the brain

View ORCID ProfileOlav B. Smeland, Gleda Kutrolli, Shahram Bahrami, Vera Fominykh, Nadine Parker, Guy F. L. Hindley, Linn Rødevand, Piotr Jaholkowski, Markos Tesfaye, Pravesh Parekh, Torbjørn Elvsåshagen, Andrew D. Grotzinger, The International Multiple Sclerosis Genetics Consortium (IMSGC), The International Headache Genetics Consortium (IHGC), Nils Eiel Steen, Dennis van der Meer, Kevin S. O’Connell, Srdjan Djurovic, Anders M. Dale, Alexey A. Shadrin, Oleksandr Frei, View ORCID ProfileOle A. Andreassen
doi: https://doi.org/10.1101/2023.07.21.23292993
Olav B. Smeland
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Olav B. Smeland
  • For correspondence: o.b.smeland{at}medisin.uio.no
Gleda Kutrolli
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shahram Bahrami
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vera Fominykh
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nadine Parker
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guy F. L. Hindley
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
2Psychosis Studies, Institute of Psychiatry, Psychology and Neurosciences, King’s College London, London, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Linn Rødevand
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Piotr Jaholkowski
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Markos Tesfaye
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
3Department of Psychiatry, St. Paul’s Hospital Millennium Medical College, Addis Ababa, Ethiopia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pravesh Parekh
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Torbjørn Elvsåshagen
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
4Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew D. Grotzinger
5Department of Psychology and Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
6Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nils Eiel Steen
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dennis van der Meer
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
7School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kevin S. O’Connell
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Srdjan Djurovic
8Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
9NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anders M. Dale
10Multimodal Imaging Laboratory, University of California San Diego, La Jolla, USA
11Department of Psychiatry, University of California, San Diego, La Jolla, USA,
12Department of Neurosciences, University of California San Diego, La Jolla, USA
13Department of Radiology, University of California, San Diego, La Jolla, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexey A. Shadrin
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
14KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oleksandr Frei
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
15Center for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ole A. Andreassen
1NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
14KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ole A. Andreassen
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

Abstract

Neurological and psychiatric disorders are considered to reflect distinct underlying pathogenic entities. However, the extent to which they share genetic influences remains unclear. Here, we performed a comprehensive analysis of GWAS data, involving nearly 1 million cases across ten neurological diseases and ten psychiatric disorders, to compare their common genetic risk and biological underpinnings. Using complementary statistical tools, we demonstrate extensive genetic overlap across the disorders, with varying degrees of genetic correlations. In particular, migraine, essential tremor, stroke and multiple sclerosis were genetically correlated with several psychiatric disorders. Biological interrogation indicated heterogenous biological processes associated with neurological diseases, while psychiatric disorders consistently implicated neuronal biology. Altogether, the study demonstrates that neurological and psychiatric disorders are not genetically disparate, but share key etiological aspects, which have important implications for disease classification, clinical practice, and genomic precision medicine.

Introduction

Neurological and psychiatric disorders rank among the leading causes of disability and mortality worldwide1. Despite their shared neural origin, the disorders are considered to reflect distinct pathogenic entities, and they are classified separately in the International Classification of Diseases2. The clinical division was driven by progress in brain research during the 19th and 20th century3, 4. While neurology laid claim on the disorders with demonstrable neuropathology, such as Alzheimer’s disease (ALZ), psychiatry focused on the mental disorders without recognizable pathology, such as schizophrenia (SCZ). However, findings in neuroscience over the past decades, combined with clinical and epidemiological observations, have challenged the validity of this clinical distinction3–7.

Despite a lack of objective biomarkers, accumulating evidence indicates that psychiatric disorders have a neurobiological basis. In vivo neuroimaging8 and postmortem9 investigations show systematic brain abnormalities across different psychiatric disorders. Moreover, treatment modalities targeting neurobiological mechanisms are effective for many psychiatric disorders, including electroconvulsive therapy, transcranial magnetic stimulation and psychopharmacological agents10–12. Some of these interventions are used for both neurological and psychiatric illnesses, for example anticonvulsants in epilepsy and bipolar disorder (BD)10. Neurological and psychiatric disorders also share clinical features. Debilitating psychiatric symptoms such as hallucinations, delusions and mood disturbances are prominent across neurological disorders13–15. Furthermore, movement abnormalities are found in psychiatric disorders16, and cognitive impairment is a clinical hallmark characterizing several neurological and psychiatric disorders2,17. Additionally, epidemiological studies reveal high comorbidity between neurological and psychiatric disorders15,18–20, including a higher incidence of dementia among individuals with psychotic disorders20. Altogether, the existing clinical dichotomy inadequately reflects the interconnected nature of neurological and psychiatric disorders. Ultimately, this may impact clinical care, whereby clinicians may fail to recognize or appropriately address all aspects of illness. To address this, various proposals have been made over the past decades calling for a more unified clinical approach to these disorders3–7. However, the extent to which neurological and psychiatric disorders share an etiological basis remains unclear.

The heritability of neurological and psychiatric disorders indicates that genomic research could provide new insights into their etiology21. This knowledge could bridge the nosological gap by forming the basis for an etiology-driven approach to disease classification, reveal novel treatment targets, and inform the development of precision medicine approaches. In recent years, genome-wide association studies (GWAS) have identified multiple common genetic variants for neurological and psychiatric disorders. Two key findings have emerged: the disorders are polygenic and genetic overlap is ubiquitous22,23. Genetic overlap has mainly been assessed by estimating pairwise genetic correlations using tools such as linkage disequilibrium (LD) score regression (LDSC)24, demonstrating that the genetic risk of psychiatric disorders is highly intercorrelated25–28. By contrast, there are fewer significant pairwise genetic correlations among neurological disorders25,29,30 and between neurological and psychiatric disorders25,31. Accordingly, neurological disorders have been considered to be genetically disparate from psychiatric disorders25, in line with their clinical distinction2. However, estimates of genetic correlation are sensitive to low GWAS power and do not provide a complete picture of the genetic relationship between complex human phenotypes22,32. Importantly, they may conceal genetic overlap involving a mixture of concordant and discordant effect directions33,34, and they do not account for differences in polygenicity33, which governs the extent to which phenotypes may share genetic variants. Recent analyses using LAVA34 and MiXeR33 have demonstrated extensive genetic overlap across complex human phenotypes irrespective of the genetic correlations, along with differences in their polygenic architetures22,27,33–35. Additionally, genetic analyses have identified overlapping risk loci and expression profiles between psychiatric and neurological disorders31,36–41, indicative of a shared pathogenetic basis. Moreover, GWAS on psychiatric disorders implicate neurobiological pathways and neuronal cell types, suggesting that their underlying susceptibility affects brain functioning32.

In the present study, we aimed to investigate whether the existing clinical division between neurological and psychiatric disorders is apparent at the genetic level. To this end, we conducted a comprehensive cross-disorder analysis of recent large-scale GWAS datasets using statistical tools that capture distinct forms of genetic overlap, and we biologically interpretated the genomic data.

Results

Study design (Fig.1)

We curated a collection of well-powered GWAS summary statistics, resulting in data on ten psychiatric disorders (attention-deficit/hyperactivity disorder (ADHD)42, anorexia nervosa (AN)43, autism spectrum disorder (ASD)44, anxiety disorders (ANX)45, BD46, major depressive disorder (MDD)47, obsessive-compulsive disorder (OCD)48, post-traumatic stress disorder (PTSD)49, SCZ50 and Tourette Syndrome (TS)51), and ten neurological disorders (ALZ52, amyotrophic lateral sclerosis (ALS)53, essential tremor (ET)54, Lewy body dementia (LBD)55, migraine (MIG)56, multiple sclerosis (MS)57, Parkinson’s disease (PD)58–60, stroke61 and the epilepsy subtypes focal epilepsy (FE)62 and genetic generalized epilepsy (GGE)62). Additionally, we included GWAS data on brain-related traits (general cognitive ability (COG)63 and cortical surface area (CRT-SA) and thickness (CRT-TH)64), four somatic diseases (chronic kidney disease (CKD)65, coronary artery disease (CAD)66, inflammatory bowel disease (IBD)67 and Type 2 Diabetes (T2D)68) and height69 as comparators. All GWAS data were limited to participants of European ancestry to avoid bias due to differences in LD structure across ancestries. Ascertainment and diagnostic criteria are described in the Supplementary Note.

