Cost-Effectiveness Analysis of Nirsevimab and RSVpreF Vaccine Prevention Strategies for Respiratory Syncytial Virus Disease: A Canadian Immunisation Research Network (CIRN) Study

Affan Shoukat, PhD;1 Elaheh Abdollahi, PhD;2 Alison P. Galvani, PhD;2 Scott A. Halperin, MD;3 Joanne M. Langley, MD,3 Seyed M. Moghadas, PhD1,*

1 Agent-Based Modelling Laboratory, York University, Toronto, Ontario M3J 1P3, Canada
2 Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT 06520, USA
3 Canadian Center for Vaccinology, IWK Health Centre and Nova Scotia Health Authority, Dalhousie University, Halifax, Nova Scotia B3K 6R8, Canada

* Corresponding author: Seyed M. Moghadas (moghadas@yorku.ca)

Word count: 3390
Abstract

Background: The cost-effectiveness of immunisation strategies with a long-acting monoclonal antibody (nirsevimab) and a protein-based vaccine (RSVpreF) for protecting infants from Respiratory Syncytial Virus (RSV)-associated illness remains undetermined in Canada.

Objective: To estimate the health benefits and cost-effectiveness of seasonal immunisation of infants with nirsevimab and year-round vaccination of pregnant women with RSVpreF.

Design: Agent-based simulation model.

Data Sources: Published studies and the Canadian Institute for Health Information.

Target Population: Twelve monthly birth cohorts and pregnant women.

Time Horizon: One year.

Perspective: Healthcare and societal.

Intervention: Administration of nirsevimab to infants and vaccination of pregnant women.

Outcome Measures: Outpatient care, hospitalisation, death, and associated costs.

Results: Using a willingness-to-pay of $50,000 per quality-adjusted life-year gained, we found that immunising the entire Canadian birth cohort with nirsevimab would be cost-effective from a societal perspective for a price-per-dose (PPD) of under $420, with a budget impact of $292,925 per 100,000 population. An alternative strategy of immunising high-risk infants and vaccinating pregnant women would lead to a lower budget impact of $288,776 per 100,000 population with a PPD of $420 and $355 for nirsevimab and RSVpreF, respectively. This strategy would reduce infant mortality by over 89%, significantly higher than 58% achieved through a nirsevimab-only program.

Results of Sensitivity Analysis: PPD for cost-effective programs was sensitive to the target population among infants and vaccination of pregnant women.

Limitations: No clinical trials have reported efficacy estimates of nirsevimab for infants born at less than 29 weeks of gestation.

Conclusion: Immunisation of infants under 6 months of age and vaccination of pregnant women could be a suitable replacement for palivizumab to protect infants during their first RSV season.

Primary Funding Source: Canadian Immunisation Research Network and Canadian Institutes of Health Research.
Introduction

Respiratory Syncytial Virus (RSV) is the most common cause of lower respiratory tract illness (LRTI) in children under five years old worldwide, with the highest burden in the first six months of life. The direct (e.g., outpatient and inpatient care) and indirect (e.g., loss of productivity, parental costs, and psychological health) costs of RSV disease among infants are substantial.

In the absence of a preventive vaccine, efforts to curb the burden of RSV among infants has mainly relied on passive immunisation with the anti-RSV monoclonal antibody palivizumab, given in five monthly doses to high-risk infants under 6 months of age during the local RSV epidemic season. With the advent of structure-based vaccinology, vaccine candidates are being developed across active- and passive-immunising platforms with the aim of protecting infants directly or through maternal immunisation. For instance, nirsevimab is a long-acting monoclonal antibody (LAMA) to the RSV fusion protein that has been recently authorised for single dose administration to infants in Europe and Canada, and is expected to replace palivizumab. Another strategy to prevent RSV-associated illness in infants in the first six months of life is immunisation of pregnant women with a protein-based vaccine (RSVpreF), providing passive immunisation of the newborn through transplacental antibody transfer. With the availability of these products, the landscape of RSV prevention and disease burden is likely to change. However, cost-effectiveness of infant and maternal immunisation programs would play an important role in recommendations for use, such as providing LAMA to the entire birth cohort during the RSV season, targeting high-risk infants only, vaccinating pregnant women, or a combination of these strategies.

