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Abstract 
 
Lupus nephritis (LN) is a pathologically heterogenous autoimmune disease linked to end-stage 

kidney disease and mortality. Better therapeutic strategies are needed as only 30-40% of patients 

completely respond to treatment. Noninvasive biomarkers of intrarenal inflammation may guide 

more precise approaches. Because urine collects the byproducts of kidney inflammation, we 

studied the urine proteomic profiles of 225 LN patients (573 samples) in the longitudinal 

Accelerating Medicines Partnership (AMP) in RA/SLE cohort. Urinary biomarkers of 

monocyte/neutrophil degranulation (i.e., PRTN3, S100A8, azurocidin, catalase, cathepsins, 

MMP8), macrophage activation (i.e., CD163, CD206, galectin-1), wound healing/matrix 

degradation (i.e., nidogen-1, decorin), and IL-16 characterized the aggressive proliferative LN 

classes and significantly correlated with histological activity. A decline of these biomarkers after 

3 months of treatment predicted the 1-year response more robustly than proteinuria, the standard 

of care (AUC: CD206 0.92, EGFR 0.9, CD163 0.89, proteinuria 0.8, p<0.01). Candidate 

biomarkers were validated and provide new potentially treatable targets. We propose these 

biomarkers of intrarenal immunological activity as noninvasive tools to diagnose LN, guide 

treatment, and as surrogate endpoints for clinical trials. These findings provide new insights into 

the processes involved in LN activity. This dataset (matching other AMP omics) is a public 

resource to generate and test hypotheses and validate biomarkers.     
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Introduction 
 

Lupus nephritis (LN) is a leading cause of morbidity and mortality in patients with SLE 

resulting in end-stage kidney disease (ESKD) in 20% of cases (1), especially in ancestral 

minorities (2, 3).  Despite optimal treatment, only 30-40% of LN patients achieve a complete 

renal response at 1 year (4-6). Thus, there is a pressing need to identify novel treatment strategies 

to prevent kidney damage and mortality. 

LN diagnosis, classification, and treatment rely on kidney biopsies obtained in SLE 

patients with proteinuria. Kidney biopsies are necessary because proteinuria neither distinguishes 

treatable inflammation from chronic damage nor differentiates International Society of 

Nephrology (ISN) LN classes. Furthermore, proteinuria does not correlate with intrarenal 

inflammation and is a lagging indicator as it occurs and persist after damage has ensued. Kidney 

biopsies also have limitations, including procedure-related complications and sampling error, and 

may delay diagnosis and treatment. In addition, kidney biopsies are invasive and may be 

challenging to repeat in all patients with LN. A noninvasive biomarker that reflects intrarenal 

pathology could lead to early diagnosis and guide treatment by assessing response in real time. 

Urine collects the byproducts of kidney pathology. By reflecting intrarenal processes (7, 

8), urine proteomics is an ideal non-invasive tool to discover disease mechanism, identify novel 

therapeutic targets, and confirm noninvasive biomarkers. Previous studies explored urine 

proteomics in LN, but were limited by technical sensitivity, sample size, or cross-sectional 

design (7, 9-13). Several biomarkers have been identified in LN. However, their performance has 

been often measured as the ability to discriminate LN from healthy donors or proteinuric LN 

from LN in remission (14). Such biomarkers provide limited clinical value because they do not 
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outperform readily available biomarkers (i.e. proteinuria) and thus do not impact treatment 

decisions or prognosis.   

 Accordingly, this study applied urine proteomics to the large and ancestrally diverse 

Accelerating Medicines Partnership LN longitudinal cohort (15) to define pathways and 

clinically meaningful biomarkers linked to histology class, LN activity and response to 

treatment. We found that markers of neutrophil/monocyte degranulation, macrophage activation, 

and extracellular matrix remodeling are implicated in proliferative LN (the most aggressive 

type), LN activity, and response to treatment.  Candidate biomarkers were validated and provide 

new potentially treatable targets. This large dataset is available to the public for further research. 

 
 
 
Results 

Pipeline and recruitment. 

To characterize LN molecular signatures of specific LN subtypes and treatment response, 

we analyzed the longitudinal urine proteomic profiles (1200 proteins) of LN patients and their 

clinical and histologic associations (Figure 1).  