Fig. 1
  • Download figure
  • Open in new tab
Fig. 1 Study design.

Overview of the GWAS summary statistics and analyses performed in the study. Abbreviations psychiatric disorders: Attention-deficit/hyperactivity disorder (ADHD), anorexia nervosa (AN), autism spectrum disorder (ASD), anxiety disorders (ANX), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), schizophrenia (SCZ), Tourette syndrome (TS); neurological disorders: Alzheimer’s disease (ALZ), amyotrophic lateral sclerosis (ALS), Essential Tremor (ET), Lewy body dementia (LBD), migraine (MIG), multiple sclerosis (MS), Parkinson disease (PD), focal epilepsy (FE), genetic generalized epilepsy (GGE); comparators: general cognitive ability (COG), total cortical surface area (CRT-SA) and average cortical thickness (CRT-TH), coronary artery disease (CAD), chronic kidney disease (CKD), inflammatory bowel disease (IBD) and Type 2 Diabetes (T2D); methods: linkage disequilibrium score regression (LDSC).

After data harmonization and pre-processing of the GWAS summary data, we conducted systematic cross-trait analyses and biological interrogation (Fig. 1). We first provide information on the genetic architecture characteristics distinguishing each phenotype. Next, we provide an overview of the overlapping genome-wide significant loci and genes. Third, we present the patterns of global genetic correlations across the phenotypes. Fourth, we provide estimates of genetic overlap beyond genetic correlation. Finally, we compare differentially implicated biological pathways, tissues and cell types across the included GWAS.

Individual genetic architecture characteristics

The genetic architecture of complex human phenotypes differs in terms of the heritability accounted for by single-nucleotide polymorphisms (SNP-heritability), the estimated number of SNPs influencing the phenotype (the polygenicity), and the variance of effect sizes across the associated SNPs (the discoverability)22,32. For each phenotype (trait or disorder), we estimated the SNP-heritability using LDSC70 (Table 1, Fig. 2a). On average, the estimated SNP-heritability on the liability scale was almost twice as large for psychiatric disorders (14.6%, range 5.3-29.3%) compared to neurological disorders (8.2%, range 1.4-23.8%). However, regardless of disorder category, disorders with typical onset during childhood or adolescence had the highest estimated SNP-heritability, specifically OCD, GGE, SCZ and TS, all of putative neurodevelopmental origin. The average estimated SNP-heritability for non-brain related disorders was 9.8% (range 1.6-17.9%).

Fig. 2
  • Download figure
  • Open in new tab
Fig. 2 Individual genetic architecture characteristics.

a, SNP-based heritability on the liability scale for all disorders estimated using LD score regression70. b, Polygenicity and discoverability of all phenotypes estimated using MiXeR71, excluding GWAS with poor model fit. For full univariate MiXeR results, see Supplementary Table 1.

View this table:
  • View inline
  • View popup
Table 1 Overview of the GWAS contributing to the study

Using MiXeR71, we estimated the polygenicity and discoverability for each phenotype (Fig. 2b; Supplementary Table 1), except for seven GWAS displaying poor model fit due to insufficient statistical power (ANX, PTSD, TS, OCD, FE, ET and LBD). The polygenicity estimates for all psychiatric disorders (range 7,725, sd=349 – 13,582, sd=387) and COG (11,195, sd=369) exceeded those of neurological disorders (range 464, sd=43 – 2,898, sd=220), somatic disorders (range 423, sd=55 – 1,358, sd=85), height (4,894, sd=90) and cortical imaging measures (range 1,361, sd=100 – 1,666, sd=125). For example, the least polygenic psychiatric disorder ADHD (7,725, sd=349) was estimated to be influenced by ∼2.7 times more genetic variants than the most polygenic neurological disorder GGE (2,898, sd=220). In line with prior work22,71, the most polygenic phenotypes were characterized by relatively low discoverability, indicating a larger fraction of trait-influencing variants with smaller effect sizes. In Supplementary Fig. 1, we present GWAS power plots displaying the estimated fraction of SNP-heritability explained by genome-wide significant SNPs as a function of sample size, demonstrating that the discovery trajectories for most of the GWAS are still in the early stages, except for height.

Overlapping genome-wide significant loci and genes

We estimated the number and fraction of significantly associated loci and genes shared across the phenotype categories (Table 2) with results for each phenotypic pair provided in Supplementary Tables 2-3. For each GWAS, we identified genome-wide significant loci according to the FUMA protocol72. We subsequently grouped physically overlapping loci, resulting in a total number of 1,988 distinct loci. Of these, 441 loci were linked to psychiatric disorders and 227 loci to neurological disorders. In total, 41 loci were overlapping between psychiatric and neurological disorders, constituting 9.3% and 18.1% of the total number of loci linked to these categories, respectively. Additionally, we mapped GWAS associations to protein-coding genes using MAGMA73, yielding a total number of 7,829 distinct genes. Of these, 796 genes were linked to psychiatric disorders and 497 to neurological disorders. 51 genes were shared between psychiatric and neurological disorders, constituting 6.4% and 10.3% of the total number of genes linked to these categories, respectively. Importantly, the pleiotropy across genome-wide significant loci and genes were largely driven by GWAS power, warranting cautious interpretation of these results. Almost all pleiotropy for psychiatric disorders were observed for SCZ and MDD, while the neurological GWAS were more evenly powered.

View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 2 Overview of pleiotropic loci and genes linked to psychiatric or neurological disorders at the genome-wide significant level
View this table:
  • View inline
  • View popup
  • Download powerpoint
Table 3 Summary of tissue and cell type specificity analyses

Global genetic correlations

Using bivariate LDSC24, we estimated the global pairwise genetic correlations across all phenotypes (Supplementary Fig. 2). Our results corroborate prior findings of highly intercorrelated genetic risk among psychiatric disorders25–28,31. In total, 40 out of 45 genetic correlations among psychiatric disorders reached significance (FDR < 0.05). In comparison, 12 out of 45 correlations among neurological disorders reached significance (FDR < 0.05). As recently demonstrated29,30, the neurodegenerative disorders ALS, LBD, ALZ and PD formed a cluster of correlated disorders. Additionally, ET was correlated with both PD (rg=0.31, p=1.80×10-7) and MIG (rg=0.17, p=3.90×10-3), FE was correlated with stroke (rg=0.30, p=1.40×10-3), ALS (rg=0.32, p=7.10×10-3) and the other epilepsy subtype GGE (rg=0.61, p=8.04×10-17), while PD was negatively correlated with both MIG (rg=-0.08, p=1.40×10-2) and stroke (rg=-0.10, p=1.57×10-2).

In total, 30 out of 100 genetic correlations between neurological and psychiatric disorders reached significance at FDR < 0.05 (rg range: −0.19 – 0.40; Fig. 3), demonstrating that genetic risk transcends the categorical boundary between these disorders. We found that MIG, ET and stroke were positively correlated with several psychiatric disorders, in particular MDD, ADHD, ANX and PTSD. The same psychiatric disorders were also correlated with CAD, consistent with a connection between mental disorders and cardiovascular illness74. By contrast, neither MIG or ET were significantly correlated with any somatic comparator or stroke, suggesting that their shared genetic effects with psychiatric disorders may relate to other aspects. Additionally, MS was significantly correlated with ANX (rg=0.17, p=6.00×10-4), MDD (rg=0.11, p=1.16×10-5) and SCZ (rg=0.07, p=1.02×10-2). All of these disorders were positively correlated with the immune-mediated disease IBD, indicating a common link to immunity. We also observed significant correlations between ALZ and both BD (rg=0.14, p=1.81×10-2) and SCZ (rg=0.11, p=1.14×10-2), in line with the comorbidity between dementia and psychosis13,20,31. Finally, we observed significant correlations between several comparators and psychiatric and neurological disorders, demonstrating body-wide effects of the involved genetic variants (Supplementary Note).