In this study, we aimed to conduct a comprehensive cost-effectiveness analysis of RSV infant and maternal immunisation strategies based on population demographics in the Canadian south. We developed a discrete-event agent-based model of RSV outcomes and calculated the incremental net-monetary benefit (INMB), incremental cost-effectiveness ratio (ICER), and the budget impact associated with immunisation programs. Accounting for the efficacy of nirsevimab and RSVpreF against RSV-related infant outcomes, as well as direct and indirect costs of health outcomes and program implementation, we performed cost-effectiveness analyses from both the publicly funded health system (referred to as healthcare) and societal perspectives.

Methods

Model structure and study population

We developed a discrete-event agent-based simulation model with a population of 100,000 individuals and demographic distributions reflecting the 2021 census data for Ontario. The model population was stratified into several age groups, including infants 0 to 11 months old, children aged 1 to 4 and 5 to 17 years, adults aged 19 to 49, 50 to 64, and 65 years or older. Household types included single parent or couples with 1 child, 2 children, and 3 or more children.
Twelve monthly birth cohorts were followed through the first year of their life, for a total 1088 infants. We categorised live births as preterm with <29 weeks of gestational age (wGA), 29-32 wGA, 33-36 wGA, and full-term with 37+ wGA. Preterm infants comprised ~9% of the cohort, distributed as 7%, 17%, and 76% in the corresponding wGA. We also considered chronic lung disease (CLD) and congenital heart disease (CHD) as two major risk factors associated with RSV disease outcomes. The rate of CLD was set to 28.1%, 4%, and 2.4% for wGA <29, 29–32, and 33-36, respectively, among preterm infants only. For CHD, we used an overall prevalence rate of 12.3 per 1000 live births in Canada.

RSV-related outcomes

The model was parameterized with estimates of the burden of RSV disease in different age groups. The annual incidence of medically-attended (MA) RSV cases was sampled from the range 1001 – 2439 per 100,000 population. In our study, MA RSV refers outpatient care (i.e., office visit or emergency department (ED) visit without hospital admission) or inpatient care (i.e., hospital admission in paediatric ward or intensive care unit, ICU). The sampled annual incidence was increased by 15% - 30% to reflect non-MA RSV episodes due to upper or mild lower respiratory illness. The total incidence was distributed among different age groups according to seasonality distribution (Appendix, Figures A1, A2, Table A1). We considered the beginning of October as the start of RSV season.

We allowed for a maximum of two MA RSV events within the first year of life, with a minimum time-interval of three months between the two events if the second episode occurred. The duration of symptomatic RSV disease was sampled between 5 to 8 days. Hospitalisation rates for infants with MA RSV LRTI were based on their age at incidence as well as their wGA (Appendix: Figure A3, Table A2). The likelihood of hospitalisation increased by 1.9 and 2.2 times for infants with CLD and CHD, respectively, compared to infants without these conditions (Appendix).

Among hospitalised cases, ICU admission varied in the range 41.3% – 62.1%, 13.1% – 53.6%, and 5.4% – 30.0% among infants of ≤32, 33–35, and ≥36 wGA, respectively. Duration of hospital stay was sampled from Gamma distributions, with a mean of 6.1 and 9.5 days in paediatric ward and ICU (Table 1), respectively, for infants of ≤32 wGA. For infants born at 33 or higher wGA, we sampled the duration of stay in paediatric ward and ICU from Gamma distributions with a mean of 3.9 and 5.2 days, respectively (Table 1). The probability of experiencing a wheezing episode post hospitalisation was 0.31 during the first year of life. The duration of a wheezing episode ranged from 5.2 to 9.8 days. RSV-related mortality for hospitalised infants without CLD or CHD varied in the range 0.36% – 3.3%, 0.02% – 1.82%, and 0.02% – 1% for infants of ≤32, 33-35, and 36 or higher wGA, respectively. For hospitalised infants with CLD and CHD, mortality rates ranged 3.5% – 5.1% and 3.4% – 5.3%, respectively.