We recruited 225 SLE patients who underwent a clinically indicated kidney biopsy and 

had a urine protein to creatinine ratio > 0.5g/g. To capture LN diversity, we included all patients 

with LN defined by histology. Most patients (62%) had proliferative LN: 85 (38%) with pure 

proliferative LN (class III or IV) and 53 (24%) with mixed LN (class III or IV + V); 25% had 

pure membranous LN (class V); 21 (9%) had mesangial limited LN (class I or II); and 9 (4%) 

had advanced sclerosis (class VI). For comparison, we recruited 10 healthy donors (HD) without 

a past medical history of any kidney disease and negative autoimmune serologies. All patients 

and controls had a baseline sample.  Longitudinal urine samples were collected for patients with 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2023. ; https://doi.org/10.1101/2023.07.17.23292359doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.17.23292359
http://creativecommons.org/licenses/by-nc-nd/4.0/


class III, IV, or V LN; 136, 109, and 96 samples were analyzed at week 12, 24, and 52, 

respectively. The baseline demographic and clinical characteristics are summarized by Table S1.  

The patients were similar in age and sex. As expected, proliferative LN had higher histological 

activity (NIH Activity Index). Except for ISN class VI (advanced sclerosis), chronicity was 

similar in the other classes. Proteinuria at the time of biopsy was lower in class I or II LN 

(median 0.76 [range 0.5-4]) whereas all other classes were similar, highlighting the inability of 

proteinuria to distinguish between LN classes as we have previously shown(16). The estimated 

GFR was reduced in all LN patients compared to HD with the lowest values observed in class VI 

(median 46 ml/min [range 9-63]), followed by proliferative LN (median 88 ml/min [range 12-

160]), and pure membranous (median 100 ml/min [range 15-145]). Patients with proliferative or 

membranous LN were followed longitudinally: complete response rates at week 52 were more 

common in proliferative LN as compared to pure membranous LN (34% vs 16%). We assayed a 

total of 573 urine proteomic profiles from these 225 unique LN patients and 10 HD. 

 

Molecular signatures of lupus nephritis  

To identify the proteomic signature of each LN class, we initially compared the urine 

proteomic profile of LN with HD without clinical proteinuria (Figure 2A-C). Hundreds of 

proteins were significantly increased in all LN classes (Supplementary File 1). In this study, 

pure proliferative LN (class III or IV) and mixed LN (class III or IV + V) were often analyzed 

together because they share the component of “proliferative” LN which is linked to worse 

outcomes(17). Accordingly, patients with pure proliferative and mixed LN showed similar 

proteomic profiles with pathway enrichment analysis detecting innate immune system, 

neutrophil degranulation, viral life cycle, and extracellular matrix disassembly/protease activity 
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(Figure 2D-H, network analysis in Figure S1). Most of the proteins enriched in pure 

membranous LN were also found in proliferative LN, indicating common core pathways across 

proliferative, mixed, and pure membranous LN (Figure 2G and S2). In contrast, most of the 

proteins enriched in proliferative LN (pure or mixed) were not found in membranous suggesting 

that distinct biological processes are restricted to proliferative LN. At the pathway enrichment 

level, all three LN groups showed evidence of protease activity and extracellular matrix 

remodeling (Figure 2H).   

Because proliferative LN is characterized by an intraglomerular immune infiltrate with 

endocapillary hypercellularity, the identification of leukocyte mediated immunity proteomic 

profiles indicates that urine proteomics congruently reflected intrarenal pathology. Proliferative 

LN is the most aggressive form of LN and carries a higher risk of permanent kidney damage(17). 

To better define proliferative LN’s specific pathological pathways, we compared the proteomic 

profiles of proliferative (pure and mixed) to pure membranous LN. Proliferative LN signature 

was dominated by higher levels of CD163 (a macrophage marker; FC=2.5, q=0.001), IL-16 (a 

proinflammatory chemokine; FC=3.2, q=0.002), and granulocyte degranulation products such as 

PRTN3, S100A8, azurocidin, catalase, and MMP8 (range FC=2.5-2.6, q=4x10-5-5x10-3) among 

many others (Figure 2I and S1A). Pathway enrichment analysis confirmed that neutrophil 

degranulation was the biological signature most enriched in proliferative LN (Figure 2J). 

Several macrophage markers such as CD163, CD206, Galectin-1, and FOLR2 were enriched in 

all classes. The urinary abundance of these proteins was similar in pure and mixed proliferative 

LN, but higher than membranous (Figure 2F and S2). 

The urine abundance of the proteins differentially expressed in the proliferative LN 

signature is displayed in the heatmap in Figure 2K. We noted 3 clusters of patients defined by 
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low, medium, or high expression of this signature. As expected, the “low” (left) cluster included 

almost exclusively patients with non-proliferative LN. The “medium” (center) cluster included 

mostly patients with proliferative LN, but also some pure class V, class I/II, and class VI LN. 