Fig. 3
  • Download figure
  • Open in new tab
Fig. 3 Genetic correlations.

Global pairwise genetic correlations across neurological and psychiatric disorders estimated using linkage disequilibrium score regression24. One asterisk denotes statistical significance at FDR < 0.05, two asterisks denote statistical significance after Bonferroni correction. The color denotes the magnitude and direction of correlation.

Genetic overlap beyond global genetic correlations

Using bivariate MiXeR33, we estimated the unique and overlapping genetic architectures between pairs of phenotypes (Supplementary Table 5). Unlike LDSC24, MiXeR can detect genetic overlap regardless of the global genetic correlations33. Corroborating recent work35, we found extensive genetic overlap across all psychiatric disorders, with a minor proportion of disorder-specific variants (Supplementary Fig. 3). MiXeR indicated varying degrees of genetic overlap between neurological disorders, with smaller proportions of shared risk compared to psychiatric disorders, suggesting that neurological disorders are more genetically distinct from each other. Despite disparate polygenicity estimates, we observed widespread genetic overlap between neurological and psychiatric disorders. This constituted a larger proportion of the genetic architectures of neurological disorders given their smaller polygenicity estimates relative to psychiatric disorders. As an example, MiXeR estimated pronounced genetic overlap between SCZ and neurological disorders PD, GGE and MIG, despite absent genetic correlations, indicative of a balanced mix of concordant and discordant effects among the shared variants (Fig. 4). Almost all genetic variants linked to PD and GGE and 70% of those linked to MIG were estimated to also influence risk of SCZ, while the overlap represented less than 30% of the SCZ variants.

Fig. 4
  • Download figure
  • Open in new tab
Fig. 4 Genetic overlap beyond global genetic correlations.

LAVA local correlations and MiXeR-modeled genome-wide genetic overlap for selected disorders schizophrenia (SCZ), Parkinson’s disease (PD), migraine (MIG) and genetic generalized epilepsy (GGE). To the left, volcano plots of local genetic correlation coefficients (rho) against -log10 p-values for each pairwise analysis per locus estimated using LAVA34 (See Supplementary Table 6 for full results). Dots encircled in black represent significantly correlated loci after false discovery rate correction. To the right, Venn diagrams showing the number (in thousands) of shared and disorder-specific variants and the global genetic correlation (rg) estimated using MiXeR33 (See Supplementary Fig. 3 and Supplementary Table 5 for full results). The total polygenicity for each disorder represents the estimated number of variants required to explain 90% the SNP-based heritability.

Applying LAVA34, we calculated the local genetic correlations across 2,495 genomic regions between all pairs of phenotypes. We performed local genetic correlation tests at loci where both phenotypes had heritability estimates significantly different from zero, and corrected for multiple testing using FDR. Corroborating the MiXeR findings, LAVA estimated multiple significantly correlated loci across most pairs of phenotypes, including between neurological and psychiatric disorders (Supplementary Table 6). As observed for locus and gene pleiotropy at the genome-wide significance level (Supplementary Tables 2 and 3), the number of LAVA local correlations largely reflected GWAS power. Consistent with the MiXeR findings, LAVA estimated correlated loci between SCZ and PD (14 positively correlated and 13 negatively correlated loci), GGE (six positively correlated and six negatively correlated loci), and MIG (10 positively correlated and 15 negatively correlated loci), supporting a shared genetic basis (Fig. 4).

Tissue, cell-type and gene-set enrichment analyses

Finally, we compared GWAS enrichment with specific tissues, cell types and gene sets (Table 4), using RNA sequencing data from the Genotype-Tissue Expression (GTEx) project75, single-cell RNA sequencing datasets from the developing and adult human brain, and predefined Gene Ontology gene sets implemented in FUMA72,76. We performed Bonferroni correction for the number of tested items in each analysis. The biological interrogation revealed diverse brain-related associations linked to neurological disorders. Risk genes for PD were significantly associated with various neurobiological processes, particularly concerning synaptic vesicles, and were specifically upregulated in the substantia nigra58, central to PD pathogenesis. Risk genes for GGE were significantly associated with both GABAergic and excitatory neurons62, in line with hyperexcitability being the main pathophysiological feature of epilepsy, but were not associated with any tissue or gene set. The only significant association observed for stroke was with the gene set ‘fibrinogen’, an established stroke risk factor involved in clot formation77. Risk genes for LBD were linked to lipid metabolism. As previously shown52,57,76, ALZ and MS were both significantly associated with immune-enriched tissues, microglia and immunological pathways, implying a key role of the immune system. Additionally, ALZ were associated with amyloid-beta related processes.

GWAS on psychiatric disorders consistently implicated neuronal biology, corroborating previous work26,28,32,42,46,47,50. Risk genes for ADHD, MDD and SCZ were all upregulated in brain tissue, implicated neurobiological processes and neuronal cell types. MDD was also associated with oligodendrocyte progenitor cells. BD risk genes were significantly associated with both GABAergic and excitatory neurons, but not with any tissue or gene set. ANX was significantly associated with several neurobiological pathways, while risk genes for AN were significantly downregulated in specific brain tissues. Apart from COG, no comparator was significantly associated with neurons. COG and CRT-TH were the only comparators whose genes were significantly upregulated in brain tissue. Further results are described in the Supplementary Note. Full results are provided in Supplementary Tables 7 and 8 and Supplementary Figs. 4 and 5.

Discussion

In the present study, we delineate the extent of common variant risk shared across major neurological and psychiatric disorders and provide new insights into their genetic relationship. Applying complementary statistical tools to massive datasets, we demonstrate widespread genetic overlap across the disorders, despite evident differences in their genetic architectures. Overall, the results advance our understanding of the shared common genetic variation underlying neurological and psychiatric disorders, suggesting that a large set of pleiotropic variants influence a range of brain functions and risk of multiple disorders, in which disorder specificity is determined by the distribution of effect sizes. While the overlapping genomic components suggest that neurological and psychiatric disorders partly share molecular genetic mechanisms, a more central role of neuronal biology was implicated in psychiatric disorders, while more diverse biological processes were associated with neurological diseases. Altogether, the findings are consistent with accumulating evidence indicating that neurological and psychiatric disorders share key etiological aspects, contrasting their clinical distinction.

To compare the genetic basis of neurological and psychiatric disorders, we analyzed GWAS summary data from 20 major disorders, representing the largest cross-disorder analysis on this subject to date (Table 1). Moreover, the application of statistical methods with different modelling assumptions and different techniques for measuring genetic overlap allowed us to interrogate their genetic relationship in a more comprehensive manner than previous work25. In the univariate analysis, psychiatric disorders were more polygenic than neurological disorders. Polygenicity indicates the number of additive genetic effects that may combine to yield increased trait susceptibility, providing a measure of genetic architecture complexity and possibly heterogeneity22,78. While both neurological and psychiatric disorders are multifactorial and clinically heterogenous, the higher levels of polygenicity of psychiatric disorders is consistent with a hypothesis that multiple causal pathways may converge on the same mental illness, while fewer causal pathways may underlie neurological disorders. Despite similar twin-based heritability estimates across neurological and psychiatric disorders21, the SNP-based heritability estimates appeared to negatively correlate with typical onset of illness, regardless of disorder category. This contrasts the theoretical expectation that common genetic variants might explain more variance in late-onset disorders, given their weaker impact on reproductive fitness, thereby reducing selective pressure79. However, current methodology may inappropriately account for the effect of age and large-effect variants such as APOE variants, warranting cautious interpretation of SNP-heritability estimates for late-onset disorders80.

