ZFHX3 variants cause partial epilepsy of childhood and spasms with favorable outcomes

Ming-Feng He1,†, Li-Hong Liu1,†, Sheng Luo1,†, Juan Wang1, Jia-Jun Guo1, Peng-Yu Wang1, Qiong-Xiang Zhai2, Su-Li He3, Dong-Fang Zou4, Xiao-Rong Liu1, Bing-Mei Li1, Hai-Yan Ma5, Jing-Da Qiao1, Peng Zhou1, Na He1,*, Yong-Hong Yi1,*, and Wei-Ping Liao1

For the China Epilepsy Gene 1.0 Project

1. Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China.

2. Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510120, China.

3. Department of Pediatrics, Shantou Chaonan Minsheng Hospital, Shantou 515000, China.

4. Epilepsy Center and Department of Neurology, Shenzhen Children's Hospital, Shenzhen 518029, China.

5. Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, China.

*Corresponding Authors:

Prof. Yong-Hong Yi

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
E-mail: yyh168@sina.com

Tel: +86-18926298172

Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-Gang-Dong Road 250, Guangzhou, 510260, China

Dr. Na He

E-mail: henachilli@163.com

Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Chang-Gang-Dong Road 250, Guangzhou, 510260, China

†These authors contributed equally to this work and share co-first authorship.
Abstract

Background: The ZFHX3 gene is highly expressed in the developing brain and plays vital roles in embryonic development, cell proliferation, neuronal differentiation, and neuronal death. The association between the ZFHX3 gene and human disease was not defined.

Methods: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy of childhood. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. The expression profile of the ZFHX3 ortholog was assessed by RT-qPCR and the data from the Brainspan database.

Results: Eight pairs of compound heterozygous variants in ZFHX3 were identified in eight unrelated cases with partial epilepsy. The identified ZFXH3 variants had low or no frequencies in the populations of gnomAD. The ZFHX3 gene presented significantly higher excesses of variants in the case cohort, including a higher excess of biallelic variants than the expected number of East Asian populations, higher aggregated frequencies than that in gnomAD, and a higher frequency of compound heterozygous variants than that in the asymptomatic parent controls. In Zfh2 knockdown flies, the incidence and duration of seizure-like behavior were significantly higher than those of the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons than the wild-type line in electrophysiological recordings. All patients with ZFHX3 compound heterozygous variants presented focal seizures and focal discharges on EEGs. One patient experienced frequent nonconvulsive status epilepticus, and two patients evolved from early spasms; the three
cases also had neurodevelopmental abnormalities. However, all patients achieved seizure-free. In *Drosophila*, the expression of Zfh2 is high in larvae and decreased in pupae and early adults. In mice, Zfhx3 is predominantly expressed in fetuses and decreases dramatically after birth. In humans, the data from the Brainspan database showed that ZFHX3 is highly expressed in the embryonic period and decreased after birth.

Conclusion: This study suggested that ZFHX3 is potentially a novel causative gene of partial epilepsy of childhood and infantile spasms. The correlation between the outcome and gene expression stage provided insight into the underlying mechanism of the natural course of illness, potentially being helpful in the management of the patients.

Keywords: ZFHX3 gene, partial epilepsy, trio-based WES, neurodevelopmental disorder, gene expression stage
Introduction

Epilepsy is a common neurological disorder with age-dependent seizures. In children, the prevalence of epilepsy ranges from 0.5% to 1%, and approximately 68% of childhood patients present focal seizures. Epilepsy affects approximately 0.7% of infants, and approximately 10% of infantile patients with epilepsy present spasms. Genetic factors are believed to be the main cause of epilepsy, accounting for approximately eighty percent of cases. Previously, a number of causative genes were identified in children with partial (focal) epilepsy, such as DEPDC5, GRIN2A, UNC13B, HCFC1, LAMA5, BCOR, CELSR1, BRWD3, FAT1, and ELP4. The genes associated with infantile spasms include KCNQ2, KCNT1, GRIN2B, STXBP1, TBC1D24, SCN1A, CDKL5, and ARX. However, the etiology in most patients with childhood partial epilepsy and/or infantile spasms remains to be elucidated.