The “high” (right) cluster identified patients with the greatest expression of the proliferative LN 

signature and was comprised mostly by patients with proliferative LN. Patients in this cluster 

were largely class IV and demonstrated the highest activity indices. Of note, there were several 

patients with histologically non-proliferative LN in the “medium” cluster and 1 in the “high” 

cluster indicating heterogeneity in non-proliferative LN. About 18% of pure membranous LN 

showed strong inflammatory responses with degranulation and monocyte/macrophage activation 

signatures. These findings indicate a disconnect between the histological classification and the 

inflammatory activity detected by urine proteomics in several patients. Future adequately 

powered studies should explore whether urine proteomics can identify a subgroup of pure 

membranous patients more likely to respond to immunosuppression. 

Altogether, these findings implicate active neutrophil/monocyte degranulation and 

macrophage activation in patients with proliferative LN. These signatures identified patients with 

higher activity indices. Furthermore, protease activity and extracellular matrix degradation 

characterized both proliferative and pure membranous LN. Importantly, these intrarenal 

biological processes can be noninvasively quantified in the urine. 

 

Proteomic signatures of histological activity and chronicity. 

Proliferative LN is heterogeneous in the degree of immunological activity. This is 

captured by the NIH Activity Index (18). High scores identify more aggressive disease 

associated with higher risk of kidney failure (17). Five of the six components of the NIH Activity 
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Index (endocapillary hypercellularity, neutrophil/karyorrhexis, fibrinoid necrosis, wire 

loops/hyaline thrombi, and cellular/fibrocellular crescents) are exclusive to proliferative LN 

(class III or IV +/- V) thereby making the NIH Activity Index a quantitative measure of 

proliferative LN activity. To characterize the pathways and biomarkers of LN activity, we 

studied the correlation of the urinary proteins with the NIH Activity Index (Figure 3A). We 

found several urinary proteins directly correlated with the NIH Activity Index, topped by IL-16 

and CD163 (Figure 3A). As supported by pathway enrichment analysis (Figure 3B), the 

signature of LN activity also included proteins associated with degranulation (i.e., PRTN3, 

azurocidin, visfatin, MMP8, LAMP1, catalase), macrophage activation (i.e., CD163, CD206, 

galectin-1), and wound healing/matrix degradation (i.e., nidogen-1, decorin) (Figure S3). 

Importantly, these associations persisted after adjusting for proteinuria or renal fibrosis (NIH 

Chronicity Index) in a multivariable model (Figure S4). These findings further support the link 

between proliferative LN and both myeloid cell activity / degranulation and wound healing 

pathways by demonstrating a direct quantitative association with proliferative LN activity, 

independent of proteinuria. 

Next, we studied the proteomic correlates of intrarenal damage as quantified by the NIH 

Chronicity Index. The NIH Chronicity Index captures features of irreversible damage such as 

interstitial fibrosis and tubular damage, glomerulosclerosis, and fibrous crescents. Figure 3C 

displays the urinary proteins positively and negatively correlated with intrarenal chronicity. 

Pathway enrichment analysis identified cytokine/chemokines and grow factor activity (Figure 

3D). These associations persisted after adjusting for proteinuria and the NIH Activity Index 

(Figure S4). 
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Proteomic signatures of specific histological features. 

We analyzed the urinary proteomic profiles of each histological lesion assessed by the 

NIH activity and chronicity indices(18). In this sub-analysis, 115 biopsies with available 

subscoring were included: 42 (36%) with pure proliferative LN, 33 (29%) with pure 

membranous LN, and 41 (35%) with mixed LN.  The five most correlated urinary proteins and 

each histological feature of the NIH Activity and Chronicity Index are displayed in Figure 3E-F 

and S5. For example, endocapillary hypercellularity, a proliferative LN-defining feature, 

correlated with urinary CD163, IL-16, Catalase, FKBP1, and CES1 (topping several others) but 

not with proteinuria (Figure 3E). Most lesions shared a similar signature within their respective 

index (Figure 3F). This is expected since the index components tend to co-correlate. 

Hierarchical clustering based on urine proteomic signatures revealed that fibrous crescents were 

more similar to activity-related lesions despite being considered inactive lesions and counted in 

the NIH Chronicity Index (Figure 3F). Interstitial inflammation (activity), fibrous crescents 

(chronicity) and, to a lesser extent, wire loops (activity) correlated with biomarkers associated 

with both active and chronic lesions (Figure 3F). Strikingly, there was no correlation between 

proteinuria and the histological lesions in the NIH Activity or Chronicity Indices (Figure 3E and 

S5).  

 

 

Treatment response is associated with a decline of urinary biomarkers of LN activity including 

markers of myeloid immunity and matrix degradation. 

