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Abstract11

The health burden of anthropogenic climate change is growing exponentially, but12

present-day impacts remain difficult to measure1,2,3. Here, we leverage a recently-13

published comprehensive dataset of 50,425 population surveys4 to investigate whether14

human-caused climate change has increased the burden of childhood malaria across15

sub-Saharan Africa. In historical data, we find that prevalence shows a robust re-16

sponse to temperature and extreme precipitation, consistent with expectations from17

previous empirical and epidemiological work. Comparing historical climate recon-18

structions to counterfactual simulations without anthropogenic warming, we find19

two-to-one odds that human-caused climate change has increased the overall preva-20

lence of childhood malaria across sub-Saharan Africa since 1901. We estimate that21

by 2014, human-caused climate change was responsible for an average of 84 excess22

cases of malaria per 100,000 children ages 2 to 10, with higher elevation and cooler23

regions in southern and east Africa having greater increases. Under future climate24

change, we project increasing temperatures could plausibly accelerate the eradica-25

tion of malaria in west and central Africa, where the present-day burden is highest,26

leading to continent-wide average reductions of 89 (low greenhouse gas emissions,27

SSP1-RCP2.6) to 1,750 (high emissions, SSP5-RCP8.5) cases per 100,000 children28

by the end of the century. However, we find that limiting future global warming29

to below 2°C (SSP1-RCP2.6) compared to ∼3°C (SSP2-RCP4.5) could prevent an30

average of 496 excess cases in southern Africa, and 40 excess cases in east Africa,31

per 100,000 children by 2100. Our study resolves a decades-old debate about one32

of the earliest health impacts of global warming, and provides a template for future33

work measuring the true global burden of climate change.34
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Main Text35

Despite progress towards global eradication, malaria remains the single deadliest climate-36

sensitive infectious disease5. Malaria transmission is highly responsive to temperature,37

driven by both the life cycle of the ectothermic mosquito vectors (Anopheles spp.) and38

the thermal sensitivity of the parasites (Plasmodium spp.) themselves6,7. In laboratory39

conditions, P. falciparum transmission by An. gambiae peaks around 25°C, and becomes40

negligible below ∼16°C or above ∼34°C6,7,8. Given these biological constraints, climate41

change has become a major concern for populations in southern and high-elevation east42

Africa, where colder temperatures once limited transmission9,10,11. On the other hand, in43

west and central Africa—where the burden of malaria is highest—many studies suggest44

that climate change will reduce or eventually preclude transmission9,10,12,13.45

These risks were among the first proposed health impacts of climate change14,15,46

but have been surprisingly contentious, and even described as “hot air” 16 and “danger-47

ous pseudoscience” 17. Malaria experts have often claimed that observed warming trends48

trends are incompatible with long-term reductions in prevalence across the continent, and49

warned that other factors like drug resistance and funding instability pose a more serious50

threat to malaria eradication16,18,19. Empirical evidence to test these assumptions is51

sparse, with the highest profile studies focusing on a single dataset of malaria incidence52

over several decades at a tea plantation in Kericho, Kenya. Since 2000, over a dozen stud-53

ies have argued that these data either support20,21,22,23,24 or undermine25,26,27,28,29,30,31
54

the broader hypothesis that climate change is responsible for a resurgence of malaria in55

the east African highlands28,32,33,34,35. More recently, a study by Snow et al.4 examined56

the last century of continent-wide changes in malaria prevalence, and concluded that57

observed trends could not be neatly explained by climate change, but did so based only58

on visual correspondence between moving averages of rainfall, minimum temperature,59

and modeled malaria prevalence over the entire continent.60

In this study, we revisit these debates by applying frontier methods from detection and61

attribution, an area of climate science that quantifies the historical and real-time climate62

impacts of anthropogenic greenhouse gas emissions36,37. These methods underpin the63

scientific consensus on human-caused climate change, and are regularly used to identify64

the role of climate change in the intensity, frequency, and distribution of specific extreme65

events (e.g., heatwaves, heavy precipitation, and droughts)38,39,40. However, attribu-66

tion remains challenging for the downstream impacts of anthropogenic climate change67

on people and ecosystems, and methodological frameworks for impact attribution are68

still comparatively underdeveloped36. Applications to infectious disease dynamics are69

especially challenging, as relationships between climate and disease transmission are of-70

ten complex, nonlinear, and confounded by human intervention, and few epidemiological71

datasets exist with sufficient spatial and temporal scope to resolve these relationships. As72

a result, hundreds of studies have tested for correlations between climate and observed73

changes in disease incidence or prevalence, but very few have shown that these changes74

are causally attributable to anthropogenic climate change41,1.75

Here, we draw on frameworks from climate science38,39,40, econometrics42,43, and epi-76

demiology41,1 to develop a single-step detection and attribution framework (per ref.41)77
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for the impacts of human-caused climate change on an infectious disease. We apply this78

framework to estimates of falciparum malaria prevalence in children aged 2-10 in sub-79

Saharan Africa (Pf PR2−10), which experiences experiences roughly 95% of the global80

burden of malaria (with 80% of deaths in children under the age of 5)44. We analyze a81

recently published dataset with unparalleled resolution and scope (Figure 1), consisting82

of 50,425 surveys spanning more than a century (1900 to 2015)4, which we aggregate to83

9,875 monthly average values at the first administrative (state or province) level. Lever-84

aging climate econometric methods42,43,45,46, we develop a panel regression model that85

isolates the role of temperature and extreme precipitation from other confounding factors86

that also shape malaria endemicity (Figure 2; see Methods for details). Nonparametric87

controls in the model (called “fixed effects”) account for regional differences in seasonality,88

time periods with concerted elimination efforts, and other spatiotemporal variation not89

explained by identifiable factors, such as socioeconomic or ecological differences between90

populations. To quantify statistical uncertainty in prevalence-climate relationships, we91

repeatedly estimate the model with 1,000 spatially-blocked bootstrapped samples. We92

apply these models to make predictions based on 10 sets of paired historical climate93

simulations with and without anthropogenic climate forcing, and estimate the impact94

of anthropogenic climate change on malaria prevalence from 1901 to 2014 (Figure 3).95

Finally, we project how future climate change could further alter malaria prevalence96

between 2015 and 2100, based on three future climate change scenarios for low (SSP1-97

RCP2.6), intermediate (SSP2-RCP4.5), and high (SSP5-RCP8.5) future greenhouse gas98

concentrations (Figure 4).99

A robust signal of climate sensitivity100

Over the last century, the prevalence of childhood malaria has exhibited a strong con-101

cave relationship with temperature (Figure 2A). Closely tracking theoretical expectations102

that P. falciparum transmission by Anopheles gambiae mosquitoes should peak around103