In this study, we conducted trio-based whole-exome sequencing (WES) in a cohort of 378 unrelated children with partial epilepsy. Compound heterozygous variants of ZFHX3 were identified in eight unrelated patients with partial epilepsy, including one with frequent nonconvulsive status epilepticus and two who evolved from early spasms; the three patients with severe seizures also had neurodevelopmental abnormalities. However, all patients became seizure-free. A Drosophila model with Zfh2 knockdown was established to investigate the association between ZFHX3 and epilepsy. To explore the underlying mechanism of favorable outcomes, the genetic-dependent stages of ZFHX3 orthologs were investigated, in which the expression of flies and mice was determined by RT-qPCR and that
of humans was analyzed using data from the Brainspan database. This study suggests that the
ZFHX3 gene is potentially a novel causative gene of partial epilepsy of childhood and
infantile spasms with/without developmental abnormalities. The development-dependent
expression pattern of ZFHX3 explains the natural course of the illness.

Materials and methods

Patients

Patients were identified in a cohort of 378 unrelated children with partial epilepsy without
acquired causes who were recruited from five hospitals from 2019 to 2022, including the
Second Affiliated Hospital of Guangzhou Medical University, Guangdong General Hospital,
Shenzhen Children’s Hospital, Shantou Chaonan Minsheng Hospital, and the Affiliated
Brain Hospital of Nanjing Medical University. The clinical information of affected
individuals was collected, including sex, seizure onset age, seizure types and frequency,
response to antiepileptic drugs (AEDs), family history, and general and neurological
examinations. Long-term video-electroencephalography (EEG) was performed to monitor
epileptic discharges. Brain magnetic resonance imaging (MRI) scans were performed to
detect structural abnormalities. Epileptic seizures and epilepsy syndromes were diagnosed
according to the criteria of the Commission on Classification and Terminology of the ILAE

Trio-based whole-exome sequencing and genetic analysis

Genomic DNA was extracted from blood samples of the probands and their parents (trios)
and other available family members by using the Flexi Gene DNA kit (Qiagen, Hilden, Germany). Trios-based WES was performed with NextSeq500 sequencing instruments (Illumina, San Diego, CA, USA). Detailed sequencing methods were described in our previous studies. A case-by-case analytical approach was adopted to identify candidate causative variants in each trio. Primarily, the rare variants were prioritized with a minor allele frequency (MAF) < 0.005 in the gnomAD database (gnomad.broadinstitute.org). Then, potentially pathogenic variants were retained, including frameshift, nonsense, canonical splice site, initiation codon, in-frame variants, missense, and synonymous variants predicted to impact splicing. Last and importantly, possibly disease-causing variants in each individual were screened under five models: 1) epilepsy-associated gene; 2) de novo variant dominant; 3) autosomal recessive inheritance, including homozygous and compound heterozygous variants; 4) X-linked; and 5) cosegregation analysis if available. To identify novel potential epilepsy genes, genes with recurrently identified de novo, biallelic, hemizygous, and cosegregated variants were selected for further studies. ZFHX3 appeared as a candidate gene with recurrent compound heterozygous variants in this cohort. All variants in ZFHX3 in this study were validated by Sanger sequencing and annotated based on the transcript NM_006885.

Analysis of the burden of variants

Three specific statistical methods were used to analyze the association between ZFHX3 and epilepsy, including recessive burden analysis, aggregate frequency of variants, and frequency of compound heterozygous variants.
For the burden of recessive variants, the P value was calculated as $[1$-cumulative binomial probability $][n-1, N, R]$ according to a previous report, where n is the observed biallelic variant number for $ZFHX3$, N is the number of trios (378 in this cohort), and R is the rate of $ZFHX3$ variants by chance in populations. Considering that all patients were Han Chinese, the cutoff was set according to the MAF in the ExAC-East Asian population.

For aggregate frequency analysis, frequencies of identified variants between the case cohort and the controls were compared, including general and East Asian populations in the gnomAD database, general populations in the ExAC database, and the 33,444 persons without known neuropsychiatric conditions in the Epi25 WES Browser (https://epi25.broadinstitute.org/).

For the control of compound heterozygous variants, we established a cohort of 1942 asymptomatic parents from trios, in whom the compound heterozygous variants were identified by detecting one of the paired variants in the child, based on the fact that one of the paired variants in a parent would transmit to the child. The frequency of identified compound heterozygous $ZFHX3$ variants in the case cohort was compared with that in the controls, including the 1942 asymptomatic parent controls and the variant co-occurrence data in gnomAD.

Molecular structural analysis

Protein modeling was performed to predict the effects of missense variants on the molecular structure by using the I-TASSER tool (https://zhanggroup.org/I-TASSER/). Protein structures were visualized and analyzed by using the PyMOL Molecular Graphics System.
protein stability changes of missense variants were predicted by using the I-Mutant Suite (https://folding.biofold.org/cgi-bin/i-mutant2.0.cgi).