Next, we focused on the proteomic signatures linked to treatment response. Complete 

renal response is currently defined by a decline of urine protein-to-creatinine ratio (UPCR) to < 
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0.5 after 1 or 2 years since it is associated with better long-term preservation of kidney function 

in LN. To assess response, a baseline UPCR > 1 was required (16). In this analysis, a total of 127 

patients were included: 48 (38%) with pure proliferative LN (class III or IV), 41 (32%) with 

mixed LN (III or IV +/- V), and 38 (30%) with pure membranous LN. Response was complete in 

34 (27%), partial in 29 (23%), and none in 64 (50%). In this cohort, treatment selection was at 

the discretion of the treating physician, but mycophenolate mofetil was the mainstay of 

treatment. 

At the time of kidney biopsy (baseline), there was no difference in the urinary proteomic 

profiles in patients who achieved any clinical response at 1 year (responders) compared to non-

responders (Figure S6A), even when the analysis was restricted to patients treated with the same 

regimen of mycophenolate. Therefore, we focused on longitudinal trajectories. 

To identify pathways that could mediate response to immunosuppression, we studied the 

changes in the urinary proteome after 3 months of treatment compared to the baseline, according 

to the response status at 1 year.  Responders showed a decline at 3 months in 69 urinary proteins 

(FDR <1%) led by Galectin-1, CD163, IL-16, and CD206 (Figure 4A-B). These proteins 

overlapped with the proteomic signature associated with histological activity (Figure 3A). 

Accordingly, pathway enrichment analysis after 3 months of treatment showed a decline in 

pathways related to extracellular matrix and cellular immune response in those who ultimately 

had a complete or partial response at 1 year (Figure 4C-D).  

The decline of the urine proteins by 3 months persisted at 6 and 12 months. Moreover, an 

increased number of proteins declined at 6 and 12 months in responders (Figure 4E-F and S6B-

E). By contrast, there were no changes observed in non-responders (Figure 4F).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2023. ; https://doi.org/10.1101/2023.07.17.23292359doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.17.23292359
http://creativecommons.org/licenses/by-nc-nd/4.0/


To identify early biomarkers of response, we studied the discriminatory ability of the 

urinary protein changes at 3 months to predict 1 year response. One-hundred and eleven urinary 

biomarkers predicted response (FDR <1%, AUC 0.7-0.86), most outperforming the improvement 

in proteinuria (the clinical standard) (Figure 4G). A decline of CD163 at 3 months predicted 1 

year response with an area under the curve (AUC) of 0.86 (q=2.7*10-6) compared to an AUC of 

0.75 (q=0.01) for proteinuria (Figure 4H). In proliferative LN, urinary biomarkers displayed 

superior performance with an AUC of 0.91 (q=1.6*10-5), 0.9 (q=1.6*10-5), 0.89 (q=3.5*10-5), 

and 0.76 (q=0.007) for the decline of CD206, EGFR, CD163, and proteinuria, respectively 

(Figure 4I-J). In pure membranous LN, Smad4 and LAMA4 displayed AUCs of 0.88 and 0.75, 

respectively, with nominal p values < 0.01 but q values > 0.7. There were no biomarker changes 

at 3 months predicting response in pure membranous LN that reached statistical significance 

after correcting for multiple comparisons.  

These findings indicate that effective immunosuppression induces an immunological 

response in the kidney by 3 months that can be noninvasively monitored in the urine. Because 

proliferative LN is characterized by the infiltration of intraglomerular myeloid immune cells, a 

decline in urinary biomarkers of myeloid inflammation in responders suggests a parallel 

resolution of intraglomerular inflammation. This was specific to proliferative LN as exemplified 

by the trajectories of CD163 and CD206 (Figure 4K-L). 

 

 

Discussion 

 The discovery of disease mechanisms, patient subgroups, biomarkers, and novel targets 

can be simultaneously derived from the analysis of careful phenotypes, longitudinal trajectories, 
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and differential outcomes associated with specific interventions(19). Here, we leveraged urine 

proteomics to discover 1) LN biology and pathways of LN activity, and 2) biomarkers of disease 

activity and treatment response. We defined that neutrophil/monocyte degranulation, 

macrophage activation, and extracellular matrix degradation are implicated in LN activity. These 

processes can be noninvasively quantified and monitored in urine. Reduction of the signatures of 

these processes at 3 months predicted treatment response. These noninvasive urine biomarkers 

(such as CD163 and CD206) that parallel intrarenal inflammation outperformed the current 

clinical standard (proteinuria). Furthermore, this study validated IL-16 as the urinary biomarker 

most correlated with LN activity(8) supporting its role as a novel therapeutic target and 

biomarker.  