25.6°C6, observed values of Pf PR2−10 in our dataset peak around a monthly mean tem-104

perature of 25.8°C (Figure S1). Based on these biological expectations, we estimate the105

effect of temperature as a quadratic response term in the panel regression model, and find106

that prevalence peaks at 24.9°C (95% confidence interval across the 1,000 bootstrapped107

models: 22.5°C, 27.0°C). These results confirm that laboratory-based studies approxi-108

mate malaria epidemiology in real populations quite well, and that temperature plays a109

substantial role in transmission dynamics: a 10°C increase or decrease from the optimal110

temperature lowers prevalence by ∼8 percentage points.111

The relationship between precipitation and malaria prevalence is more complex, and112

likely less consequential for historical trends (Figures 2B, 2C). Contemporaneous monthly113

precipitation exhibits a nonlinear, but highly uncertain, relationship to prevalence (see114

Figure S12). To parsimoniously capture nonlinear effects and disentangle divergent im-115

pacts of low and high precipitation, we define precipitation shocks with two binary in-116

dicator variables, equal to one when monthly precipitation falls below 10% (we label117

this “drought”) or above 90% (we label this “flood”) percentiles of monthly precipitation118

calculated for each subnational unit. While drought and flood events are complex phe-119
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nomena, which develop from the combination of multiple factors (e.g., soil conditions and120

topography) in addition to rainfall over varying timescales, we use this terminology for121

shorthand to indicate extremely low or high precipitation months. Although most effects122

are statistically insignificant, we find that drought shocks tend to decrease malaria preva-123

lence 1-2 months later, while conversely, flood shocks have a positive effect on prevalence124

2-3 months later. These effects and their timing are broadly consistent with expectations125

about how precipitation mediates the availability of mosquito breeding habitat: dry-out126

kills larvae and eggs, while inundation creates new breeding habitat47,48,49,50,51,52,53,54.127

Sensitivity analyses were also weakly suggestive of another established mechanism, in128

which floods may wash away eggs and larvae, reducing transmission in the shorter term129

(see Figures S10 and S12). Overall, extreme precipitation has a measurable effect on130

malaria prevalence, but may be less important than temperature; however, given the131

sparsity of weather station data55 and the uncertainty of precipitation reconstructions56,132

it is also possible that our analysis unavoidably underestimates the effect of these vari-133

ables due to measurement error.134

Additional sensitivity analyses reinforce that these prevalence-climate relationships135

are both statistically robust and biologically consistent. Key findings are generally in-136

sensitive to alternative model specifications, such as the inclusion of lagged effects of137

temperature (Figure S7); higher-order polynomial effects of temperature (Figure S11);138

alternative definitions of drought and flood shocks (Figures S8-S10); and alternative spa-139

tiotemporal controls, which account differently for variation over space (at region, coun-140

try, and state levels), time (including yearly and monthly variation), and interactions141

among space and time (Figure S6 and Table S2).142

Historical impacts of climate change (1901-2014)143

We find that human-caused climate change has, more likely than not, been responsible for144

a small increase in the average prevalence of childhood malaria across sub-Saharan Africa145

since 1901 (Figures 2D). Compared to counterfactual simulations without anthropogenic146

climate forcing, we estimate that by 2010-2014, climate change had caused an increase147

in continental mean Pf PR2−10 of 0.08 percentage points (p.p.; 95% confidence interval:148

-0.30 p.p., 0.50 p.p.). Simulations with an attributable increase in continent-wide mean149

prevalence outnumber those with losses by two to one (proportion P+ of 10,000 paired150

simulations with a positive difference = 0.66). These increases are almost entirely driven151

by rising temperatures; the effects of drought and flood events on prevalence show no152

distinguishable signal from anthropogenic emissions over time (Figure S4).153

This overall trend masks substantial regional heterogeneity in historical climate change154

impacts (Figure 3A; Figure S2), driven almost entirely by elevational and latitudinal gra-155

dients in temperature (Figure 3B,C). For example, attributable impacts across southern156

Africa are high in both magnitude and certainty, with an overall increase of 0.63 p.p.157

(95% CI: -0.04 p.p., 1.40 p.p.; P+ = 0.97)—nearly an order of magnitude greater than158

the continental mean. In contrast, climate change has contributed to significantly lower159

malaria prevalence in west Africa (mean = -0.40 p.p.; 95% CI: -0.93 p.p., 0.00 p.p.; P+ =160

0.03), where temperatures already often exceed the biological optimum for transmission.161
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In the central African basin, a stronghold of malaria endemicity with average tempera-162

tures close to the 25°C optimum, the change in prevalence attributable to anthropogenic163

climate change is positive, relatively small, and uncertain (mean = 0.18 p.p.; 95% CI:164

-0.18 p.p., 0.62 p.p.; P+ = 0.83). Finally, we estimate a meaningful overall increase in165

prevalence attributable to climate change in east Africa (mean = 0.34 p.p.; 95% CI: -0.13166

p.p., 0.87 p.p.; P+ = 0.91), but note that impacts are distributed unevenly along the167

steep elevational gradient: increases of up to 1-2 p.p. in the Ethiopian highlands and168

the greater Rift Valley region are accompanied by small but significant local declines169

throughout lowland areas in Ethiopia, Sudan, South Sudan, Eritrea, and Djibouti.170

While these effects are meaningful, we caution that they are also far smaller than171

the reduction achieved through healthcare, mosquito nets, vector control, and economic172

development: previous work with the same dataset has estimated a reduction since 1900173

of 16 p.p. (i.e., a continent-wide decline in average Pf PR2−10 from 40% in 1900-1929174

to 24% by 2010-20154), while our estimates of historical climate-attributable changes175

rarely exceed 2 p.p. for any individual administrative region. Additionally, we estimate176

that average reductions in prevalence realized during the Global Malaria Eradication177

Program (1955-1969; estimated reduction averaged over the entire period: -4.80 p.p.)178

and recent programs like Roll Back Malaria and the Global Technical Strategy (2000–179

2014; estimated reduction averaged over the entire period: -3.35 p.p.) were substantially180

larger than the cumulative effects of anthropogenic climate change in most regions (Table181

S2). Relatively small and spatially differentiated climate-related changes in burden could182

have been easily concealed by the greater impact of these programs, highlighting both183

the success of elimination programs and the importance of using an empirical approach184

like ours that can isolate the effect of climate from other co-evolving factors.185

Future impacts of climate change (2015-2100)186

Despite contemporary trends, we project that within the next quarter-century, the net187

impact of climate change will be a continent-wide reduction in malaria prevalence (Figure188

2D; Table S1). This trend is driven largely by rising temperatures in lowland areas north189

of the equator, with greater possible reductions in higher emissions scenarios (Figure 4).190