Drosophila experiments

Flies were reared at 25°C and 60-70% humidity with a standard cornmeal diet under a 12:12 h light and dark cycle. The *UAS-Zfh2-RNAi* line (CG1449, TH01656.N) was purchased from the TsingHua Fly Center. The *tub-Gal4* driver line and *Canton-s* line were donated by Prof. Liu Ji-Yong (Guangzhou Medical University, Guangzhou, China). *Zfh2* knockdown flies were generated by crossing the *UAS-Zfh2-RNAi* line with the *tub-Gal4* driver line. *Canton-s* was the wild-type line. The knockdown efficiency was detected by using reverse transcription quantitative PCR (RT-qPCR).

To evaluate the role of *Zfh2* deficiency in development, the body length of fly larvae was assessed, as in our previous study. The larval stages of flies can be divided into three stages, i.e., the first (24 h), second (48 h), and third (72 h) instar larvae. The length of the larvae was measured using ImageJ NIH software (https://imagej.nih.gov/ij/).

To evaluate seizure-like behavior, a bang sensitivity assay was conducted on flies 3-5 days after eclosion. Briefly, flies were anesthetized using CO2 and transferred to clean vials for 0.5-1 h before testing. Three to seven flies were placed in each vial and stimulated mechanically using a vortex mixer (Lab Dancer, IKA, Germany) at maximum speed for 10 seconds. The duration and percentage of seizure-like behavior were recorded.
To determine the impact of Zfh2 knockdown on neuronal excitability, the electrophysiological activity of projection neurons was recorded. The fly brains were prepared for electrophysiological recording as described previously. The standard external and internal solutions and patch pipette were prepared as described previously. Spontaneous activities were acquired using the 700B amplifier, 1440B Digital-Analog converter, and pClamp 10.5 software (Molecular Devices, San Jose, CA, USA). A cell with an access resistance of <30 MΩ sample was used for analysis. Spontaneous EPSP (sEPSP) data > 1 mV were analyzed by Mini Analysis software.

Assessment of the ZFHX3 ortholog expression profile

The mRNA expression levels of ZFHX3 orthologs in different developmental stages in flies and mice were determined by RT-qPCR. For flies, the whole mRNA was extracted in five developmental stages, including third instar larvae, pupae, early adult (day 1), middle adult (day 5), and later adult (day 10). For mice, the mRNA of the frontal cortex was extracted in eight developmental stages, including the fetus, neonate (1 day), infant (1 week), toddler-period (2 weeks), preschool (4 weeks), juvenile-adult (10 weeks), middle-age (15 weeks), and old-age (32 weeks). The sequences of primers used in this study are listed in Table S1. Total RNA was extracted by using the HiPure Universal RNA Mini Kit (Magen Biotechnology, Guangzhou, China). Reverse transcription was performed with the HiScript III RT SuperMix for qPCR (+gDNA wiper) (Vazyme, Nanjing, China) kit, and then qPCR was performed by the Taq Pro Universal SYBR qPCR Master Mix (Vazyme, Nanjing, China) with the LightCycler 480 System (Roche) tool.
Human RNA-seq data at different developmental stages (from 8 postconceptional weeks to 40 years) for multiple brain areas were obtained from the Brainspan database (http://www.brainspan.org/). RNA expression was normalized to reads per kilobase million (RPKM). The temporal expression curve was fitted by third-order polynomial least squares to interpret the expression pattern of ZFHX3 by GraphPad Prism 9.

Statistical analysis

R statistical software (v4.0.2) and GraphPad Prism 9 were used for statistical analysis. All quantitative data are presented as the mean ± standard error of the mean (SEM). The burden of recessive variants was analyzed according to a previous report. The number and aggregated frequencies of ZFHX3 variants in this cohort and controls were compared by a two-tailed Fisher’s exact test. Student’s t test was used to compare two independent samples, and the Mann-Whitney test was used to assess nonparametric data. The P value < 0.05 was considered statistically significant.