Costs of RSV-related outcomes

Direct costs borne by the healthcare system included office visit, ED visit, hospitalisation, as well as 30 days’ follow up for hospitalised infants (Table 1). Indirect costs included out-of-pocket
expenses and loss of productivity by parents. Out-of-pocket expenses for families with hospitalised infants were estimated at $118 per day for the duration of hospital stay to account for transportation, over-the-counter medications, meals, child care and other costs.4 Costs related to workdays lost of working parents (with an average absenteeism of 49%)4 were calculated using the per capita personal income of $53,675 per year (i.e., $147 per day) in Ontario.35 We assumed total workdays lost were equal to the length of hospital stay for hospitalised infants and one day for infants who required outpatient care.4 We considered the recommended 1.5% discounting rate by the Canadian Agency for Drugs and Technologies in Health,36 with an average lifespan of 82 years. Each RSV death was estimated to have a total monetary loss of $2,292,572 and quality-adjusted life-year (QALY) loss of 45.3. All costs were converted and inflated to Canadian dollars in 2023.

\textit{Infant and maternal RSV prevention strategies}

Although year-round RSV activity was implemented in the model according to reported incidence and outcomes (Appendix, Figure A1),6,18 we considered infant immunisation with nirsevimab to start in October, corresponding to the start of RSV season, for a period of 6 months (Appendix, Figure A4). Infants born off-season were immunised at the start of the RSV season following their birth. The program options for passive immunisation with nirsevimab evaluated in this study included: (i) preterm infants under 33 wGA (L1); (ii) all preterm infants (L2); (iii) all preterm infants and full-term infants born during RSV season (L3); and (iv) the entire birth cohort (L4). The coverage for these immunisation programs was set to 100\% for the base-case analysis, but reduced to 80\% for the secondary analysis (Appendix, Sections 6-9). The efficacy of a single dose of nirsevimab against MA RSV-LRTI is estimated at 79.5\% (95\% CI: 65.9\% to 87.7\%) through 150 days post-dose.37 Efficacies against hospitalisation and very severe RSV LRTI (used against ICU admission in our model) are estimated at 77.3\% (95\% CI: 50.3\% to 89.7\%) and 86\% (95\% CI: 62.5\% to 94.8\%), respectively.37 We employed a sigmoidal decay to temporally disaggregate the constant efficacy values for up to 10 months,38 while maintaining the same mean efficacy for the first 5 months as estimated in clinical trials (Appendix, Figure A5).

Maternal immunisation (MI) was implemented as a year-round program, with vaccination of pregnant women who are in their last trimester before gestation week 33 (Appendix, Figure A4). In the base-case analysis, vaccination coverage was set to 100\%. For the secondary analysis, we assumed a 60\% coverage based on estimates of vaccination coverage against influenza and pertussis in pregnant women in 2021 (Appendix).39 The efficacy of RSVpreF is estimated at 57.1\% (CI: 14.7\% to 79.8\%) against MA RSV LRTI and 81.8\% (CI: 40.6\% to 96.3\%) against severe MA RSV LRTI (i.e., hospitalisation) for the first 90 days of life.11,40 Similar to nirsevimab, we used a sigmoidal decay to determine temporal vaccine efficacy over 10 months, with generating the same mean efficacy as estimated in clinical trials for the first 3 months after birth (Appendix, Figure A5).

To evaluate the combination of LAMA and MI, we implemented a program (LMI) that administers nirsevimab to palivizumab-eligible infants during RSV season in addition to vaccinating year-round pregnant women. Current recommendation for use of palivizumab
includes preterm infants ≤32 wGA and selected high-risk infants of ≥33 wGA.20 We therefore assumed that LMI includes infants ≤32 wGA and those of ≥33 wGA with a CLD or CHD condition.