LN biology and pathways of activity. Protease activity and extracellular matrix 

remodeling were shared by pure membranous and proliferative classes indicating that even the 

less inflammatory class V LN undergoes kidney remodeling. Proliferative classes were 

characterized by stronger macrophage and degranulation signatures that correlated with 

histological activity. Macrophages are the dominant immune cell type in LN(20). CD163 

(hemoglobin receptor) and CD206 (mannose receptor) exist in soluble forms as they are shed 

during inflammation(21). In our analysis, urinary CD163 and CD206 were increased in all 

classes (but at higher levels in proliferative LN), they correlated with the NIH Activity Index, 

and their decline best predicted treatment response. Similarly, the intrarenal abundance of 

CD163+ and CD206+ macrophages correlated with LN histopathological indices of LN activity 

(20, 22). These findings (1) confirm the association between injury-associated macrophages and 

LN activity and (2) indicate that the disappearance of these macrophages or their differentiation 

to a different phenotype anticipates better outcomes.  
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Several neutrophil/monocyte granule proteins (i.e., PR3 and azurocidin) in the urine were 

linked to LN activity implicating degranulation in proliferative LN. Azurophil granules 

characterize neutrophils and monocytes(23). Neutrophils, especially the subset of low-density 

granulocytes, have been widely implicated in SLE pathogenesis and LN (24-26). Intraglomerular 

neutrophils and karyorrhectic debris from apoptotic neutrophils are in fact a feature of 

proliferative LN and are scored in the NIH Activity Index (18). However, mature neutrophils 

with classical polylobate nuclei are not a dominant cell type observed in LN kidney biopsies. 

Rather, immature forms of neutrophils implicated in the pathogenesis of LN (27, 28) do not have 

polylobate nuclei suggesting that their presence in LN kidney may not be noted with traditional 

light microscopy(28). These less mature forms of granulocytes have enhanced ability to 

degranulate (28) suggesting an active role in LN. PR3 can in fact lead to extracellular matrix 

degradation which, in turn, can lead to fibrosis and irreversible kidney damage (29-31). Our 

study demonstrates the ability of urine proteomics to explore a wide array of pathological 

processes, including neutrophil biology which can be missed in cellular studies involving sample 

freezing (32).  Further studies are needed to define the main cell type responsible for 

degranulation in LN (neutrophils, monocytes, or other myeloid cells); but also to discover if this 

urinary signature reflects intrarenal degranulation or spillage of circulating granule proteins. 

 We have previously discovered that urinary IL-16 is the protein most correlated with the 

NIH Activity Index (8). Here, we validated this finding, applying an unbiased approach in an 

independent larger cohort of LN patients, corroborating the role of IL-16 as a biomarker and in 

LN pathogenesis. The association of urinary IL-16 with active proliferative LN was also 

validated in an independent Swedish cohort (33).  IL-16 is a proinflammatory chemokine that 

can activate and recruit CD4+ and CD9+ cells (34-37). Pro-IL-16 is cleaved into bioactive IL-16 
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by caspase 3(36) or PR3(38) indicating that both cell death and neutrophil/monocyte 

degranulation may lead to IL-16 activation. Notably, CD9 controls migration and proliferation of 

parietal epithelial cells in response to podocyte injury (39). CD9 stimulation mediated 

glomerular crescent formation and glomerular demolition(39), thereby linking IL-16 to a non-

immune mechanism of proliferative LN associated with poor renal survival and mortality in 

LN(40, 41). 

Collectively, the findings from this work indicate that following an inciting event such as 

immune complex deposition (42), the active phase of proliferative LN is characterized by 

degranulation, phagocytic/injury-associated macrophage activation, chemokine release, and 

extracellular matrix degradation. IL-16 may be playing a central role fueling inflammation by 

attracting more immune cells such as neutrophils/monocytes and promoting crescent formation. 

Neutrophil or monocyte degranulation may directly damage the glomerular endothelium (43) and 

remodel extracellular matrix promoting chronic kidney disease. It is unclear whether phagocytic 

and injury-associated macrophages play a regulatory or proinflammatory role in the initial phase 

of LN activity. Nevertheless, their disappearance or their differentiation to a different phenotype 

is associated with treatment response, suggesting that they track with the resolution of 

inflammation. Importantly, these pathogenic processes can be noninvasively monitored in the 

urine.  

Despite fibrous crescents being considered inactive lesions that follow crescentic 

glomerulonephritis, urine proteomics revealed inflammatory activity associated with fibrous 

crescents. Thus, the presence of fibrous crescents in kidney biopsies may indicate ongoing 

potentially treatable inflammation. In fact, crescents are classified as fibrous if comprised by 

<25% of cells and fibrin and therefore a small inflammatory infiltrate can be part of fibrous 
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crescents(18).  Interstitial inflammation, which is linked to worse clinical outcomes(44), showed 

a distinct proteomic signature combining both activity and chronicity. This is likely because the 

current classification system does not separate interstitial inflammation occurring in areas with or 

without fibrosis. Interstitial fibrosis is in fact frequently infiltrated by immune cells. These 

results challenge the current interpretation of histological scores. A better understanding of the 

pathophysiology of processes including fibrous crescents and interstitial inflammation is needed 

to tailor treatment of these pathways leading to chronic damage. 