Results

Identification of ZFHX3 variants

c.5152A>C/p.Met1718Leu & c.10510G>C/p.Val3504Leu, c.6161C>T/p.Ala2054Val & c.10445G>T/p.Ser3482Ile, and c.10445G>T/p.Ser3482Ile & c.10853C>A/p.Pro3618Gln (Table 1 and Figure 1). The eight pairs of compound heterozygous variants consisted of eleven missense variants, one frameshift truncation, and one in-frame deletion. The missense variant p.Ser3482Ile was recurrently identified in two cases (Cases 7 & 8), and the variant p.Pro3618Gln was recurrently identified in three cases (Cases 2, 5, & 8). All of the ZFHX3 compound heterozygous variants were inherited from their asymptomatic parents, consistent with the Mendelian autosomal recessive inheritance pattern.

The identified variants presented no or low frequencies in the gnomAD database (MAF < 0.005) (Table S2). Six variants were not present in the normal control of the Epi25 WES Browser, while the other seven variants presented extremely low frequencies (MAF < 0.0005). None of the variants presented homozygous states in gnomAD.

When the burden of recessive variants was analyzed, the number of recessive ZFHX3 variants identified in this cohort was significantly greater than the expected number by chance in the East Asian population (MAF < 0.005, $P = 1.60 \times 10^{-4}$). The aggregate frequency of variants identified in the case cohort was significantly higher than that in the controls, including the controls of the gnomAD-all population ($P = 2.30 \times 10^{-13}$), the controls of the gnomAD-East Asian population ($P = 4.36 \times 10^{-2}$), the general population of the ExAC database ($P = 2.34 \times 10^{-13}$), and the normal controls of the Epi25 WES Browser ($P = 3.56 \times 10^{-18}$) (Table S2). The eight pairs of compound heterozygous ZFHX3 variants did not co-occur in gnomAD, and the frequency of compound heterozygous ZFHX3 variants in the
The case cohort was significantly higher than that in the controls, including the control cohort of 1942 asymptomatic parents (8/378 vs 5/1942, $P = 2.80 \times 10^{-4}$) and the variant co-occurrence in gnomAD (8/378 vs 2/125748, $P = 2.70 \times 10^{-19}$).

None of the eight patients had pathogenic or likely pathogenic variants in the genes known to be associated with epileptic phenotypes.\(^{32}\)

Clinical features of the cases with ZFHX3 variants

The detailed clinical characteristics of the eight unrelated cases with ZFHX3 variants are summarized in Table 1. The onset age of seizures ranged from 5 months to 13 years old, with a median onset age of 5 years. The patients were all diagnosed with partial epilepsy, including three cases with neurodevelopmental abnormalities, of whom two presented frequent spasms (Cases 4 & 6) at the early stage of the illness and one experienced nonconvulsive status epilepticus (Case 7). The other five cases exhibited only infrequent (yearly) focal seizures or focal-origin generalized tonic-clonic seizures (Cases 1-3, 5, 8). Focal, multifocal, and/or diffuse epileptic discharges were recorded in their EEG (Figure 1C-F). The brain MRI was normal in all cases. A seizure-free status was achieved in all eight patients.

Molecular effect and functional prediction of ZFHX3 variants

The ZFHX3 protein contains 23 zinc finger motifs and 4 homeodomains. Two variants, p.Glu807Lys and p.Ala1376del, were located in the zinc finger motifs, and other variants were scattered between zinc fingers and/or homeodomains (Figure 2A). The variant p.Pro3618Gln, located in the last part of the C-terminus, was repetitively identified in three of
five mild cases (Cases 2, 5, & 8). Similarly, the frameshift variant (p.Pro3195LeufsTer44), which truncates the C-terminus, was also identified in a mild case (Case 3). The remaining mild case (Case 1) had two variants located in the N-terminus.

The damaging effect of missense variants was analyzed by protein modeling. Two missense variants, p.Glu807Lys and p.Ala896Thr, were predicted to alter hydrogen bonding with surrounding residues. Six variants were predicted to decrease protein stability with a G value less than -0.5 kcal/mol (Figure 2B). All the variants were predicted to be damaging by at least one in silico tool (Table S3).

Knockdown of Zfh2 in Drosophila led to increased susceptibility to seizures

To validate the association between ZFHX3 and epilepsy, a Drosophila model of Zfh2 knockdown was established, with a knockdown efficiency of approximately 66% (Figure 3A). The larval development of Zfh2 knockdown flies was initially investigated. The larval body length of Zfh2 knockdown flies was similar to that of UAS-Zfh2-RNAi control flies (Figure 3B).