In these scenarios, temperature-related declines are slightly offset by floods, which will191

become more frequent across the continent36, although their impact on overall trends192

is trivial when compared to temperature (Figure S5). Even in a low emissions scenario193

(SSP1-RCP2.6), present-day increases from historical warming would essentially be offset194

by mid-century, stabilizing around an -0.08 p.p. (95% CI: -0.40 p.p., 0.17 p.p.) projected195

decline across sub-Saharan Africa (2048-2052, relative to 2015-2020). In a high emissions196

scenario (SSP5–RCP8.5), we project that losses would accelerate over time, reaching an197

average of -0.23 p.p. (95% CI: -0.79 p.p., 0.26 p.p.) by mid-century and -1.8 p.p. (95%198

CI: -4.6 p.p., -0.03 p.p.) by the end of the century (2096-2100)—a reduction that would199

be comparable in scale to some previous continent-wide eradication efforts.200

Though the balance across regions will begin to shift, the geographic pattern of201

future changes is likely to reproduce present-day heterogeneity in impacts, as malaria202

transmission continues to shift along latitudinal and elevational clines in temperature203
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(Figure 4; Figure S3). West Africa will experience the most dramatic transformation,204

especially in a high-emissions scenario (SSP5-RCP8.5), with a projected -1.0 p.p. (95%205

CI: -1.9 p.p., -0.35 p.p.) decline by mid-century, and a staggering -4.0 p.p. (95% CI:206

-8.8 p.p., -1.5 p.p.) region-wide decrease by 2100. Similar but shallower declines are207

projected in central Africa, where end-of-century reductions could reach between -0.06208

p.p. (SSP1-RCP2.6; 95% CI: -0.41 p.p., 0.25 p.p.) and -1.2 p.p. (SSP5-RCP8.5; 95% CI:209

-3.9 p.p., 0.43 p.p.). On the other hand, localized increases will continue in the coldest210

parts of the Ethiopian highlands, the greater Rift Valley region, and coastal southern211

Africa, potentially reaching 5 percentage points or more in some areas. The overall effect212

is positive across east and southern Africa, except in the highest emissions scenario: in213

SSP5-RCP8.5, both regions start to experience declines by mid-century, with east Africa214

eventually falling -0.48 p.p. (95% CI: -2.4 p.p., 0.98 p.p.) below present-day levels.215

Broadly, our results suggest that the main effect of climate change mitigation will216

be to keep average temperatures in sub-Saharan Africa closer to the optimum range for217

malaria transmission. However, for many colder localities, emissions reductions would218

prevent substantial climate-driven increases in malaria prevalence. By mid-century,219

compared to a medium emissions scenario similar to current global projections (SSP2-220

RCP4.5)57, keeping global warming below +2°C (the target simulated by SSP1-RCP2.6)221

would prevent an estimated 163 excess cases of malaria per 100,000 children in southern222

Africa, as well as 24 excess cases per 100,000 children in east Africa. By the end of the223

century, these benefits would be even greater, with 496 and 40 excess cases averted per224

100,000 children in southern and east Africa, respectively (Table S1). At a more local225

scale, these benefits could be at least an order of magnitude greater (Figure S3).226

Discussion227

In this study, we apply a detection and attribution framework to a century of malaria228

surveillance, allowing us to estimate the historical and projected future impact of an-229

thropogenic climate change on childhood malaria in sub-Saharan Africa. Since 1901, we230

find a 66% likelihood that anthropogenic climate change has increased malaria burden;231

on average across the continent, an estimated 84 excess cases per 100,000 people can232

be attributed to historical human-caused climate change. However, this burden falls233

disproportionately on southern and east Africa; we estimate a 97% and 91% likelihood,234

respectively, that anthropogenic climate change has increased present-day malaria preva-235

lence in these regions, and project that prevalence in both will remain elevated through236

2100, even in an emissions scenario likely to keep warming under the Paris Agreement237

target of +2°C. However, across the continent, we project that the overall impact of238

future climate change will be a net reduction in malaria: these changes will be most239

dramatic in west and central Africa, where climate change could respectively prevent up240

to ∼4,000 and ∼1,200 cases of malaria per 100,000 children in a high-emissions scenario.241

In total, our results suggest that climate change could be synergistic with eradication242

efforts in countries like Nigeria and the Democratic Republic of the Congo, where the243

present-day burden of malaria is highest, but will continue to create new risks in countries244

like Ethiopia and South Africa.245
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Spanning two centuries, our analysis is the most comprehensive look to date at the246

impact of climate change on any infectious disease, and brings new clarity to a decades-247

long debate in malaria research. Whereas some work has questioned the plausibility that248

overall declines in continent-wide prevalence would conceal a climate-linked increase4,19,249

the 0.08 percentage point increase in Pf PR2−10 that we attribute to historical climate250

change could easily be masked by the 200-fold greater reduction observed across sub-251

Saharan Africa over the same period. Our regional estimates also generally align with252

previous lab-based or site-specific empirical work, which suggests that east and southern253

Africa are experiencing shifts towards temperatures that are permissive to transmission254

for the first time or over longer seasons9,10, while in west and central Africa, climate255

change impacts have been harder to detect, and future warming might exceed the physi-256

ological limits of malaria transmission9,10,13,58. Notably, our study does provides robust,257

empirical evidence that climate change has at least marginally contributed to malaria258

resurgence in high-altitude Kenya and Ethiopia, consistent with local epidemic time series259

or simulated dynamics based on local weather station data21,24,34.260

Our study reconciles three long-standing ideas that are sometimes treated as para-261

doxical: climate change is not the primary force shaping past, or probably future, trends262

in malaria prevalence4,16,19; however, climate change has increased the burden of malaria263

in sub-Saharan Africa14,15,21,24, and at high elevations and latitudes, will continue to for264

several decades9,10; nevertheless, rising temperatures will mostly assist future efforts to265

eradicate Plasmodium falciparum from sub-Saharan Africa10,19,58. In spite of climate266

change, elimination campaigns have already achieved substantial reductions in malaria267

endemicity over the last century. This history underscores the value of disease surveil-268

lance, healthcare, and vector control as core components of climate change adaptation,269

as well as the plausibility of malaria eradication within a generation59—a point echoed270

by the recent work on the elimination of malaria from Hainan Island in China60. At the271

same time, several recent anecdotes have raised relevant concerns about the fragility of272

elimination, such as the resurgence of malaria in Ecuador and Peru driven by mass migra-273

tion from Venezuela61, or the estimated 10,000 excess deaths and 3.5 million untreated274

malaria cases caused by healthcare disruptions during the 2014 Ebola virus epidemic in275