Biomarkers. This work demonstrated the feasibility of urine biomarkers to noninvasively 

predict clinically meaningful outcomes. Previous unbiased studies focused on the identification 

of biomarkers to diagnose LN vs no LN(13, 14, 45, 46). However, LN presence and activity 

were defined by proteinuria, a readily available biomarker. Therefore, the clinical value of the 

novel biomarkers over proteinuria could not be established. Other studies identified urinary 

biomarkers of histological activity or evaluated their longitudinal changes with treatment(14, 45, 

46), but these were limited to a few selected candidate biomarkers. Here, 1) we described 

biomarkers to identify LN histological class and activity in lupus patients with proteinuria, the 

group in which renal biopsies are sought for diagnosis, and 2) we systematically studied the 

trajectories of 1200 potential biomarkers in relation to clinical response. These findings have 

important diagnostic implications.  

The current classification and treatment of LN rely on histological features at the time of 

biopsy. A higher NIH Activity Index usually triggers more aggressive immunosuppression. In 

contrast, when there is a low NIH Activity Index in the presence of a high NIH Chronicity Index, 

proteinuria is considered secondary to damage and, therefore, not requiring new or increased 

immunosuppression. The unbiased catalogue of urinary biomarkers of LN (outperforming 
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proteinuria) in this large cohort of proteinuric patients provides the basis for clinically useful 

biomarkers that would impact clinical decisions. 

Prediction of treatment response is key to improve treatment strategies. Although there 

were no biomarkers at baseline that predicted response, the decline of several urinary biomarkers 

after 3 months of treatment strongly predicted response at 1 year. These findings underscore the 

power of individual trajectories to discover disease biology and to identify clinically meaningful 

patient subsets. Persistent elevation of the NIH Activity Index in a repeat biopsy is associated 

with LN flares and 44% 10-year kidney survival, compared to 100% in patients with an index of 

0, regardless of resolution of proteinuria (47-50). Therefore,  characterization of the pathways 

involved in LN activity is key to the identification of new treatable targets and biomarkers to 

guide diagnosis and treatment. Frequent kidney biopsies are not a practical means to judge 

changes in activity and chronicity indices. However, our proteomic analysis offers a feasible 

strategy of early and frequent monitoring. Patients with higher activity had higher urinary 

abundance of biomarkers of inflammation (i.e., IL-16), degranulation (i.e., PRTN3, azurocidin, 

catalase, MMP8, LAMP1-2), macrophage activation (i.e., CD163, CD206, galectin-1, 

cathepsins, MIP-1b), and extracellular matrix degradation (i.e., nidogen-1, collagens, 

proteoglycans). A reduction in biomarkers of these processes predicted future treatment response 

and outperformed proteinuria. This suggests that the effective inhibition of pathogenic 

mechanisms by immunosuppression can be noninvasively monitored in real time. These 

responses are faster than the resolution of proteinuria which requires repair of the glomerular 

capillary wall. A biomarker panel to noninvasively assess intrarenal activity may reshape the 

treatment strategy of LN based on “immunological responses” (and inform clinical trial design). 

For example, patients with persistent urinary biomarker elevation (indicating activity regardless 
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of improved proteinuria) would receive more potent, different, or prolonged immunosuppression 

or a change in approach, while those with normalized urinary biomarker levels (indicating 

immunologically resolved LN) could continue and eventually safely taper  potentially toxic 

medications. These biomarkers may guide treatment selection and clinical trial design. For 

example, there are currently several treatment options for LN, but the choice of the best initial 

treatment strategy remains unclear. In patients where urine proteomics showed no reduction in 

these predictors of treatment response, treatment could be rapidly modified until an 

immunological response is achieved without waiting for improvement in proteinuria which does 

not track with intrarenal inflammation. Conversely, early immunological responses in the urine 

proteome can reassure that the current treatment is effective. Future clinical trials and 

longitudinal studies should address how these urinary biomarkers of intrarenal pathology can 

guide treatment and whether immunological responses predict long term preservation of kidney 

function. 

 Finally, this study confirmed several known biomarkers of LN. Among others, urinary 

CD163(8, 51, 52), MCP-1(53), Lipocalin-2(54), and ALCAM(12) were increased in proliferative 

LN. Of these, only CD163 and MCP-1 correlated with the NIH Activity Index. EGF-R(55) 

negatively correlated with the NIH Chronicity Index and positively with the NIH Activity Index.  