A bang sensitivity assay was performed in Zfh2 knockdown flies and UAS-Zfh2-RNAi control flies to assess susceptibility to seizures. The three phases of seizure activity in the Bang-sensitivity test were observed, including seizure, paralysis, and recovery (Figure 3C). The percentage of seizure-like behaviors in the Zfh2 knockdown flies was significantly higher than that in the UAS-Zfh2-RNAi control [18.66 ± 2.09% (n = 15) vs 4.06 ± 0.87% (n = 9); P < 0.0001], the Canton-s control [18.66 ± 2.09% (n = 15) vs 6.88 ± 0.89% (n = 7); P =
0.0013], and the *tub-Gal4* control [18.66 ± 2.09% (*n* = 15) vs 3.56 ± 1.03% (*n* = 7); *P* < 0.0001] (**Figure 3D**). The duration of seizure-like behavior in *Zfh2* knockdown flies was also longer than that of the controls (**Figure 3E**).

The effect of *Zfh2* deficiency on the electrophysiological activity of projection neurons, which are important excitatory neurons in the central nervous system of *Drosophila*, was examined (**Figure 4A, B**). The frequency of sEPSPs in *Zfh2* knockdown flies was significantly higher than that in wild-type flies [0.6312 ± 0.06 Hz (*n* = 7) vs 0.09907 ± 0.01 Hz (*n* = 7); *P* < 0.0001] (**Figure 4C**). There was no significant difference in the amplitude of sEPSPs between the *Zfh2* knockdown flies and WT flies [1.405 ± 0.2039 mV (*n* = 7) vs 1.228 ± 0.1486 mV (*n* = 7), *P* = 0.0888] (**Figure 4D**).

The temporal expression stage of ZFHX3 orthologs

Infantile spasms are generally a severe form of epilepsy with a poor prognosis in the majority of cases. In this study, the two patients with early spasms presented favorable outcomes. Recent studies have indicated that the gene-dependent (expression) stage (GDS) is associated with the natural course and outcomes of illness. We thus analyzed the temporal expression pattern of *ZFHX3* orthologs. In *Drosophila*, the expression of *Zfh2* was high in larvae, decreased in pupae and early adults, and increased in later adults (**Figure 5A**). In mice, the expression level of *Zfhx3* was high in the fetus, decreased dramatically after birth, and slightly increased in later adults (32 weeks) (**Figure 5B**). We further analyzed the temporal expression pattern of *ZFHX3* in the human brain by using data from
BrainSpan. ZFHX3 was also highly expressed in the embryonic stage, decreased dramatically in childhood with a nadir at approximately 10 years old, and slightly increased at approximately 30 years old (Figure 5C).

Discussion

The zinc finger homeobox 3 gene (*ZFHX3*, OMIM *104155), also known as AT motif-binding transcription factor 1 gene (*ATBF1*), encodes a transcription factor with 4 homeodomains and 23 zinc finger motifs. In this study, we identified compound heterozygous *ZFHX3* variants in eight unrelated patients with partial epilepsy, including two with early spasms. The *ZFHX3* gene presented significantly higher excesses of variants in the case cohort, including a higher excess of biallelic variants than the expected number of East Asian populations, a higher aggregated frequency than that in gnomAD, a higher frequency of compound heterozygous variants than that in the asymptomatic parent controls, and a higher frequency of compound heterozygous variants than the variant co-occurrence in gnomAD. Knockdown of Zfh2 in flies caused increased susceptibility to seizures and abnormal firing of neurons. All patients achieved seizure-free, although two patients evolved from early spasms. The analysis of the temporal expression profile indicated that *ZFHX3* orthologs were highly expressed in the embryonic stage and decreased dramatically in childhood, which is correlated with the favorable outcomes of the patients. This study suggested that *ZFHX3* is potentially a novel causative gene of childhood partial epilepsy and infantile spasms with/without neurodevelopmental abnormalities.
The *ZFHX3* gene is highly conserved with homologs in flies, zebrafish, mice, and humans. It is ubiquitously expressed, especially in the developing brain. *ZFHX3* plays vital roles in multiple biological processes, including embryonic development, cell proliferation, neuronal differentiation, and neuronal death.\(^{38-40}\) In mice, homozygous knockout of *Zfhx3* led to prenatal lethality with complete penetrance, while heterozygous knockout resulted in growth restriction and postnatal lethality with incomplete penetrance.\(^{41}\) In zebrafish, knockdown of *Zfxh3* caused significantly increased pentylenetetrazol-induced seizures.\(^ {42}\) In flies, previous studies showed that the majority of knockout/knockdown *Zfh2* lines exhibited preadult lethality (http://flybase.org/reports/FBgn0004607#phenotypes). This study identifies biallelic *ZFHX3* variants in eight unrelated patients with partial epilepsy with/without neurodevelopmental abnormalities, and the knockdown of *Zfh2* in *Drosophila* led to increased susceptibility to seizures and abnormal firing of neurons. The recurrent epileptic and/or neurodevelopmental phenotypes across species supported the association between *ZFHX3* and epilepsy and neurodevelopmental abnormalities.