Expanding upon previous work based on less powerful GWAS25,31,36–40, we demonstrate widespread genetic correlations between neurological and psychiatric disorders, most of which were positive (Fig. 3). The results indicate that neurological and psychiatric disorders partly exist on genetic continua, providing new insights into their genetic relationship. Importantly, the shared genetic components may map onto overlapping biological aspects that could be targeted therapeutically. Evidently, the pattern of correlations was not uniform across disorders, with clusters of disorders being more correlated with each other. Notably, both MIG and ET were positively correlated with several psychiatric disorders, in particular the internalizing disorders ANX, MDD and PTSD, consistent with their extensive psychiatric comorbidities18,19. On a cautious note, however, the GWAS on both MIG and ET were largely based on self-reports54,56. Although self-reported and clinically ascertained cases are shown to strongly correlate47,56,58, we cannot exclude the possibility that some self-reports were based on underlying mental illness with somatoform symptomatology. The findings nevertheless emphasize the interconnected nature of these disorders, and may motivate further trialing of psychotherapy or antidepressants, which show beneficial effects for MIG prevention81.

Beyond genetic correlations, we observed a more pervasive degree of genetic overlap across neurological and psychiatric disorders, involving a mixture of concordant and discordant effect sizes (Supplementary Fig. 3). As an example, MiXeR33 indicated that a pronounced fraction of the genetic risk underlying PD, GGE and MIG overlaps with SCZ, despite absence of global genetic correlations (Fig. 4). The findings align with the discovery of multiple correlated genomic regions between these disorders using LAVA34 (Fig. 4), and shared loci detected below the genome-wide significance level36,37,40. The emerging results indicate a substantial genetic basis shared across neurological and psychiatric disorders, in which multiple genetic variants are estimated to influence several disorders, but with divergent effect sizes. Accordingly, a given genetic variant may influence numerous biological pathways involved in a range of neural and behavioral systems, and thereby differently impact risk of distinct disorders. This is consistent with recent findings of highly distributed genetic effects across brain morphological, cognitive and personality traits82–85. From a clinical perspective, the findings are relevant to the potential implementation of genomic precision medicine in clinical psychiatry and neurology. Integrating genomic data across multiple disorders in a multivariate analytical framework may improve prediction algorithms and help identifying individuals who are more likely to experience comorbid symptoms, either endogenously or due to adverse treatment effects.

The study has some limitations. The analysis was restricted to individuals of European ancestry, given the lack of well-powered GWAS on other ancestries. Trans-ancestral follow-up studies are required to assess the generalizability of these results. The present analysis was based on common genetic variants, but rare variants likely impact the comorbidity between neurological and psychiatric disorders as well. For example, rare variants are jointly associated with epilepsy, SCZ and ASD32. Our study was limited by bias inherent to the original GWAS, including population stratification and ascertainment procedures. As noted above, misdiagnosis could affect the results, in particular with more common disorders like anxiety or depression. However, prior extensive simulations did not find that misdiagnosis could explain the magnitude of correlated risk across psychiatric disorders25,26. Comorbid illness may also bias the assessment of genetic overlap, warranting more deeply phenotyped cohorts to assess differential genetic overlap among clinical subtypes. The results may be affected by LD, whereby a causal variant may be correlated with multiple nearby variants, leading to spurious pleiotropy. To address this, statistical fine-mapping follow-up studies are needed. Finally, there was uneven power among the included GWAS, which limit cross-disorder comparison at the present stage. This particularly affects the biological interpretation of the mapped genes, which only represent a minor fraction of the genetic risk architectures underlying these disorders. As GWAS samples get larger, cross-trait analyses based on more diverse datasets, additional disorders, and specific subtypes, should be conducted.

In conclusion, we leverage recent large-scale GWAS datasets and demonstrate widespread genetic overlap across neurological and psychiatric disorders and a convergence of biological associations related to the brain, contrasting their historically defined distinction. Incorporating these complex and interconnected illnesses into a more unified framework may help accelerate progress in these fields and potentially lead to a more coherent and productive clinical approach3–7.

Competing interests

O.A.A. has received speaker’s honorarium from Lundbeck, Sunovion and Janssen and is a consultant for Cortechs.ai. A.M.D. is a founder of and holds equity interest in CorTechs Labs and serves on its scientific advisory board. He is also a member of the Scientific Advisory Board of Healthlytix and receives research funding from General Electric Healthcare (GEHC). The terms of these arrangements have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies. Remaining authors have nothing to disclose.

Methods

GWAS summary statistics

We collated large-scale GWAS summary statistics based on available sample sizes and the quality of the phenotyping procedures (Table 1; See Supplementary Note for description of each GWAS dataset). All individuals included in the analysis were of European ancestry. Informed consent was obtained from all participants in the respective GWAS. The Regional Committee for Medical Research Ethics – Southeast Norway evaluated the current protocol and found that no additional institutional review board approval was necessary as no individual data were used. All GWAS datasets were derived from existing GWAS except the two datasets on total cortical surface area and average cortical thickness, which were generated from the UK Biobank under accession number 27412, after excluding all individuals with neurological and psychiatric disorders (Supplementary Note). For epilepsy, we chose to include its two main subtypes, focal epilepsy and genetic generalized epilepsy (GGE), rather than including the phenotype ‘all epilepsies combined’, due to the substantial differences in the genetic risk architectures underlying these two subtypes62, as emphasized by their differences in estimated SNP-heritability (2.9% vs 23.8%, respectively; Table 1). Before commencing analysis, all GWAS summary statistics underwent uniform quality control and were harmonized and preprocessed into a consistent file structure with a common reference for positions, rsIDs and effect alleles using the v1.6.0 cleansumstats pipeline86.

Genome-wide significant loci

For each GWAS, we defined independently associated genomic loci using FUMA72. First, we identified independent significant SNPs with a genome-wide significant p-value (5×10-8) that were independent from each other at r2<0.60. LD r2 values were obtained from the 1000 Genomes Project European-ancestry haplotype reference panel87. The borders of the loci were defined by identifying all candidate SNPs in LD (r2≥0.6) with one of the independent significant SNPs in the locus. All loci less than 250kb apart were merged.

To evaluate locus pleiotropy, we used the procedure previously applied by Watanabe et al. (2019)22. After identifying genome-wide significant loci for each phenotype, we grouped any physically overlapping loci across all phenotypes. A grouped locus could therefore contain more than one independent locus for a given phenotype if several loci were combined (i.e., loci A and C could both overlap with locus B but not with each other, but they would be grouped into one locus resulting in a continuous genomic region). Each grouped locus was then assigned to their specific phenotypes and the following categories: psychiatric disorders, neurological disorders, COG, cortical MRI measures (CRT-SA and CRT-TH), somatic diseases and height. We then determined the number and fraction of grouped loci shared across categories and between all pairs of phenotypes. The extended MHC-region (chr6: 25–37 Mb) was excluded from this analysis due to its complex LD structure.

MAGMA gene, gene-property and gene-set analysis

For each GWAS dataset, we identified significantly associated protein-coding genes and gene-sets using MAGMA (v1.08)73 as implemented in FUMA72 with default settings, using the SNP-wise mean model and the European 1000 Genomes reference cohort phase 3 as reference panel. The input SNPs were mapped to 20,260 protein-coding genes, excluding the extended MHC-region (chr6: 25–37 Mb). Gene boundaries were expanded to 35 kb upstream and 10 kb downstream to include probable regulatory regions outside the transcribed region88. Genes were considered significant if the p-value was less than 0.05 after Bonferroni correction for the number of tested genes (0.05/20,260 = 2.47×10-6). MAGMA calculates an association p-value for each gene based on the aggregate of all SNPs mapped to each gene, accounting for gene-size, number of SNPs in a gene and LD between markers. We then carried out competitive gene-set analysis based on the identified genes in each phenotype. Specifically, we focused on the Gene Ontology gene set terms: biological processes (7,350 gene sets), cellular components (1,001 gene sets) and molecular functions (1,645 gene sets) obtained from MsigDB version 7.089. Gene sets were considered significant if the p-value was <0.05 after Bonferroni correction for the number of tested gene sets in each category (0.05/7,350 = 6,80×10-6, 0.05/1,001 = 5,00×10-5, 0.05/1,645 = 3.04×10-5, respectively).