West Africa62. Concerns about climate-linked resurgence are also more credible given the276

ongoing invasion of the An. stephensi mosquito, which thrives in cities, has already been277

reported in several locations in east Africa, and may be able to transmit P. falciparum278

up to much higher temperatures (∼37◦C) than An. gambiae can (∼30◦C)8,63. If An.279

stephensi were to become a dominant vector across the continent, climate change might280

become an even more pressing concern64,65. These risks only add more urgency to the281

global goals of eliminating both malaria and greenhouse gas emissions.282
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Methods283

Malaria prevalence data284

We use a recently published database of Plasmodium falciparum clinical prevalence in285

Sub-Saharan Africa4. This compendium, compiled by Snow et al. over more than286

two decades, is one of the most spatially and temporally complete publicly-available287

databases of infectious disease burden. The database covers the period from 1900 to288

2015, though sampling has increased substantially since the turn of the century (pre-2000:289

n = 32, 533; post-2000: n = 17, 892). Most prevalence surveys used microscopy for diag-290

nostics (n = 36, 805) but a substantial portion of data also derive from rapid diagnostic291

tests (n = 11, 154). The data have been compiled from a mix of archival research through292

public health documents, including the records of colonial governments and elimination293

campaigns from different periods; national survey data; electronic records published in294

peer-reviewed journals and grey data sources (e.g., World Health Organization technical295

documents); and a mix of other sources compiled by international organizations. Records296

were georeferenced in the original study using a standard set of protocols, with a 5km297

grid uncertainty threshold for point data, and broader areas stored as administrative298

polygons. In total, the data include a total of 50,425 prevalence surveys at a total of299

36,966 unique georeferenced locations.300

For our models, we used the estimates of malaria prevalence for children aged two301

to ten years old, as falciparum malaria has the highest mortality in children and preg-302

nant women. The Snow et al. data cover all available prevalence surveys, including all303

age ranges, but were converted by the authors of the original study to a standardized304

estimate of prevalence in children aged 2-10 (Pf PR2−10), using a catalytic conversion305

Muench model. For our model, we aggregated data by averaging Pf PR2−10 at the first306

administrative level within-country (i.e., state or province level, or as shorthand, ADM1),307

using shapefiles provided by the Database of Global Administrative Areas dataset version308

3.6 (www.gadm.org). This provided sufficient granularity to capture climate impacts and309

local heterogeneity in confounders, while ensuring sufficient data coverage within these310

units. This aggregation scale is supported by previous work that models this dataset at311

the same spatial resolution4.312

Climate data313

We used two sets of climate data in this study. The first is an observational dataset from314

the Climatic Research Unit (hereafter, CRU-TS; version 4.03 for model training and315

4.06 for bias correction), which is constructed from monthly observations from extensive316

networks of meteorological stations from around the globe66. CRU-TS provides land-317

only climatic variables at a high spatial resolution of 0.5° × 0.5° extending from 1901 to318

present (though our analysis is limited to the period 1901-2014). The second set of data319

is from ten global climate models (GCMs) selected from the sixth phase of the Coupled320

Model Intercomparison Project (CMIP6). In our historical analysis, we analysed (per321

GCM) one model realization of the “Historical” simulation, which includes anthropogenic322
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greenhouse gas emissions, and one realization from the “Historical-Natural” simulation,323

which includes only solar and volcanic climate forcing. For both the Historical and324

Historical-Natural (hereafter and in the main text, “historical climate” and “historical325

counterfactual”) simulations, we analysed the period 1901-2014.326

To investigate the continued effect of climate change on malaria prevalence between327

2015 and 2100, we analysed three CMIP6 future climate change simulations from each328

of the 10 GCMs. Shared socio-economic pathways (SSPs) refer to the level of potential329

future global development (social, economic, and technological) and the implication for330

climate change mitigation and/or adaptation actions or policy67,68. SSPs are combined331

with various possible future radiative forcings (representative concentration pathways;332

RCPs) to form the climate change scenarios used in CMIP6. Of the available SSP–RCP333

scenarios, we selected and used three. The first two suggest enhanced human develop-334

ment outcomes with increased potential towards a more sustainable (SSP169) or a less335

sustainable (SSP570) economy. The third, SSP271, is a mid-way scenario, which assumes336

a future that mostly follows historical trends68. We selected these scenarios in combina-337

tion with a low (SSP1-RCP2.6), intermediate (SSP2-RCP4.5), and high (SSP5-RCP8.5)338

greenhouse gas concentration scenario.339

We apply a standard quantile-quantile (Q-Q) bias-correction72,73 to the CMIP6 pre-340

cipitation and temperature datasets for both of the historical simulations for the period341

1901-2014, and all three future simulations for the period 2015-2100. Before the bias-342

correction, we first remap all simulated CMIP6 precipitation and temperature datasets343

to the same grid cell size (0.5° × 0.5°) as the CRU-TS observation data. We then per-344

form for each CMIP6 model, the Q-Q bias correction at each grid-point by mapping the345

quantile values (qi) for the empirical cumulative distribution functions for each of the 12346

months over the period 1901-2014 (for each grid point) onto the corresponding quantiles347

in the observational dataset (CRU-TS), so that the observed precipitation or tempera-348

ture values associated with qi become the bias-corrected value in the simulations. For349

the counterfactual (and future) simulations, we first determine, at each grid-point, for350

each value of precipitation or temperature (for each month) over the period 1901-2014351

(2015-2100) the equivalent quantile (qj) in the factual simulation and then identify the352

precipitation or temperature value associated with qj in the observational dataset as the353

bias-corrected value. We detrended both precipitation and temperature datasets before354

applying the bias-correction procedure, and then added the trends back after73.355

For every climate dataset (all CRU-TS and CMIP6 models), we extract the average356

value of monthly precipitation and temperature within each ADM1 unit. To construct357

polynomial variables for temperature and precipitation (see below), all data were trans-358

formed at the grid cell level prior to aggregation to the ADM1 unit; extreme precipitation359

cutoffs were defined at the ADM1 level and so were applied after aggregation.360

Statistical model361

The influence of climatic conditions on malaria prevalence has been heavily studied us-362

ing transmission models based in vector ecophysiology and calibrated using laboratory363

experiments6,7. The important benefit of this approach is that the mechanistic links364
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between a particular environmental condition (e.g., temperature) and malaria prevalence365

in the human population, such as effects on biting rate and survival probability, can be366

independently isolated. However, this approach is limited in its ability to generalize to367

real-world contexts, where complex socioeconomic factors interact with modeled relation-368

ships based on laboratory conditions. Clinical data, which measures malaria prevalence369

in human populations, has been used to validate modeled results (e.g., ref.6), but incon-370

sistent findings arise due to challenges in statistically isolating the role of climate from the371

many correlated factors influencing prevalence, such as public health interventions, drug372

resistance, conflict and social instability, and economic shocks (e.g., refs.74,19,75,58,76).373