\textit{Costs of RSV prevention strategies}

We varied the single-dose cost of both nirsevimab and RSVpreF between $50 and $1000 to determine the price range within which an immunisation program would be cost-effective. Costs associated with dose administration was set to $50 for both infant and maternal immunisation.

\textit{Cost-effectiveness analysis}

To determine whether a program was cost-effective for a given willingness-to-pay (WTP) threshold, we calculated the net monetary benefit by \(\text{NMB} = \Delta E \times \text{WTP} - \Delta C\), where \(\Delta E\) represents QALYs gained using intervention compared to no intervention, and \(\Delta C\) is the incremental costs.41 A program was considered cost-effective if it resulted in a positive NMB. In the main analysis, we calculated the monetary value of health gained using a WTP threshold of $50,000.42 In secondary analyses (\textit{Appendix, Sections 4, 5}), we considered a lower threshold of $30,00043 and a higher threshold corresponding to the per capita gross domestic product of $70,000 in Canada. We also estimated the ICER for each intervention as \(\Delta C / \Delta E\), which provides a metric to measure the additional costs required to gain one QALY. Total QALYs were calculated based on disutility weights of RSV-related outcomes sampled from their respective distributions (\textit{Table 1}).44–47

We considered both healthcare and societal perspectives for cost-effectiveness analysis. The healthcare perspective included all direct medical costs of RSV-related disease and the immunisation program during the first year of life. The societal perspective included all direct and indirect costs, including productivity loss of parents and the monetary loss of life due to infant mortality.

\textit{Model Implementation}

The model was simulated stochastically using Monte-Carlo sampling for a total of 1000 realisations. All parameters were sampled from their respective distributions, thus probabilistically accounting for the sensitivity of the model outcomes with respect to input parameters. For parameters for which a statistical distribution was unknown, we used Latin Hypercube Sampling48 to sample from the estimated ranges. Given the uncertainty around point estimates, we employed a nonparametric, bias-corrected and accelerated bootstrap technique with 1000 replicates to construct 95\% credible intervals for the mean of estimates scenarios evaluated. The computational model is available at https://github.com/affans/rsv_costeffectiveness

\textit{Ethics and guidelines}

This study used publicly available estimates and data sources and thus no ethics approval was required. We followed the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) reporting guideline.49
Role of the funding source

This study was funded by the Canadian Institutes of Health Research, which had no role in the study design, input collection or analysis, interpretation of results, or decision to submit the manuscript for publication.

Results

Health outcomes

We estimated that L1 would reduce RSV-related inpatient care by 3.8% (95% Credible Interval [CrI]: 3.4% to 4.2%) and outpatient care by 1.2% (95% CrI: 1.2% to 1.3%) (Figure 1A). Program extension to all preterm infants in L2 provided a marginal increase to the reduction of inpatient care at 8.4% (95% CrI: 7.8% to 8.9%) and outpatient care at 5.2% (95% CrI: 5.1% to 5.3%). L3 was associated with a reduction of 59.8% (95% CrI: 59.0% to 60.7%) inpatient care and 38.8% (95% CrI: 38.7% to 38.9%) outpatient care. LAMA administration to the entire birth cohort in L4 reduced inpatient care by 75.7% (95% CrI: 74.9% to 76.5%), outpatient care by 62.4% (95% CrI: 62.2% to 62.6%). The reduction in RSV-related infant mortality was 17.5% (95% CrI: 6.8% to 29.0%) in L1, 34.5% (95% CrI: 22.2% to 47.0%) in L2, 53.2% (95% CrI: 40.0% to 65.4%) in L3, and 58.0% (95% CrI: 45.2% to 70.1%) in L4.

MI was estimated to reduce RSV-related inpatient care by 75.7% (95% CrI: 75.0% to 76.5%), outpatient care by 34.6% (95% CrI: 34.5% to 34.8%), and death by 79.6% (95% CrI: 68.7% to 89.1%) (Figure 1A).