Based on the gene-based results above, we carried out tissue specific expression analysis in 54 adult tissue types based on RNA sequencing data GTEx v.875 implemented in FUMA72. Tissues were considered significant if the P value was less than 0.05 after Bonferroni correction for 54 tissues. For cell type specificity analysis, we tested for enrichment in 24 single-cell RNA sequencing data sets from the developing and adult human brain available in FUMA using MAGMA gene-property analysis76. The specific datasets were: Allen_Human_LGN_level190, Allen_Human_LGN_level290, Allen_Human_MTG_level190, Allen_Human_MTG_level290, DroNc_Human_Hippocampus91, GSE104276_Human_Prefrontal_cortex_all_ages92, GSE104276_Human_Prefrontal_cortex_per_ages92, GSE67835_Human_Cortex93, Linnarsson_GSE101601_Human_Temporal_cortex94, Linnarsson_GSE76381_Human_Midbrain95, PsychENCODE_Developmental96 PsychENCODE_Adult96, and GSE168408_Human_Prefrontal_Cortex datasets from level 1 to 2, spanning six developmental stages: fetal, neonatal, infancy, childhood, adolescence and adult97. In the cell type specific analysis, systematic stepwise conditional analysis was performed within datasets to ensure that complex batch effects did not lead to false positives, as well as Bonferroni correction for multiple testing of 379 cell types (0.05/379 = 1.30×10-4).

All statistical tests conducted using MAGMA were one sided. We did not perform additional correction for multiple testing across the 28 phenotypes, since the aim of analysis was not to determine which of the phenotypes a specific gene, gene-set, tissue or cell type was associated with, but to explore group level patterns of shared associations across the phenotypes.

SNP-heritability and global genetic correlations

Using LDSC70, we estimated the SNP-based heritability in the liability scale for each disorder, using reported population prevalence estimates (Table 1), and the SNP-based heritability on the observed scale for the continuous traits. LDSC distinguishes confounding from polygenicity by regressing the association statistics of SNPs on their LD scores70. All analyses were based on HapMap 3 SNPs only, with the MHC region (chr6: 25–34 Mb) excluded. Precalculated LD scores from the European 1000 Genomes reference cohort were used (https://data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2). Additionally, we used the bivariate extension of LDSC24 to estimate the global genetic correlations, i.e. the covariance in the SNP-heritability, between all pairs of phenotypes. Adjusting for the number of traits tested, we applied both the FDR method of Benjamini-Yekutieli98 given the dependence between the tests and Bonferroni-correction.

Univariate and bivariate MiXeR analysis

We first applied univariate MiXeR71 analysis to each GWAS summary dataset to estimate the proportion of causally associated genetic variants from a reference panel (the polygenicity) and the variance of effect size per causal variant (the discoverability) using maximum likelihood estimation, and the GWAS sample size necessary to discover genetic variants that explain 90% of SNP-heritability of each phenotype. We applied a threshold of 90% SNP-heritability to avoid extrapolating model parameters into variants with infinitesimally small effects. MiXeR is based on a Gaussian mixture model, assuming that a given GWAS summary dataset can be modeled as a “mixture” of pre-defined components with causal and non-causal variants, each with its own Gaussian (normal) distribution. MiXeR incorporates the effects of LD structure, minor allele frequency, GWAS sample size, genomic inflation due to cryptic relatedness, and sample overlap (in the bivariate extension). Before analysis, the MHC region was excluded from all GWAS, while the chromosome 19 was in addition excluded from ALZ due to the strong effects of the APOE region52 and complicated LD that biases the estimates of polygenicity.

Informed by the model parameters from univariate MiXeR for each phenotype, MiXeR constructs a bivariate mixture model for pairs of phenotypes, in which a mixture of four bivariate Gaussian components is modeled: variants influencing one phenotype only, variants influencing both phenotypes, and variants that are not associated with either phenotype. Bivariate MiXeR estimates the polygenicity of the shared component irrespective of effect directions and correlation of effect sizes. Additionally, MiXeR estimates the genetic correlation of shared variants, and the global genetic correlation. Model fit is evaluated by calculating the difference between the Akaike information criterion (AIC) for best-fitting MiXeR estimates and reference models. Positive AIC differences are interpreted as evidence that the best-fitting MiXeR estimates are distinguishable from the reference model. For univariate MiXeR, an “infinitesimal model” in which all variants are assumed to be ‘causal’ is used as the reference. For bivariate MiXeR, AIC differences are calculated by comparing the best-fitting model to minimum possible overlap, constrained by rg, and maximum possible overlap, constrained by the polygenicity of the least polygenic trait. We provide conditional Q-Q plots and log-likelihood plots to visualize the stability of the fitness procedure.

Estimating local genetic correlations using LAVA

For all pairs of phenotypes, we applied LAVA (v1.3.8) to estimate local genetic correlations across 2,495 semi-independent genetic loci of approximately equal size (∼1 Mb). LAVA accounts for potential sample overlap using LDSC70. After computing local SNP-heritability estimates for each phenotype, we conducted pairwise local genetic correlation analysis for all loci with local SNP-heritability significantly different from zero. We applied FDR correction to account for multiple comparisons. The statistical tests conducted were all two sided.

Code availability

Cleansumstats pipeline (https://github.com/BioPsyk/cleansumstats)

FUMA (https://fuma.ctglab.nl/)

LAVA (https://github.com/josefin-werme/LAVA)

LDSC (https://github.com/bulik/ldsc)

MAGMA (https://ctg.cncr.nl/software/magma)

MiXeR (https://github.com/precimed/mixer)

PLINK (https://www.cog-genomics.org/plink/2.0/)

Regenie (https://rgcgithub.github.io/regenie)

Data availability

All data are publicly available or available on request.

Acknowledgments

We thank the research participants, employees and researchers of the UK Biobank, 23andMe, Inc., MVP, iPSYCH and the many consortia for making this research possible. This research has been conducted using the UK Biobank Resource under Application Number 27412. Moreover, the research has been conducted using and data from MVP, under dbGap accession number phs001672. This work was partly performed on the TSD (Services for Sensitive Data) facilities, owned by the University of Oslo, operated and developed by the TSD service group at the University of Oslo, IT-Department (USIT). Computations were also performed on resources provided by UNINETT Sigma2—the National Infrastructure for High Performance Computing and Data Storage in Norway. We gratefully acknowledge support from the American National Institutes of Health (NS057198, EB000790, 1R01MH124839, R01MH120219, RF1AG073593), the Research Council of Norway (RCN) (229129, 213837, 324252, 300309, 273291, 223273, 248980, 326813), the South-East Norway Regional Health Authority (2019-108, 2022-073), KG Jebsen Stiftelsen (SKGJ-MED-021), EAA grant (#EEA-RO-NO-2018-0573). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 847776 and 964874 and 801133 (Marie Sklodowska-Curie grant agreement).