Data from variants in the human genome reveal that *ZFHX3* is intolerant to LOF variants, including constraint indexes such as the probability of being LOF intolerant (pLI),\(^ {43}\) the LOF observed/expected upper bound fraction (LOEUF),\(^ {43}\) and the probability of haploinsufficiency (pHaplo).\(^ {44}\) The *ZFHX3* gene has a pLI of 0.997 (> 0.9), LOEUF of 0.147 (< 0.35), and pHaplo of 1 (≥ 0.86), all indicating that *ZFHX3* is intolerant to heterozygous LOF variants. Considering the recurrent lethal and neurodevelopmental/epileptic phenotypes in *Zfhx3* knockout/knockdown animals, it is possible that severe *ZFHX3* deficiency, such as biallelic
null variants, will cause early lethality, while moderate ZFHX3 deficiency, such as heterozygous null variants or biallelic missense variants with moderate damaging effects, is potentially associated with epilepsy and/or neurodevelopmental abnormalities. In this study, most of the variants were located outside the functional domains and predicted to be without hydrogen bond changes with surrounding residues, indicating mild damaging effects, which potentially explain the pathogenesis of compound heterozygous variants. Three of the patients with a mild phenotype had an identical variant p.Pro3618Gln, which was located in the last part of the C-terminus and presented a low MAF (0.000301) (instead of absent) in the general population, indicating a potentially mild damaging effect. One patient with a mild phenotype had a frameshift variant with truncation at the C-terminus, which was inherited from the asymptomatic father and presented with low MAF (instead of absent), thus potentially being of mild damage. These findings suggested a potential genotype-phenotype correlation.

The ZFHX3 protein, a transcription factor containing 23 C2H2-type zinc fingers and 4 homeodomains, belongs to the C2H2-type zinc finger protein family, which plays an essential role in neurodevelopment.45 Previously, ZFHX3 de novo variants were occasionally detected in patients with neurodevelopmental disorders, including four variants in autism spectrum disorder,46-48 three variants in developmental disorder,49 and one variant in development and epileptic encephalopathy (Table S4),50 suggesting a potential role in neurodevelopmental disorders. In the present study, neurodevelopment abnormalities were observed in three patients. These data indicated a possible association between ZFHX3 and neurodevelopmental disorders. Further studies are needed to determine the whole phenotypic spectrum of ZFHX3.
Infantile spasms are generally a severe form of epilepsy with poor outcomes. Clinically, approximately 33% of patients with spasms present favorable outcomes, but the underlying mechanism is unknown. Our recent study showed that GDS is associated with the natural course and outcomes of diseases. In this study, the two patients with early spasms presented favorable outcomes. Studies on the temporal expression stage showed that \textit{ZFHX3} orthologs were highly expressed in the embryonic stage and decreased dramatically in childhood, which is potentially one of the explanations for the favorable outcomes. Considering that the expression of \textit{ZFHX3} was slightly increased at approximately 30 years old, long-term follow-up is needed to observe the future evolution of the disease.

In conclusion, this study suggested that \textit{ZFHX3} is potentially a novel causative gene of partial epilepsy and infantile spasms with/without neurodevelopmental abnormalities. The correlation between the outcome and gene expression stage provided insight into the underlying mechanism of the natural course of illness, potentially being helpful in the management of the patients.

Data availability

Raw data were generated at the Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University. Derived data supporting the findings of this study are available from the corresponding author upon request.

Ethics declaration

This study was approved by the Ethics Committee of The Second Affiliated Hospital of
Guangzhou Medical University (2020-h5-49), and written informed consent was obtained from all patients or their parents.

Supplemental information

Supplemental Table S1: Primer sequences for RT-qPCR.

Supplemental Table S2: Analysis of the aggregate frequency of ZFH3 variants identified in this study.

Supplemental Table S3: Genetic features of the individuals with ZFH3 variants.

Supplemental Table S4: Previously reported ZFH3 variants and associated phenotypes.

Supplemental reference (for review only). *PCDH15* in self-limited partial epilepsy and the mechanism of distinct phenotypes (Revised in Annuals of Neurology).