This study seeks to provide generalizable population-scale evidence of the malaria-374

climate link across sub-Saharan Africa using field-collected clinical data and a statistical375

approach designed to isolate changing environmental conditions from spatiotemporal con-376

founding factors. Specifically, we draw on the climate econometrics literature77, which377

has developed causal inference approaches to quantify and project the impacts of anthro-378

pogenic climate change on a host of socioeconomic outcomes, from agricultural yields78,379

to civil conflict79, to all-cause mortality46. This approach is designed to approximate380

controlled experiments by semi-parametrically accounting for unobservable spatial and381

temporal confounding factors, isolating variation in the climate system that is as good as382

randomly assigned80. This approach is often referred to as “reduced-form”, as it allows for383

a causal interpretation of recovered relationships between socioeconomic conditions and384

the climate, but it does not easily enable the researcher to isolate individual mechanisms385

linking a changing climate to shifts in outcomes (e.g., mosquito population dynamics or386

parasite development rates). However, causal estimates enable counterfactual simulation387

in which climate is changed and all other factors are held constant; this is the exercise388

conducted here and in many applications of climate econometric frameworks. More-389

over, these relationships can be used to calibrate more structured transmission models390

by providing empirical grounding from observational data.391

We develop a statistical model using monthly survey-based malaria prevalence data392

for children aged 2-10 (PfPR2−10) covering all of sub-Saharan Africa over 115 years.393

Our outcome variable is the average prevalence for each first administrative unit i (e.g.,394

province or state) in country c during month m and year t, which we denote PfPRicmt.395

We estimate prevalence as a flexible function of monthly temperature Ticmt and precipi-396

tation Picmt variables as follows:397

PfPRicmt = f(Ticmt) +
L∑

`=0

g`(Picm−`t) + αi + γrm + hc(datemt) (1)

+ δ11{intervention 1}mt + δ21{intervention 2}mt + εicmt

where f(·) and g(·) represent nonlinear transformations of grid-cell level temperature and398

precipitation conditions, respectively, and where ` subscripts indicate monthly temporal399

lags. In our main specification, we model f(·) as a quadratic in contemporaneous average400

temperature, while g(·) contains a vector of dummy variables indicating whether an401
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administrative unit’s monthly rainfall can be categorized as drought (defined as ≤ 10%402

of the long-run location- and month-specific mean) or flood (defined as ≥ 90% of the403

long-run location- and month-specific mean) during month m − `. We allow for up to404

three monthly of lags (i.e., L = 3) for these extreme precipitation conditions in our405

main specification, based on hypotheses from prior literature regarding the timescales of406

larvae drying and of “flushing” 47,50,81. A variety of sensitivity analyses detailed below407

demonstrate that key findings are robust to including lags for temperature (Figure S7), to408

the drought and flood cutoffs used for precipitation (Figures S8-S10), and to alternative409

functional forms of temperature (Figure S11).410

Equation 1 uses a suite of semi-parametric spatiotemporal controls to isolate plau-411

sibly random variation in climatological conditions, following standard practices in the412

climate impacts literature.77,43 First, αi is a vector of indicator variables for each of 853413

first administrative units (i.e., “ADM1” units) across our multi-country sample. These414

spatial “fixed effects” control for all time-invariant characteristics of an administrative415

unit that may confound the relationship between temperature, rainfall, and prevalence.416

For example, higher altitude regions may exhibit cooler temperatures, but they also may417

be composed of lower-income and more geographically isolated communities with lim-418

ited access to malaria prevention interventions. By controlling for mean conditions in419

each location, these spatial fixed effects avoid conflating climate conditions with other420

geographic correlates.421

Second, γrm is a vector of region-by-month-of-year indicator variables, where regions422

are defined using the Global Burden of Disease (GBD) regional definitions of Western,423

Southern, Central, and Eastern Africa (see Figure 2 in ref.82). These spatiotemporal424

fixed effects account for region-specific seasonality in prevalence that may spuriously425

relate to seasonally-varying climatological conditions. We allow these seasonal controls426

to vary by region because of large differences in climatological seasonality and in malaria427

cyclicality across sub-Saharan Africa83, and we show below that our main findings are428

robust to more stringent seasonality controls defined at the country level (Figure S6).429

Third, hc(·) is a nonlinear, country-specific function that controls for country-specific430

gradual trends that may confound the malaria-climate relationship, particularly under431

historical conditions of anthropogenic climate change. In our main specification, we432

model hc(·) as a quadratic. Figure S6 shows that our results are robust to multiple433

alternative approaches to controlling for long-run trends that may vary across space.434

Finally, the indicator variables 1{intervention 1}mt and 1{intervention 2}mt are equal435

to one when an observation falls into the 1955-1969 or 2000-2015 period, respectively.436

These two periods saw substantial malaria intervention programs across the subconti-437

nent, leading to considerable declines in malaria that were unrelated to changes in the438

climate4,84. These indicator variables control for shocks to prevalence during these two439

periods, and the coefficients δ1 and δ2 allow for differential effectiveness of the two dis-440

tinct intervention periods. While these variables are highly statistically significant (Table441

S2), our main findings are robust to their exclusion (Figure S6).442

Together, these set of flexible controls imply that the residual variation in temperature443

and precipitation events used to identify the functions f(·) and g(·) is month-to-month444
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variation over time within the same location, after controlling for gradual country-specific445

trends, regional seasonality, and the aggregate effects of two substantial malaria preven-446

tion intervention programs. When reporting regression results directly, we cluster stan-447

dard errors εicmt at the ADM1 level to account for serial correlation within the same448

location. When computing bootstrap samples (e.g., shown in Figure 2), we repeatedly449

re-estimate Equation 1 after block-resampling the full dataset using ADM1-level blocks450

to account for this same serial correlation.451

Statistical model sensitivity and robustness452

In this section, we describe a set of model sensitivity analyses that probe the robustness453

of our empirical model. Specifically, we investigate sensitivity of our key findings to:454

alternative spatiotemporal controls; inclusion of dynamic temperature effects; alternative455

definitions of extreme rainfall events; and alternative functional forms for the prevalence-456

temperature relationship.457

Alternative spatiotemporal controls458

Our preferred empirical specification in Equation 1 includes first administrative unit fixed459

effects (i.e., indicator variables), region-by-month-of-year fixed effects, country-specific460

quadratic time trends, and two indicator variables for each of two malaria intervention461

periods (1955-1969 and 2000-2015). Figure S6 shows that our estimated prevalence-462

temperature relationship is highly robust to many alternative spatial and temporal con-463

trols. All panels in this figure include ADM1 fixed effects to control for time-invariant464

characteristics that may confound the relationship between prevalence and temperature,465

but each panel varies in the additional spatial and/or temporal controls included in the466

regression. A tabular version of these results is shown in Table S2. While the temper-467

ature at which prevalence peaks changes slightly across model specifications, it remains468

within a degree of the 25◦C value from our preferred specification for most models,469

particularly those including time trends that are spatially differentiated. Predictably,470

stringent controls, such as region-by-year and country-by-month fixed effects, tend to in-471

crease statistical uncertainty. However, overall the estimated shape and magnitude of the472

prevalence-temperature relationship remain robust to alternative spatial and temporal473

controls.474

Dynamic temperature effects475

Our preferred empirical specification estimates contemporaneous (within one month) and476

lagged (up to three months) effects of extreme rainfall on malaria prevalence, but only477

contemporaneous effects of temperature. While it is possible that temperature also ex-478

hibits lagged effects, we show in Figure S7 that the cumulative effect of temperature on479