For the immunisation program combining administration of nirsevimab and RSVpreF (LMI), we estimated a reduction of 76.3% (95% CrI: 75.6% to 77.1%) for inpatient care, 35.7% (95% CrI: 35.6% to 35.9%) for outpatient care, and 89.1% (95% CrI: 80.6% to 95.8%) for death, compared with no intervention (Figure 1B).

Cost-effectiveness of standalone nirsevimab and RSVpreF prevention programs

We determined the price per dose (PPD) of nirsevimab below which the standalone LAMA immunisation programs were cost-effective at the WTP of $50,000 per QALY gained (Table 2). From a healthcare perspective, the maximum PPD for a positive NMB was $700 in L1, and reduced to $325 in L2, $265 in L3, and $195 in L4 (Figure 2C). Corresponding to these PPDs, the probabilities of L1, L2, L3, and L4 being cost-effective were 0.50, 0.65, 0.91, and 0.76, respectively. For MI, the maximum PPD was $125 (Figure 2C), at which the program was cost-effective with the probability of 1.0.

From a societal perspective (Table 2), L1 and L2 resulted in a positive NMB for any PPD in the range of $50 to $1,000 at the WTP threshold of $50,000 (Figure 2D). With negative ICER values, L1 was a cost-saving strategy. Under L3 and L4, the maximum PPD was $615 and $420, respectively. The probabilities of LAMA programs being cost-effective at the maximum PPD were 0.98, 0.52, and 0.49 in L2, L3, and L4, respectively. MI was cost-effective for a PPD up to $380, with the probability of 0.56.
Cost-effectiveness of a combined nirsevimab and RSVpreF prevention program

From a healthcare perspective, LMI was cost-effective for a combination of PPD for nirsevimab and RSVpreF (Table 3). At PPD of $700 for nirsevimab, LMI was cost-effective (with NMB>0) for a PPD of $100 for RSVpreF, with cost-effective probability of 1.0 at the WTP threshold of $50,000. Reducing PPD for nirsevimab to $195, LMI was cost-effective with the probability of 0.65 at a PPD of $125 for RSVpreF (Table 3).

From a societal perspective, LMI with a PPD of $1,000 for nirsevimab and $335 for RSVpreF was cost-effective with the probability of 0.92 (Table 3). LMI was also cost-effective for a combination PPD of $420 and $355 for nirsevimab and RSVpreF, respectively, with the probability of 0.91.

Budget impact

The total number of nirsevimab doses per 100,000 population was 22, 91, 578, and 1088 in L1, L2, L3, and L4, respectively (Figure 2A). The annual budget impact of these interventions to the healthcare system would be $1,682 in L1, $4,886 in L2, $29,912 in L3, and $48,125 in L4 at the maximum PPD estimated for each program to be cost-effective (Table 2). For MI, the total number of RSVpreF vaccine doses was 1088 per 100,000 population (Figure 2A), resulting in a total annual budget impact of $24,748 to the healthcare system. From a societal perspective (Table 2), the annual budget impact was estimated at $8,207, $66,238, $232,459, and $292,925 for PPD of $1,000 in L1, $1,000 in L2, $615 in L3, and $420 in L4, respectively. The annual budget impact for MI with a PPD of $380 would be $302,188.

For the combined immunisation program, LMI was associated with an annual budget impact of $21,489 per 100,000 population with PPD of $700 and $100 for nirsevimab and RSVpreF, respectively (Table 3). When the PPD for nirsevimab and RSVpreF changed to $195 and $125, respectively, the budget impact of LMI was estimated at $30,378. From a societal perspective (Table 3), the budget impact of MLI was estimated at $288,047 with a PPD of $1,000 and $335 for nirsevimab and RSVpreF, respectively. Changing the corresponding PPDs to $420 and $355 (Table 3) resulted in a similar budget impact of $288,776.