We acknowledge several limitations. (1) Although the proteomic assay employed here 

allowed for the specific and highly sensitive detection of 1,200 targets, other processes might be 

detected using future proteome-wide broader arrays. (2) The AMP study was an observational 

cohort and treatment was not homogenous as in a clinical trial.  There may be biomarkers at 

baseline or at 3 months that better predict response to specific treatments that could not be 

identified. Future studies involving protocolized treatment are needed to identify drug-specific 
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response signatures(56). (3) LN activity was quantified according to the NIH Activity Index, 

which is more heavily weighted on glomerular than tubulointerstitial pathology. However, it 

should be acknowledged that tubulointerstitial disease and other histological features are also 

linked to kidney survival(44).  

This study showed that urine proteomics is a powerful tool to discover disease processes, 

nominate treatable targets, and identify noninvasive biomarkers. This dataset generated by the 

Accelerating Medicines Partnership (AMP) is a publicly available resource for future studies. 

Deep phenotyping of LN by integration of multiple omics such as kidney scRNA, multiplexed 

histology, digitalized histology, genetics, blood studies, and other modalities (15) in matching 

samples will help identify novel biomarkers, LN subgroups, and treatment strategies. 
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Methods 

Study approval 

Human study protocols were approved by the institutional review boards (IRBs) at each 

participating site, and written informed consent was obtained from all participants. Patients were 

enrolled at Johns Hopkins University, New York University, Albert Einstein College of 

Medicine, University of Rochester Medical Center, Northwell Health, University of California 

San Francisco, Medical University of South Carolina, University of California San Diego, 

Cedars-Sinai Medical Center, University of Michigan, Texas University El Paso, and University 

of California Los Angeles. For healthy controls, IRB approval was obtained from the University 

of Cincinnati and Oklahoma Medical Research Foundation. After informed consent, controls 

were recruited at University of Cincinnati. Samples were stored by the Oklahoma Rheumatic 

Disease Research Cores Center and were matched for sex, race, ethnicity, and age. Subjects were 

screened using a questionnaire and tested negative for the following antibodies: antinuclear, 

double- stranded DNA, chromatin, ribosomal P, Ro, La, Smith (Sm), SmRNP, RNP, centromere 

B, Scl-70, and Jo-1. Samples were processed, stored, and shipped using protocols from the 

Accelerating Medicines Partnership in Rheumatoid Arthritis and Systemic Lupus Erythematosus 

(AMP RA/SLE) Network to align with the patient samples. See Supplementary 

Acknowledgments for a list of members of the AMP RA/SLE Network. 

 

Patients and samples collection 

This study enrolled SLE patients with a urine protein–to-creatinine ratio (UPCR) of >0.5 who 

were undergoing clinically indicated renal biopsy. Only patients with a pathology report 

confirming LN were included in the study. Renal biopsy sections were scored by a renal 
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pathologist at each site according to the International Society of Nephrology (ISN)/Renal 

Pathology Society guidelines and the National Institutes of Health (NIH) activity and chronicity 

indices (18). Clinical information, including serologies, were collected at the most recent visit 

before the biopsy. Response status at week 52 was defined in patients with a baseline UPCR >1 

as follows: complete response (UPCR ≤0.5, normal serum creatinine or <25% increase from 

baseline if abnormal, and prednisone ≤10 mg daily), partial response (UPCR >0.5 but ≤50% of 

baseline value,  identical serum creatinine but prednisone dose could be up to 15mg daily), or no 

response (UPCR >50% of baseline value, new abnormal elevation of serum creatinine or ≥25% 

from baseline, or prednisone >5 mg daily). Urine specimens were acquired on the day of the 

biopsy (before the procedure) or within 3 weeks of the kidney biopsy. Serologic features and 

complement levels were assessed at the clinical visit preceding the biopsy. Proteinuria was 

measured on or near the day of the biopsy.  

 

Urine Quantibody Assay 

An extended version of the Kiloplex Quantibody (RayBiotech) was used to screen urine samples 

as previously described (7, 8). Concentration of each analyte was normalized by urine creatinine 

to account for urine dilution. Urine protein abundances are expressed are pgprotein/mgcreatinine. 