PfPR2−10 is very similar whether zero, one, two, or three months of lagged temperatures480

are accounted for. The prevalence response to temperature does become slightly stronger481

with three months of lags, suggesting that our historical and future climate projections482
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shown throughout the main text may be somewhat conservative. However, overall these483

findings suggest that climate change impact projections are unlikely to change meaning-484

fully under different assumptions of the lag structure of temperature exposure.485

Alternative definitions of extreme rainfall events486

Our main empirical specification defines drought as months for which total precipitation487

is less than or equal to 10% of the long-run location- and month-specific mean. Flood is488

analogously defined as months for which total precipitation is greater than or equal to 90%489

of the long-run location- and month-specific mean. Here, we investigate the sensitivity490

of our main findings to these definitions. To do so, we systematically vary both the491

drought and flood cutoff values, ranging from <1% to <20% for drought and from >85%492

to >95% for flood. Figure S8 shows that the relationship between malaria prevalence and493

temperature is insensitive to the definition of drought and flood events. Figure S9 shows494

that under most drought and flood definitions, extremely low precipitation events have495

a negative effect on prevalence with a lag of 1-2 months. However, this effect is rarely496

statistically significant. Figure S10 shows that extremely high rainfall events increase497

prevalence with a lag of 2-3 months, a result is statistically significant and highly robust498

to alternative drought and flood definitions. In general, these sensitivity analyses show499

that our main findings are not sensitive to the specific definitions of drought and flood500

used in estimation of Equation 1.501

Alternative functional forms for the prevalence-temperature relationship502

Following from theoretical and laboratory-based literature (e.g., refs.6,7), we model the503

prevalence-temperature relationship as quadratic. However, Figure S11 shows that this504

relationship is similar when more flexible functional forms are used. In particular, the505

temperature at which prevalence peaks changes little when higher order polynomials are506

estimated. Estimating higher order polynomials increases uncertainty, particularly in the507

tails of the temperature distribution, but point estimates are similar across the majority508

of the temperature support.509

Projections510

In both historical and future simulations, we apply the panel regression to estimate511

the effect of climate change on Pf PR2−10. Our predictions capture the full range of512

statistical uncertainty (1,000 model estimates) and climate model uncertainty (10 climate513

models), producing a total of 10,000 estimates of historical or future impacts in any given514

scenario. Each of these 10,000 estimates is normalized to a long-run baseline (past: 1901-515

1930; present: 2015-2020) before estimates are averaged, creating an estimate of climate516

change impacts relative to that baseline. While the panel regression model accounts517

for historical variation through the fixed effects structure, we do not examine overall518

prevalence predictions for the historical model, and cannot apply it to predict future519

overall prevalence (i.e., no future estimates exist for non-climate effects in the model).520
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For overall trends, we generated continent-wide averages or four regional averages521

using the unweighted average of estimates for each ADM1 unit. This is a deliberate over-522

simplification, as we do not adjust averages based on either ADM1 units’ land area or523

the estimated population they contain; we made this decision based on the challenges of524

reconstructing historical population density at fine scales, as well as the need to otherwise525

make assumptions about how disease burden is allocated over space (e.g., the distribution526

of transmission across rural or urban areas). For similar reasons, we chose not to esti-527

mate the effect of prevalence changes on overall malaria incidence. Although some studies528

have attempted this using a linear conversion with total population85, proper estimation529

of incidence (and the effects of treatment variables, through prevalence, on case bur-530

den) requires malaria transmission models that require substantially more demographic531

assumptions84. Future work could explore both of these methodologically-complex di-532

rections, and potentially generate finer-scale estimates of how many cases of childhood533