References

  1. 1.↵
    Whiteford, H.A., Ferrari, A.J., Degenhardt, L., Feigin, V. & Vos, T. The global burden of mental, neurological and substance use disorders: an analysis from the Global Burden of Disease Study 2010. PLoS One 10, e0116820 (2015).
    OpenUrlCrossRefPubMed
  2. 2.↵
    World Health Organization. International Classification of Diseases for Mortality and Morbidity Statistics (Eleventh Revision). (2018).
  3. 3.↵
    Kandel, E.R. A new intellectual framework for psychiatry. Am J Psychiatry 155, 457–69 (1998).
    OpenUrlCrossRefPubMedWeb of Science
  4. 4.↵
    Price, B.H., Adams, R.D. & Coyle, J.T. Neurology and psychiatry: closing the great divide. Neurology 54, 8–14 (2000).
    OpenUrlCrossRefPubMed
  5. 5.
    Keshavan, M.S., Price, B.H. & Martin, J.B. The Convergence of Neurology and Psychiatry: The Importance of Cross-Disciplinary Education. JAMA 324, 554–555 (2020).
    OpenUrl
  6. 6.
    Insel, T.R. & Quirion, R. Psychiatry as a clinical neuroscience discipline. JAMA 294, 2221–4 (2005).
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.↵
    White, P.D., Rickards, H. & Zeman, A.Z. Time to end the distinction between mental and neurological illnesses. BMJ 344, e3454 (2012).
    OpenUrlFREE Full Text
  8. 8.↵
    Thompson, P.M. et al. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 10, 100 (2020).
    OpenUrl
  9. 9.↵
    Leung, E. et al. Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies. Mol Psychiatry 27, 1362–1372 (2022).
    OpenUrl
  10. 10.↵
    Huhn, M. et al. Efficacy of pharmacotherapy and psychotherapy for adult psychiatric disorders: a systematic overview of meta-analyses. JAMA Psychiatry 71, 706–15 (2014).
    OpenUrl
  11. 11.
    Espinoza, R.T. & Kellner, C.H. Electroconvulsive Therapy. N Engl J Med 386, 667–672 (2022).
    OpenUrlCrossRefPubMed
  12. 12.↵
    Levkovitz, Y. et al. Efficacy and safety of deep transcranial magnetic stimulation for major depression: a prospective multicenter randomized controlled trial. World Psychiatry 14, 64–73 (2015).
    OpenUrlCrossRefPubMed
  13. 13.↵
    Ismail, Z. et al. Psychosis in Alzheimer disease - mechanisms, genetics and therapeutic opportunities. Nat Rev Neurol 18, 131–144 (2022).
    OpenUrl
  14. 14.
    Ffytche, D.H. et al. The psychosis spectrum in Parkinson disease. Nat Rev Neurol 13, 81–95 (2017).
    OpenUrl
  15. 15.↵
    Gaitatzis, A., Trimble, M.R. & Sander, J.W. The psychiatric comorbidity of epilepsy. Acta Neurol Scand 110, 207–20 (2004).
    OpenUrlCrossRefPubMedWeb of Science
  16. 16.↵
    Peralta, V. & Cuesta, M.J. Motor Abnormalities: From Neurodevelopmental to Neurodegenerative Through “Functional” (Neuro)Psychiatric Disorders. Schizophr Bull 43, 956–971 (2017).
    OpenUrlCrossRef
  17. 17.↵
    Millan, M.J. et al. Cognitive dysfunction in psychiatric disorders: characteristics, causes and the quest for improved therapy. Nat Rev Drug Discov 11, 141–68 (2012).
    OpenUrlCrossRefPubMed
  18. 18.↵
    Minen, M.T. et al. Migraine and its psychiatric comorbidities. J Neurol Neurosurg Psychiatry 87, 741–9 (2016).
    OpenUrlAbstract/FREE Full Text
  19. 19.↵
    Shanker, V. Essential tremor: diagnosis and management. BMJ 366, l4485 (2019).
    OpenUrlAbstract/FREE Full Text
  20. 20.↵
    Richmond-Rakerd, L.S., D’Souza, S., Milne, B.J., Caspi, A. & Moffitt, T.E. Longitudinal Associations of Mental Disorders With Dementia: 30-Year Analysis of 1.7 Million New Zealand Citizens. JAMA Psychiatry 79, 333–340 (2022).
    OpenUrl
  21. 21.↵
    Polderman, T.J. et al. Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet 47, 702–9 (2015).
    OpenUrlCrossRefPubMed
  22. 22.↵
    Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51, 1339–1348 (2019).
    OpenUrlCrossRefPubMed
  23. 23.↵
    Abdellaoui, A., Yengo, L., Verweij, K.J.H. & Visscher, P.M. 15 years of GWAS discovery: Realizing the promise. Am J Hum Genet 110, 179–194 (2023).
    OpenUrl
  24. 24.↵
    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 47, 1236–41 (2015).
    OpenUrlCrossRefPubMed
  25. 25.↵
    Brainstorm, C. et al. Analysis of shared heritability in common disorders of the brain. Science 360(2018).
  26. 26.↵
    Cross-Disorder Group of the Psychiatric Genomics Consortium. Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell 179, 1469–1482 e11 (2019).
    OpenUrlCrossRefPubMed
  27. 27.↵
    Romero, C. et al. Exploring the genetic overlap between twelve psychiatric disorders. Nat Genet 54, 1795–1802 (2022).
    OpenUrl
  28. 28.↵
    Grotzinger, A.D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic and molecular genetic levels of analysis. Nat Genet 54, 548–559 (2022).
    OpenUrlCrossRef
  29. 29.↵
    Wightman, D.P. et al. The genetic overlap between Alzheimer’s disease, amyotrophic lateral sclerosis, Lewy body dementia, and Parkinson’s disease. Neurobiology of Aging (2023).
  30. 30.↵
    Qiao, J. et al. Genetic correlation and gene-based pleiotropy analysis for four major neurodegenerative diseases with summary statistics. Neurobiol Aging 124, 117–128 (2023).
    OpenUrl
  31. 31.↵
    Wingo, T.S. et al. Shared mechanisms across the major psychiatric and neurodegenerative diseases. Nat Commun 13, 4314 (2022).
    OpenUrl
  32. 32.↵
    Andreassen, O.A., Hindley, G.F.L., Frei, O. & Smeland, O.B. New insights from the last decade of research in psychiatric genetics: discoveries, challenges and clinical implications. World Psychiatry 22, 4–24 (2023).
    OpenUrlCrossRef
  33. 33.↵
    Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat Commun 10, 2417 (2019).
    OpenUrlCrossRef
  34. 34.↵
    Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C.A. An integrated framework for local genetic correlation analysis. Nat Genet 54, 274–282 (2022).
    OpenUrlCrossRefPubMed
  35. 35.↵
    Hindley, G. et al. Charting the Landscape of Genetic Overlap Between Mental Disorders and Related Traits Beyond Genetic Correlation. Am J Psychiatry 179, 833–843 (2022).
    OpenUrl
  36. 36.↵
    Bahrami, S. et al. Dissecting the shared genetic basis of migraine and mental disorders using novel statistical tools. Brain 145, 142–153 (2022).
    OpenUrl
  37. 37.↵
    Smeland, O.B. et al. Genome-wide Association Analysis of Parkinson’s Disease and Schizophrenia Reveals Shared Genetic Architecture and Identifies Novel Risk Loci. Biol Psychiatry 89, 227–235 (2021).
    OpenUrl
  38. 38.
    Pickrell, J.K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 48, 709–17 (2016).
    OpenUrlCrossRefPubMed
  39. 39.
    Ahangari, M. et al. Genome-wide analysis of schizophrenia and multiple sclerosis identifies shared genomic loci with mixed direction of effects. Brain Behav Immun 104, 183–190 (2022).
    OpenUrl
  40. 40.↵
    Karadag, N. et al. Identification of novel genomic risk loci shared between common epilepsies and psychiatric disorders. Brain (2023).
  41. 41.↵
    Zeighami, Y. et al. A comparison of anatomic and cellular transcriptome structures across 40 human brain diseases. PLoS Biol 21, e3002058 (2023).
    OpenUrl
  42. 42.↵
    Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat Genet (2023).
  43. 43.↵
    Watson, H.J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat Genet 51, 1207–1214 (2019).
    OpenUrlCrossRef
  44. 44.↵
    Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 51, 431–444 (2019).
    OpenUrlCrossRefPubMed
  45. 45.↵
    Purves, K.L. et al. A major role for common genetic variation in anxiety disorders. Mol Psychiatry 25, 3292–3303 (2020).
    OpenUrl
  46. 46.↵
    Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet 53, 817–829 (2021).
    OpenUrlCrossRefPubMed
  47. 47.↵
    Levey, D.F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci 24, 954–963 (2021).
    OpenUrl
  48. 48.↵
    International Obsessive Compulsive Disorder Foundation Genetics, C. & Studies, O.C.D.C.G.A. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry 23, 1181–1188 (2018).
    OpenUrlCrossRef
  49. 49.↵
    Nievergelt, C.M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun 10, 4558 (2019).
    OpenUrlCrossRefPubMed
  50. 50.↵
    Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).
    OpenUrlPubMed
  51. 51.↵
    Yu, D. et al. Interrogating the Genetic Determinants of Tourette’s Syndrome and Other Tic Disorders Through Genome-Wide Association Studies. Am J Psychiatry 176, 217–227 (2019).
    OpenUrlCrossRefPubMed
  52. 52.↵
    Wightman, D.P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet 53, 1276–1282 (2021).
    OpenUrlCrossRef
  53. 53.↵
    van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 53, 1636–1648 (2021).
    OpenUrlCrossRefPubMed
  54. 54.↵
    Liao, C. et al. Association of Essential Tremor With Novel Risk Loci: A Genome-Wide Association Study and Meta-analysis. JAMA Neurol 79, 185–193 (2022).
    OpenUrl
  55. 55.↵
    Chia, R. et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 53, 294–303 (2021).
    OpenUrlCrossRefPubMed
  56. 56.↵
    Hautakangas, H. et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat Genet 54, 152–160 (2022).
    OpenUrlCrossRef
  57. 57.↵
    International Multiple Sclerosis Genetics, C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365(2019).
  58. 58.↵
    Nalls, M.A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18, 1091–1102 (2019).
    OpenUrlCrossRefPubMed
  59. 59.
    Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 49, 1511–1516 (2017).
    OpenUrlCrossRefPubMed
  60. 60.↵
    Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46, 989–93 (2014).
    OpenUrlCrossRefPubMed
  61. 61.↵
    Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).
    OpenUrl
  62. 62.↵
    Berkovic, S.F., Cavalleri, G.L. & Koeleman, B.P.C. Genome-wide meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-specific genetic architecture. medRxiv, 2022.06.08.22276120 (2022).
  63. 63.↵
    Savage, J.E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet 50, 912–919 (2018).
    OpenUrlCrossRefPubMed
  64. 64.↵
    Smith, S.M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat Neurosci 24, 737–745 (2021).
    OpenUrl
  65. 65.↵
    Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet 51, 957–972 (2019).
    OpenUrlCrossRefPubMed
  66. 66.↵
    Nelson, C.P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet 49, 1385–1391 (2017).
    OpenUrlCrossRefPubMed
  67. 67.↵
    de Lange, K.M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet 49, 256–261 (2017).
    OpenUrlCrossRefPubMed
  68. 68.↵
    Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50, 1505–1513 (2018).
    OpenUrlCrossRefPubMed
  69. 69.↵
    Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).
    OpenUrl
  70. 70.↵
    Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47, 291–5 (2015).
    OpenUrlCrossRefPubMed
  71. 71.↵
    Holland, D. et al. Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genet 16, e1008612 (2020).
    OpenUrlCrossRef
  72. 72.↵
    Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8, 1826 (2017).
    OpenUrlCrossRefPubMed
  73. 73.↵
    de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11, e1004219 (2015).
    OpenUrlCrossRefPubMed
  74. 74.↵
    Colton, C.W. & Manderscheid, R.W. Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states. Prev Chronic Dis 3, A42 (2006).
    OpenUrlPubMed
  75. 75.↵
    The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580–5 (2013).
    OpenUrlCrossRefPubMed
  76. 76.↵
    Watanabe, K., Umicevic Mirkov, M., de Leeuw, C.A., van den Heuvel, M.P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat Commun 10, 3222 (2019).
    OpenUrlPubMed
  77. 77.↵
    Wilhelmsen, L. et al. Fibrinogen as a risk factor for stroke and myocardial infarction. N Engl J Med 311, 501–5 (1984).
    OpenUrlCrossRefPubMedWeb of Science
  78. 78.↵
    Smeland, O.B., Frei, O., Dale, A.M. & Andreassen, O.A. The polygenic architecture of schizophrenia - rethinking pathogenesis and nosology. Nat Rev Neurol 16, 366–379 (2020).
    OpenUrl
  79. 79.↵
    Zuk, O. et al. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A 111, E455–64 (2014).
    OpenUrlAbstract/FREE Full Text
  80. 80.↵
    Lambert, J.C., Ramirez, A., Grenier-Boley, B. & Bellenguez, C. Step by step: towards a better understanding of the genetic architecture of Alzheimer’s disease. Mol Psychiatry (2023).
  81. 81.↵
    Ashina, M. et al. Migraine: integrated approaches to clinical management and emerging treatments. Lancet 397, 1505–1518 (2021).
    OpenUrl
  82. 82.↵
    van der Meer, D. et al. Understanding the genetic determinants of the brain with MOSTest. Nat Commun 11, 3512 (2020).
    OpenUrlCrossRef
  83. 83.
    van der Meer, D. et al. The genetic architecture of human cortical folding. Sci Adv 7, eabj9446 (2021).
    OpenUrlCrossRef
  84. 84.
    Bahrami, S. et al. Distributed genetic architecture across the hippocampal formation implies common neuropathology across brain disorders. Nat Commun 13, 3436 (2022).
    OpenUrl
  85. 85.↵
    Hindley, G., et al. Multivariate genetic analysis of personality and cognitive traits reveals abundant pleiotropy. Nat Hum Behav (2023).
  1. 22.
    Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat Genet 51, 1339–1348 (2019).
    OpenUrlCrossRefPubMed
  2. 24.
    Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat Genet 47, 1236–41 (2015).
    OpenUrlCrossRefPubMed
  3. 33.
    Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat Commun 10, 2417 (2019).
    OpenUrlCrossRef
  4. 34.
    Werme, J., van der Sluis, S., Posthuma, D. & de Leeuw, C.A. An integrated framework for local genetic correlation analysis. Nat Genet 54, 274–282 (2022).
    OpenUrlCrossRefPubMed
  5. 42.
    Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat Genet (2023).
  6. 43.
    Watson, H.J. et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat Genet 51, 1207–1214 (2019).
    OpenUrlCrossRef
  7. 44.
    Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet 51, 431–444 (2019).
    OpenUrlCrossRefPubMed
  8. 45.
    Purves, K.L. et al. A major role for common genetic variation in anxiety disorders. Mol Psychiatry 25, 3292–3303 (2020).
    OpenUrl
  9. 46.
    Mullins, N. et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet 53, 817–829 (2021).
    OpenUrlCrossRefPubMed
  10. 47.
    Levey, D.F. et al. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci 24, 954–963 (2021).
    OpenUrl
  11. 48.
    International Obsessive Compulsive Disorder Foundation Genetics, C. & Studies, O.C.D.C.G.A. Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry 23, 1181–1188 (2018).
    OpenUrlCrossRef
  12. 49.
    Nievergelt, C.M. et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun 10, 4558 (2019).
    OpenUrlCrossRefPubMed
  13. 50.
    Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).
    OpenUrlPubMed
  14. 51.
    Yu, D. et al. Interrogating the Genetic Determinants of Tourette’s Syndrome and Other Tic Disorders Through Genome-Wide Association Studies. Am J Psychiatry 176, 217–227 (2019).
    OpenUrlCrossRefPubMed
  15. 52.
    Wightman, D.P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s disease. Nat Genet 53, 1276–1282 (2021).
    OpenUrlCrossRef
  16. 53.
    van Rheenen, W. et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nat Genet 53, 1636–1648 (2021).
    OpenUrlCrossRefPubMed
  17. 54.
    Liao, C. et al. Association of Essential Tremor With Novel Risk Loci: A Genome-Wide Association Study and Meta-analysis. JAMA Neurol 79, 185–193 (2022).
    OpenUrl
  18. 55.
    Chia, R. et al. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat Genet 53, 294–303 (2021).
    OpenUrlCrossRefPubMed
  19. 56.
    Hautakangas, H. et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat Genet 54, 152–160 (2022).
    OpenUrlCrossRef
  20. 57.
    International Multiple Sclerosis Genetics, C. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365(2019).
  21. 58.
    Nalls, M.A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18, 1091–1102 (2019).
    OpenUrlCrossRefPubMed
  22. 59.
    Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet 49, 1511–1516 (2017).
    OpenUrlCrossRefPubMed
  23. 60.
    Nalls, M.A. et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46, 989–93 (2014).
    OpenUrlCrossRefPubMed
  24. 61.
    Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).
    OpenUrl
  25. 62.
    Berkovic, S.F., Cavalleri, G.L. & Koeleman, B.P.C. Genome-wide meta-analysis of over 29,000 people with epilepsy reveals 26 loci and subtype-specific genetic architecture. medRxiv, 2022.06.08.22276120 (2022).
  26. 63.
    Savage, J.E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet 50, 912–919 (2018).
    OpenUrlCrossRefPubMed
  27. 64.
    Smith, S.M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat Neurosci 24, 737–745 (2021).
    OpenUrl
  28. 65.
    Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet 51, 957–972 (2019).
    OpenUrlCrossRefPubMed
  29. 66.
    Nelson, C.P. et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet 49, 1385–1391 (2017).
    OpenUrlCrossRefPubMed
  30. 67.
    de Lange, K.M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat Genet 49, 256–261 (2017).
    OpenUrlCrossRefPubMed
  31. 68.
    Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50, 1505–1513 (2018).
    OpenUrlCrossRefPubMed
  32. 69.
    Yengo, L. et al. A saturated map of common genetic variants associated with human height. Nature 610, 704–712 (2022).
    OpenUrl
  33. 70.
    Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat Genet 47, 291–5 (2015).
    OpenUrlCrossRefPubMed
  34. 71.
    Holland, D. et al. Beyond SNP heritability: Polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genet 16, e1008612 (2020).
    OpenUrlCrossRef
  35. 72.
    Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat Commun 8, 1826 (2017).
    OpenUrlCrossRefPubMed
  36. 73.
    de Leeuw, C.A., Mooij, J.M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput Biol 11, e1004219 (2015).
    OpenUrlCrossRefPubMed
  37. 75.
    The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 45, 580–5 (2013).
    OpenUrlCrossRefPubMed
  38. 76.
    Watanabe, K., Umicevic Mirkov, M., de Leeuw, C.A., van den Heuvel, M.P. & Posthuma, D. Genetic mapping of cell type specificity for complex traits. Nat Commun 10, 3222 (2019).
    OpenUrlPubMed
  39. 86.↵
    Gadin, J.R., Zetterberg, R., Meijsen, J. & Schork, A.J. Cleansumstats: Converting GWAS sumstats to a common format to facilitate downstream applications. (Zenodo, 2023).
  40. 87.↵
    The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
    OpenUrlCrossRefPubMed
  41. 88.↵
    Maston, G.A., Evans, S.K. & Green, M.R. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet 7, 29–59 (2006).
    OpenUrlCrossRefPubMedWeb of Science
  42. 89.↵
    Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 1739–40 (2011).
    OpenUrlCrossRefPubMedWeb of Science
  43. 90.↵
    Hodge, R.D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).
    OpenUrlCrossRef
  44. 91.↵
    Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat Methods 14, 955–958 (2017).
    OpenUrlCrossRefPubMed
  45. 92.↵
    Zhong, S. et al. A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex. Nature 555, 524–528 (2018).
    OpenUrlCrossRefPubMed
  46. 93.↵
    Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 112, 7285–90 (2015).
    OpenUrlAbstract/FREE Full Text
  47. 94.↵
    Hochgerner, H. et al. STRT-seq-2i: dual-index 5’ single cell and nucleus RNA-seq on an addressable microwell array. Sci Rep 7, 16327 (2017).
    OpenUrlCrossRefPubMed
  48. 95.↵
    La Manno, G. et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell 167, 566–580 e19 (2016).
    OpenUrlCrossRefPubMed
  49. 96.↵
    Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362(2018).
  50. 97.↵
    Herring, C.A. et al. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 185, 4428–4447 e28 (2022).
    OpenUrlCrossRef
  51. 98.↵
    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics 29, 1165–1188 (2001).
    OpenUrlCrossRef
Back to top
PreviousNext
Posted July 23, 2023.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Genome-wide analyses reveal widespread genetic overlap between neurological and psychiatric disorders and a convergence of biological associations related to the brain
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Genome-wide analyses reveal widespread genetic overlap between neurological and psychiatric disorders and a convergence of biological associations related to the brain
Olav B. Smeland, Gleda Kutrolli, Shahram Bahrami, Vera Fominykh, Nadine Parker, Guy F. L. Hindley, Linn Rødevand, Piotr Jaholkowski, Markos Tesfaye, Pravesh Parekh, Torbjørn Elvsåshagen, Andrew D. Grotzinger, The International Multiple Sclerosis Genetics Consortium (IMSGC), The International Headache Genetics Consortium (IHGC), Nils Eiel Steen, Dennis van der Meer, Kevin S. O’Connell, Srdjan Djurovic, Anders M. Dale, Alexey A. Shadrin, Oleksandr Frei, Ole A. Andreassen
medRxiv 2023.07.21.23292993; doi: https://doi.org/10.1101/2023.07.21.23292993
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Genome-wide analyses reveal widespread genetic overlap between neurological and psychiatric disorders and a convergence of biological associations related to the brain
Olav B. Smeland, Gleda Kutrolli, Shahram Bahrami, Vera Fominykh, Nadine Parker, Guy F. L. Hindley, Linn Rødevand, Piotr Jaholkowski, Markos Tesfaye, Pravesh Parekh, Torbjørn Elvsåshagen, Andrew D. Grotzinger, The International Multiple Sclerosis Genetics Consortium (IMSGC), The International Headache Genetics Consortium (IHGC), Nils Eiel Steen, Dennis van der Meer, Kevin S. O’Connell, Srdjan Djurovic, Anders M. Dale, Alexey A. Shadrin, Oleksandr Frei, Ole A. Andreassen
medRxiv 2023.07.21.23292993; doi: https://doi.org/10.1101/2023.07.21.23292993