 

Statistical analysis 

Differential protein abundance in two groups was calculated using a Wilcoxon rank test in 

univariate analyses. This nonparametric test allowed for robust analysis accounting for the 

difference in distribution, often not normal, across the 1,200 features. We observed similar 

performance to logistic regression (Figure S7). For multivariable analyses, we used linear 
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models or generalized linear models (R lm and glm functions) after log transforming the protein 

abundances (models indicated on top of the figures). To account for sparsity and large variation 

in the dynamic ranges of the proteins, all values for each protein abundance were added the 

minimum measured value before log transformation. Correlations and partial correlations (R 

ppcor package) were calculated on log-transformed protein abundances. 

Pathway enrichment analysis was performed with the clusterProfiler or fgsea R packages using 

the Gene Ontology and Reactome libraries. Genes coding for the measured proteins were used. 

Analysis was limited to gen sets with at least 5 genes represented in the universe of the 1,200 

proteins measured. To account for a limited universe of proteins (not the whole coding genome), 

self-contained algorithms were applied. GSEA is inherently self-contained. To define the 

pathways enriched in a distinct group of proteins (i.e., figure 2A-D), a hypergeometric test was 

used. Terms with >75% proteins overlap were removed: the term with the lowest p value was 

retained. All statistical tests were two-sided. All analyses were performed in R version 4.1.2. 

 

Data and code availability. 

The complete datasets used in this study will be available on the Synapse platform (synapse.org) 

at the time of publication. No custom mathematical algorithm deemed central to the conclusions 

was generated. Analyses can be reproduced using the publicly available versions of the R 

packages outlined above. 
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Figure 1. Experimental pipeline. 
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Figure 2. Proteomic signatures of LN histological classes. Volcano plots of the differential 

urinary protein abundances in pure proliferative (A), mixed (B), and membranous (C) LN 
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compared to healthy controls (HD). Pathway enrichment analysis of the proteins enriched in pure 

proliferative (D), mixed (E), and membranous (F) (FDR <5%); pathways in gray had a q value > 

0.05. (G) Venn diagram summarizing the shared significantly changed proteins at enriched in the 

3 classes displayed in A-C. (H) Heatmap summarizing the pathways enriched (FDR <25%) in 

the 3 classes. (I) Volcano plot displaying the differential urine protein abundances in any 

proliferative (pure or mixed) and pure membranous with relative pathway enrichment analysis 

(J). (K) Heatmap displaying the unsupervised clustering based the urine abundances of the 

proteins differentially abundant in any proliferative vs pure membranous (panel I); clinical 

features are displayed. Not available activity and chronicity scores are indicated as -1. FDR = 

false discovery rate; q = adjusted p value (Benjamini-Hochberg).  
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Figure 3. Proteomic signatures of histological activity and chronicity. Volcano plots 

displaying Pearson’s correlation of the proteins urinary abundances and the NIH Activity (A) 

and Chronicity (B) indices. The correlation with the urine protein-to-creatinine ratio (UPCR) is 

indicated for reference. Pathway enrichment analysis (by GSEA) of the associations of the 

urinary proteins with the NIH Activity (C) and Chronicity (D) indices. (E) The 5 most correlated 

proteins with the endocapillary hypercellularity score are displayed as compared to UPCR. (F) 

Hierarchical clustering based on the correlations of each histological lesion and urinary proteins. 

All proteins with a strict statistically significant correlation (FDR < 0.01) with at least one 

histological lesion were included. FDR=false discovery rate; q=Benjamini-Hochberg adjusted p 

value. 
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Figure 4. Proteomic changes of treatment response. Volcano plots of the changes of the urinary 

proteomic profiles of treatment responders at 3 months after kidney biopsy/treatment compared to 

baseline at time of biopsy in proliferative and membranous combined (A) or proliferative only (B). (C and 

D) Pathway enrichment analysis of the urinary proteins declined in A and B, respectively. (E) Venn 

diagram summarizing the shared significantly changed proteins at the 3, 6, and 12 months after the kidney 

biopsy. (F) Heatmap displaying the urinary abundances of the proteins significantly decreased at 3 

months in responders (panel A) at the 4 time points according to response status. (G) Discriminatory 

power of the change of each urinary protein at 3 months compared to baseline to predict treatment 

response at month 12 (displayed as area under the curve, AUC). The change in urine protein-to-creatinine 

ratio (UPCR) is displayed for refence as the traditionally used biomarker. (H) Receiver operating 

characteristic curves of the decline at 3 months of the UPCR (traditional biomarker) and urinary CD163. I 

and J replicate G and H, but limited to patients with proliferative LN. (K) Trajectory of the urinary 

abundance of CD163 (K) and CD206 (L) according to response status in all patients and stratified by ISN 

class. Thin lines indicate individual trajectories; thick lines indicate the group medians; boxplots indicate 

medians, interquartile range, and range. 

q values = adjusted p values (Benjamini-Hochberg). OR = odds ratio. FDR = false discovery rate. 
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