malaria, and resulting deaths, are attributable to climate change.534
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Figure 1: Malaria prevalence observations from 1900 to 2015. (A) The total number
of malaria prevalence surveys in children ages 2 to 10 in the 20th and early 21st century, as
measured by Snow et al.4 and aggregated to the first administrative unit (ADM1). (B) Mean
reported prevalence of childhood malaria over the entire sample (1900-2015, with temporal cov-
erage varying across space). (C) Observed trends in malaria prevalence, broken down by Global
Burden of Disease Study regions (see main text): each point is a single survey in the original
dataset, while generalized additive models are used to construct estimated trend lines (shown
in solid blue, with grey shading showing the models’ 95% confidence interval). Pink vertical
bars indicate notable periods of successful malaria prevention intervention: the Global Malaria
Eradication Programme (1955-1969) and the modern period including the Roll Back Malaria
programs and Global Technical Strategy (2000–).
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Figure 2: Empirical estimates of prevalence-climate relationships and predictions of
climate change impacts from 1901 to 2100. (A) The estimated relationship between tem-
perature and prevalence (point estimate in black line; bootstrapped estimates in red). (B,C) The
effects of extreme precipitation events (flood and drought) in the month they occur (0 lag) and
after time has passed (1, 2, 3 month lags), as well as the cumulative impact across the first three
months; point estimates from the main model (black) are accompanied by bootstrap estimates
(blue, brown). (D) Predicted change in prevalence attributable to climate change in the recent
past (real historical climate given in blue; counterfactual without anthropogenic warming in grey)
and in the future for three distinct climate pathways (blue: SSP1-RCP2.6; pink: SSP2-RCP4.5;
green: SSP5-RCP8.5). Thick lines are the median estimates across all 10,000 simulations; shad-
ing indicates 5% and 95% percentiles of this distribution, and is truncated at the lower axis limits
for visualization purposes (but the full interval is shown in Figure S5A). Historical estimates are
shown relative to an average baseline across 1901 to 1930. Future estimates are shown relative
to a baseline across 2015 to 2019, added to the end-of-historical baseline (2010 to 2014). Years
with incomplete predictions due to lag effects (1901 and 2015) are not displayed.
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Figure 3: Historical changes in malaria prevalence attributable to climate change
from 1901 to 2014. (A) Estimated climate-attributable change in prevalence in a polygon
based on the difference between the historical climate in 2010-2014 and a counterfactual scenario
for the same period simulated without anthropogenic warming. Sign uncertainty reports, across
all 10,000 simulations, how many estimate the same direction of trend: an uncertainty of 0%
implies that all models predict a positive or negative trend, while an uncertainty close to 100%
indicates a near-even split. (B) Estimated climate-attributable change in prevalence in each
administrative polygon, compared to the baseline mean temperature at the start of the 20th
century; lines indicate 5% and 95% percentiles. (C) Estimated climate-attributable change in
prevalence in each administrative polygon, compared to average elevation; lines indicate 5%
and 95% percentiles. (D) Predicted changes by year, broken down by region. As in Figure 2,
predictions based on true historical climate (blue) are compared to counterfactual predictions
without anthropogenic warming (grey), relative to a 1901 to 1930 baseline. Thick lines are the
median estimate across all 10,000 simulations; shading indicates 5% and 95% percentiles, and is
truncated at the upper and lower axis limits for visualization purposes. Plots begin in 1902 with
the first full year of predictions (due to lag effects).
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Figure 4: Projected future changes in malaria prevalence driven by climate change
from 2015 to 2100. (A) Estimated climate-driven changes in prevalence by the end of the
century (2096-2100), compared to the present day (2015-2020), in a medium emissions scenario
(SSP2-RCP4.5). Sign uncertainty reports, across all 10,000 simulations, how many estimate
the same direction of trend: an uncertainty of 0% implies that all models predict a positive or
negative trend, while an uncertainty close to 100% indicates a near-even split. (B) Estimated
climate-driven changes in prevalence in each administrative polygon, estimated for SSP2-RCP4.5,
compared to the baseline mean temperature at the start of the 20th century; lines indicate 5%
and 95% percentiles. (C) Estimated climate-driven changes in prevalence in each administrative
polygon, estimated for SSP2-RCP4.5, compared to average elevation; lines indicate 5% and
95% percentiles. (D) Projected changes by year across all scenarios, broken down by region.
Projections are given relative to the mean from 2015-2020, and as in Figure 2, and line color
indicates scenario (blue: SSP1-RCP2.6; pink: SSP2-RCP4.5; green: SSP5-RCP8.5). Thick lines
are the median estimate across all 10,000 simulations; shading indicates 5% and 95% percentiles,
and is truncated at the upper and lower axis limits for visualization purposes. Plots begin in
2016 with the first full year of predictions (due to lag effects).
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Figure S1: Malaria prevalence follows biological expectations. (A) The theoretical ex-
pectation for R0(T ), the scaled partial response of the basic reproduction number to temperature,
estimated based on empirical data (black line)6. Transmission peaks around an estimated op-
timum of 25.6 ◦C (grey dashed line). (B) Observed malaria prevalence data from Snow et al.4
matched to monthly temperature from CRU weather station data, summarized and smoothed
using a generalized additive model. The observed optimum temperature (red dashed line) closely
matches expectations based on laboratory experiments (grey dashed line). (C) Main panel regres-
sion estimate for prevalence response to temperature. The modeled optimum temperature (red
dashed line) is slightly lower than in laboratory experiments (grey dashed line). (D) Histogram of
optimum temperatures derived from 1,000 bootstrapped estimates of the panel regression model
shown in panel (C). The mean optimum temperature across all bootstrap samples (red dashed
line) is identical to the optimum shown in panel (C).
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Figure S2: Historical changes in malaria prevalence attributable to anthropogenic
climate change from 1901 to 2014. Map shows the estimated climate-driven change in
prevalence (in percentage points) in a polygon based on the difference between the historical
climate in 2010-2014 and a counterfactual scenario for the same period simulated without an-
thropogenic warming. Polygons with a black solid outline indicate areas with changes that were
statistically significant (α = 0.05) based on the sign of 10,000 simulations. Mean estimates shown
here provide the same information as in Figure 3, but on a single color scale.

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2023. ; https://doi.org/10.1101/2023.07.16.23292713doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.16.23292713
http://creativecommons.org/licenses/by-nc/4.0/