Acknowledgments

We thank the patients and their families for participating in this study. We thank Prof. Liu Ji-Yong for donating the *tub-Gal4* driver line and *Canton-s* line flies and Schrödinger (New York, NY, USA) for supporting open-source PyMOL software. This study was supported by grants from the National Natural Science Foundation of China (Grant Nos. 82271505, 81870903, and 81971216); Science and Technology Project of Guangzhou (Grant No. 202201020106), Multicenter Clinical Research Fund Project of the Second Affiliated Hospital of Guangzhou Medical University (Grant Nos 010G271099, 2020-LCYJ-DZX-03, and 2021-LCYJ-DZX-02), and Scientific Research Project of Guangzhou Education Bureau.
(Grant No. 202235395). The funders had no role in the study design, data collection and analysis, or the decision to publish or in manuscript preparation.

Author contributions

W.P. L., Y.H. Y., N. H., and J.D. Q. designed this study; data collection was performed by M.F. H., L.H. L., S. L., J. W., Q.X. Z., S.L. H., D.F. Z., X.R. L., B.M. L., H.Y. M., and P. Z.; formal analysis was performed by M.F. H. and S. L.; experiments were performed by M.F. H. and J.J. G.; grant recipients were W.P. L., Y.H. Y., N. H., and X.R. L.; visualization was performed by M.F. H. and P.Y. W.; the first draft of the manuscript was written by M.F. H., L.H. L., and S. L.; writing-review and editing were performed by N. H., Y.H. Y., and W.P. L.

Declaration of interests

The authors declare no conflicts of interest.

References

Figure legends

Figure 1 Genetic data and representative EEG recordings of the cases with ZFHX3 variants. (A) Pedigrees of eight cases with compound heterozygous ZFHX3 variants and their corresponding phenotypes. PE, partial epilepsy; FS, febrile seizures; NCSE, nonconvulsive status epilepticus; NDD, neurodevelopmental delay. (B) DNA sequencing chromatogram of ZFHX3 variants. Arrows indicate the position of the variants. (C) EEG of case 2 showed right frontal-centro-temporal sharp-slow waves. (D) EEG of case 5 showed right temporal spike-slow waves. (E) EEG of case 6 showed right frontal spike-slow waves (left) and generalized poly-spike-slow waves (right). (F) EEG of case 8 showed bilateral occipital-temporal sharp-slow waves.

Figure 2 Schematic illustration of ZFHX3 variants. (A) Schematic illustration of zinc finger homeobox protein 3 and locations of ZFHX3 variants identified in this study. Two variants of the same height were a pair of biallelic variants. The red color represents cases with severe partial epilepsy with neurodevelopmental abnormalities. The blue color represents cases with mild partial epilepsy. (B) Hydrogen bond changes (red) and free energy stability changes (\(\Delta\Delta G\), Kcal/mol) of the variants from the present study.

Figure 3 Functional studies on Zfh2 knockdown flies (A) Relative Zfh2 mRNA expression levels of the knockdown flies and the UAS-Zfh2-RNAi controls. (B) The body length of Zfh2 knockdown and UAS-Zfh2-RNAi control larvae. (C) Behavior in the Bang-sensitive test; the
three phases observed in Zfh2 knockdown flies were seizure, paralysis, and recovery. (D) Seizure-like behaviors occurred at a higher rate in Zfh2 knockdown flies ($tub\text{-}Gal4 > UAS\text{-}Zfh2\text{-}RNAi$) than in the UAS-Zfh2-RNAi line. (E) The recovery time from seizure-like behaviors of Zfh2 knockdown flies was longer than that of the controls.

Figure 4 Zfh2 knockdown induces increased neural excitability in projection neurons. (A) Whole-cell recording in the fly brain. (B) Representative traces of projection neuron sEPSPs in Canton-s wild-type (WT) flies and Zfh2 knockdown flies. (C) The frequency of sEPSPs was significantly higher in Zfh2 knockdown flies than in wild-type flies. (D) There was no difference in the amplitude of sEPSPs between Zfh2 knockdown flies and wild-type flies.