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetic and Genomic Medicine
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (755)
  • Anesthesia (221)
  • Cardiovascular Medicine (3288)
  • Dentistry and Oral Medicine (364)
  • Dermatology (277)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1169)
  • Epidemiology (13359)
  • Forensic Medicine (19)
  • Gastroenterology (898)
  • Genetic and Genomic Medicine (5147)
  • Geriatric Medicine (481)
  • Health Economics (782)
  • Health Informatics (3264)
  • Health Policy (1140)
  • Health Systems and Quality Improvement (1190)
  • Hematology (429)
  • HIV/AIDS (1017)
  • Infectious Diseases (except HIV/AIDS) (14622)
  • Intensive Care and Critical Care Medicine (912)
  • Medical Education (476)
  • Medical Ethics (127)
  • Nephrology (522)
  • Neurology (4919)
  • Nursing (262)
  • Nutrition (727)
  • Obstetrics and Gynecology (882)
  • Occupational and Environmental Health (795)
  • Oncology (2519)
  • Ophthalmology (723)
  • Orthopedics (280)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (543)
  • Pediatrics (1299)
  • Pharmacology and Therapeutics (550)
  • Primary Care Research (556)
  • Psychiatry and Clinical Psychology (4205)
  • Public and Global Health (7499)
  • Radiology and Imaging (1704)
  • Rehabilitation Medicine and Physical Therapy (1011)
  • Respiratory Medicine (980)
  • Rheumatology (479)
  • Sexual and Reproductive Health (497)
  • Sports Medicine (424)
  • Surgery (547)
  • Toxicology (72)
  • Transplantation (235)
  • Urology (205)