Figure S3: Projected future changes in malaria prevalence driven by climate change
from 2015 to 2100. Maps show the estimated change in prevalence (in percentage points)
in low-emissions (SSP1-RCP2.6; A,B), moderate-emissions (SSP2-RCP4.5; C,D), and high-
emissions (SSP5-RCP8.5; E,F) scenarios, projected to mid-century (2048-2052; A,C,E) or the end
of the century (2096-2100; B,D,F). Projections are reported as differences relative to a present-
day baseline (2015-2020). Mean estimates in panel D provide the same information as in Figure
4, but on a single color scale (i.e., no uncertainty visualization).
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Figure S4: Historical impacts of climate change decomposed by variable. Partial
predictions of changes in malaria attributable to anthropogenic climate change are made based on
(A) temperature, (B) flood shocks, and (C) drought shocks. As in Figure 2, predictions based on
true historical climate (blue) are compared to counterfactual predictions without anthropogenic
warming (grey), relative to a 1901 to 1930 baseline. Thick lines are the median estimate across
all 10,000 simulations; shading indicates 5% and 95% percentiles. Plots begin in 1902 with the
first full year of predictions (due to lag effects).
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Figure S5: Future impacts of climate change decomposed by variable. Partial pre-
dictions of changes in malaria attributable to future climate change are made based on (A)
temperature, (B) flood shocks, and (C) drought shocks. Projections are shown relative to the
mean prevalence from 2015-2020, and as in Figure 2, line color indicates scenario (blue: SSP1-
RCP2.6; pink: SSP2-RCP4.5; green: SSP5-RCP8.5). Thick lines are the median estimate across
all 10,000 simulations; shading indicates 5% and 95% percentiles. Plots begin in 2016 with the
first full year of predictions (due to lag effects).
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Figure S6: Sensitivity of the PfPR2−10-temperature relationship to alternative spa-
tiotemporal controls. All panels show the estimated relationship between malaria prevalence
for children aged 2-10 and monthly average temperature and all include fixed effects (i.e., dummy
variables) at the scale of the first administrative unit (i.e., ADM1). All temperature responses
are plotted relative to the model-specific temperature at which prevalence is maximized; this
peak temperature is indicated in orange text and with a vertical orange line in each panel. From
top-left to bottom-right, model controls are: country, year, and month fixed effects; country-
specific quadratic time trends and month fixed effects; country-specific quadratic time trends
and country-by-month fixed effects; country-specific quadratic time trends and intervention pe-
riod and month fixed effects; country-specific quadratic time trends and intervention period and
region-by-month fixed effects; country-specific quadratic time trends and intervention period and
country-by-month fixed effects; region-by-year and region-by-month fixed effects; region-by-year
and country-by-month fixed effects; and region-by-year and region-by-month fixed effects and
country-specific linear time trends. The preferred specification used throughout the main text is
the center panel, which includes country-specific quadratic time trends and intervention period
and region-by-month fixed effects. In all panels, “region” refers to the Global Burden of Disease
regional definitions of Western, Southern, Central, and Eastern Africa. All standard errors are
clustered at the first administrative unit (e.g., province) level.
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Figure S7: Cumulative effect of contemporaneous and lagged temperature on
PfPR2−10. All panels show the estimated relationship between malaria prevalence for chil-
dren aged 2-10 and monthly average temperature and are plotted relative to a monthly average
temperature of 25◦C. The first panel shows the effect of monthly average temperature on the
same month’s average prevalence (this is the main estimate used throughout the main text). The
second panel shows the cumulative effect of contemporaneous temperature and the prior month’s
temperature on prevalence, while the last two columns show analogous results for two and three
months of lags, respectively. In all specifications, three months of lagged precipitation extremes
are included, as well as all other controls shown in Equation 1. All standard errors are clustered
at the first administrative unit (e.g., province) level.
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Figure S8: Sensitivity of PfPR2−10-temperature relationship to alternative drought
and flood definitions. All panels show the estimated relationship between malaria prevalence
for children aged 2-10 and monthly average temperature and are plotted relative to a monthly
average temperature of 25◦C. Cutoff values for drought and flood definitions are given in the
titles of each panel. For example, the first panel in the upper left defines drought as monthly total
precipitation that falls below 1% of the long-run location- and month-specific mean, and defines
flood as monthly total precipitation that falls above 85% of the long-run location- and month-
specific mean. In all specifications, three months of lagged precipitation extremes are included,
as well as all other controls shown in Equation 1. The main specification used throughout the
paper uses a drought cutoff of 10% and a flood cutoff of 90%. All standard errors are clustered
at the first administrative unit (e.g., province) level.
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Figure S9: Sensitivity of PfPR2−10-drought relationship to alternative drought and
flood definitions. All panels show the estimated relationship between malaria prevalence for
children aged 2-10 and contemporaneous and lagged drought events. Point estimates are given by
solid circles, while vertical bars indicate 95% confidence intervals. Cutoff values for drought and
flood definitions are given in the titles of each panel. For example, the first panel in the upper
left defines drought as monthly total precipitation that falls below 1% of the long-run location-
and month-specific mean, and defines flood as monthly total precipitation that falls above 85%
of the long-run location- and month-specific mean. In all specifications, three months of lagged
precipitation extremes are included, as well as all other controls shown in Equation 1. The main
specification used throughout the paper uses a drought cutoff of 10% and a flood cutoff of 90%.
All standard errors are clustered at the first administrative unit (e.g., province) level.
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Figure S10: Sensitivity of PfPR2−10-flood relationship to alternative drought and
flood definitions. All panels show the estimated relationship between malaria prevalence for
children aged 2-10 and contemporaneous and lagged flood events. Point estimates are given by
solid circles, while vertical bars indicate 95% confidence intervals. Cutoff values for drought and
flood definitions are given in the titles of each panel. For example, the first panel in the upper
left defines drought as monthly total precipitation that falls below 1% of the long-run location-
and month-specific mean, and defines flood as monthly total precipitation that falls above 85%
of the long-run location- and month-specific mean. In all specifications, three months of lagged
precipitation extremes are included, as well as all other controls shown in Equation 1. The main
specification used throughout the paper uses a drought cutoff of 10% and a flood cutoff of 90%.
All standard errors are clustered at the first administrative unit (e.g., province) level.
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Figure S11: Alternative functional forms for the PfPR2−10-temperature relation-
ship. All panels show the estimated relationship between malaria prevalence for children aged
2-10 and monthly average temperature and are plotted relative to a monthly average tempera-
ture of 25◦C. Starting in the upper left, the first panel shows the paper’s main specification, a
quadratic functional form for the prevalence-temperature relationship. The second panel shows
a cubic functional form, the third a quartic, and the fourth a quintic. All standard errors are
clustered at the first administrative unit (e.g., province) level.
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Figure S12: Non-linearities in the PfPR2−10-precipitation relationship. All panels
show the estimated relationship between malaria prevalence for children aged 2-10 and monthly
cumulative precipitation and are plotted relative to a month with no rainfall. All relationships
are estimated for contemporaneous monthly precipitation. All standard errors are clustered at
the first administrative unit (e.g., province) level.
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Region Scenario 2048-2052 2096-2100
Estimate 95% CI Estimate 95% CI

Sub-Saharan Africa
(continent-wide)

SSP1-RCP2.6 -0.0828 (-0.402, 0.169) -0.0891 (-0.487, 0.165)
SSP2-RCP4.5 -0.136 (-0.543, 0.204) -0.398 (-1.26, 0.251)
SSP5-RCP8.5 -0.234 (-0.794, 0.264) -1.75 (-4.61, -0.0332)

East Africa
SSP1-RCP2.6 0.114 (-0.174, 0.466) 0.102 (-0.243, 0.454)
SSP2-RCP4.5 0.138 (-0.244, 0.542) 0.142 (-0.536, 0.830)
SSP5-RCP8.5 0.163 (-0.370, 0.700) -0.483 (-2.44, 0.981)

Central Africa
SSP1-RCP2.6 -0.0284 (-0.353, 0.215) -0.0557 (-0.405, 0.249)
SSP2-RCP4.5 -0.00663 (-0.463, 0.399) -0.179 (-1.05, 0.535)
SSP5-RCP8.5 -0.0823 (-0.651, 0.457) -1.23 (-3.91, 0.432)

Southern Africa
SSP1-RCP2.6 0.318 (-0.102, 0.833) 0.342 (-0.0654, 0.931)
SSP2-RCP4.5 0.481 (-0.0720, 1.04) 0.838 (-0.152, 1.90)
SSP5-RCP8.5 0.838 (-0.0779, 1.81) 0.621 (-2.19, 2.62)

West Africa
SSP1-RCP2.6 -0.443 (-0.936, -0.132) -0.441 (-1.08, 0.105)
SSP2-RCP4.5 -0.669 (-1.28, -0.222) -1.44 (-2.87, -0.464)
SSP5-RCP8.5 -1.03 (-1.86, -0.354) -4.09 (-8.75, -1.48)

Table S1: Projected future impacts of climate change on PfPR2−10. Estimates
and confidence intervals are all given as percentage point changes from a 2015-2020
baseline, estimated across 10,000 simulations.
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