Figure 5 The temporal expression profile of ZFHX3 orthologs. (A) Schematic illustration of the developmental stages of Drosophila melanogaster (left) and the temporal expression of Zfh2 in flies (right). The mRNA levels of Zfh2 were examined by RT-qPCR. The Zfh2 mRNA levels were normalized to the mRNA levels of the third instar larvae. (B) Schematic illustration of the developmental stages of mice (left) and the temporal expression of Zfhx3 in the frontal cortex of mice (right). The Zfhx3 mRNA levels were normalized to the mRNA levels of fetal mice. (C) Temporal expression pattern of ZFHX3 in the human brain. RPKM, reads per kilobase per million mapped reads.
Table 1. Clinical features of the individuals with ZFHX3 variants

<table>
<thead>
<tr>
<th>Case</th>
<th>Variants (NM_006885)</th>
<th>Sex</th>
<th>Age</th>
<th>Onset age</th>
<th>Sz course</th>
<th>Sz-free duration</th>
<th>Effective AEDs</th>
<th>EEG</th>
<th>Brain MRI</th>
<th>Development</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c.314C>T/p.Pro105Leu</td>
<td>M</td>
<td>juvenile</td>
<td>childhood</td>
<td>sGTCS, 1-2 times/yr</td>
<td>1 yr</td>
<td>-</td>
<td>Bilateral spike-slow waves with frontal dominance</td>
<td>Normal</td>
<td>Normal</td>
<td>PE</td>
</tr>
<tr>
<td>2</td>
<td>c.2419G>A/p.Glu807Lys</td>
<td>F</td>
<td>childhood</td>
<td>childhood</td>
<td>sGTCS, 1-5 times/mo</td>
<td>1.5 yr</td>
<td>LTG</td>
<td>Right frontal-centro-temporal sharp-slow waves</td>
<td>Normal</td>
<td>Normal</td>
<td>PE</td>
</tr>
<tr>
<td>3</td>
<td>c.2671T>C/p.Pro3618Gln</td>
<td>M</td>
<td>childhood</td>
<td>toddler</td>
<td>CPS, 2-3 times/yr</td>
<td>1 yr</td>
<td>OXC</td>
<td>Spike-slow waves in bilateral frontal-central area with right dominance</td>
<td>Normal</td>
<td>Normal</td>
<td>PE</td>
</tr>
<tr>
<td>4</td>
<td>c.2666G>A/p.Ala896Thr</td>
<td>M</td>
<td>toddler</td>
<td>infant</td>
<td>Spasms, CPS >10 times/day</td>
<td>2 yr</td>
<td>LEV, LTG</td>
<td>Poly-spikeslow waves</td>
<td>Normal</td>
<td>GDD</td>
<td>Spasms, PE</td>
</tr>
<tr>
<td>5</td>
<td>c.4125_4127del/p.Ala1376del</td>
<td>M</td>
<td>childhood</td>
<td>childhood</td>
<td>Spasms 5-7 times/day for 4 mos; then CPS 0-10 times/day</td>
<td>9 yr</td>
<td>VPA, LEV, LTG</td>
<td>Right frontal spike-slow waves with tendency of generalization</td>
<td>Normal</td>
<td>GDD</td>
<td>Spasms, PE</td>
</tr>
<tr>
<td>6</td>
<td>c.5152A>C/p.Met1718Leu</td>
<td>M</td>
<td>childhood</td>
<td>toddler</td>
<td>FS, 3 times; sGTCS and CPS twice/week; NCSE 2-3 times for 1 yr</td>
<td>6 mo</td>
<td>VPA, PER, LEV</td>
<td>Left frontal, temporal, and occipital 1.5-2 Hz spike-slow waves; Diffused 1.5-2.5 Hz spike-slow waves</td>
<td>Normal</td>
<td>GDD</td>
<td>PE</td>
</tr>
<tr>
<td>7</td>
<td>c.10510G>C/p.Val3504Leu</td>
<td>M</td>
<td>childhood</td>
<td>infant</td>
<td>sGTCS, 2 times for 2 yr</td>
<td>1.5 yr</td>
<td>TPM</td>
<td>Bilateral occipital-temporal sharp-slow waves</td>
<td>Normal</td>
<td>Normal</td>
<td>PE</td>
</tr>
</tbody>
</table>

Abbreviations: AEDs, antiepileptic drugs; CPS, complex partial seizures; GDD, global developmental delay; EEG, electroencephalogram; FS, febrile seizures; LEV, levetiracetam; LTG, lamotrigine; NCSE, nonconvulsive status epilepticus; OXC, oxcarbazepine; PE, partial epilepsy; PER, perampanel; Sz, seizures; sGTCS, secondary generalized tonic-clonic seizures; TPM, topamax; VPA, valproate; mo, month; yr, year