Discussion

In this study, we evaluated the cost-effectiveness of infant and maternal immunisation programs against RSV disease using nirsevimab and RSVpreF as new preventive measures. Seasonal administration of nirsevimab to the entire birth cohort could be cost-effective at a sufficiently low PPD; however, it may entail a substantial incremental costs and annual budget impact. We found that a combined program of administering nirsevimab to palivizumab-eligible infants along with maternal vaccination outperformed an extended nirsevimab program in reducing RSV-related mortality among infants, with a lower annual budget impact. Our results remained qualitatively consistent at different WTP thresholds, with target population being an important factor in determining the range of PPD for cost-effective immunisation strategies.
A number of previous studies have evaluated the cost-effectiveness of prevention strategies against RSV disease in infants. These studies have been conducted in different population settings including the United States, England and Wales, Norway, and low- and middle-income countries, indicating the potential for cost-effective programs to replace palivizumab. However, no previous work has evaluated cost-effectiveness of these interventions in Canada, except one study that is specific to Nunavik, a small population in the Canadian Arctic region. Our study provides a comprehensive cost-effectiveness analysis of two new RSV preventive measures in a population setting reflective of the Canadian south.

Published studies have employed different approaches including cohort, decision-tree, and transmission dynamic models. Our analysis is based on a discrete-event simulation model, following a birth cohort up to one year of age, without consideration of RSV transmission dynamics. Employing transmission dynamic models could allow for the evaluation of population-wide benefits of immunisation programs. However, since the effect of nirsevimab and RSVpreF in reducing RSV infection or transmission is not yet known, estimating the indirect benefits of immunisation, including herd effects, may be difficult.

A strength of our study is the stratification of the infant population by wGA and critical risk factors of CLD and CHD, which allowed us to utilise available estimates associated with RSV outcomes in infants. However, our model has several limitations. First, for efficacy of nirsevimab against RSV disease outcomes, we relied on reported estimates for infants of ≥29 wGA. If this efficacy among preterm infants <29 wGA is lower than those ≥29 wGA, the maximum PPD for cost-effectiveness may be lower than our estimates. Second, the efficacy of a single dose of nirsevimab may also depend on weight-based dosing. We assumed that PPD is not affected by the dosage. Finally, the model includes only CLD and CHD as risk factors; however, other risk factors have been documented, such as cystic fibrosis, Down syndrome, and immunocompromise, which were not considered in our analysis due to the lack of specific estimates. Furthermore, the National Advisory Committee on Immunisation recommends only hemodynamically significant CHD infants for use of palivizumab. Although the proportion of CHD infants who are hemodynamically significant could be as high as 79% (95% CI: 62% to 91%), in the absence of such estimates in Canada, we considered all CHD infants in the basecase analysis and 80% of them in the secondary analysis of combined nirsevimab and RSVpreF immunisation program.

In conclusion, our study shows that prevention strategies against RSV disease in infants using nirsevimab and RSVpreF could be cost-effective and provide a suitable alternative to the current standard of practice with palivizumab. Passive immunisation of all infants experiencing their first RSV season would require a PPD under $420 to become cost-effective. However, this program may incur substantial budget impact to the healthcare system. A combined strategy of maternal immunisation with administration of nirsevimab to palivizumab-eligible infants could have a lower budget impact, while providing a significantly higher reduction of RSV-related infant mortality.
Conflict of interest. JM Langley's institution, Dalhousie University, has received funds for clinical trials conducted by the Canadian Center for Vaccinology from GSK, Janssen, Sanofi, Immunovaccine, Inventprise, Merck, Pfizer, VIDO, VBI and Entos. SM Moghadas previously had advisory roles for Janssen Canada and Sanofi for cost-effectiveness of their products.

Authors, contributions. SMM and JML conceived the study; SMM design the model framework; SMM and EA collected input parameters; AS developed the computational model and performed simulations; SMM wrote the first draft of the manuscript; SAH and APG provided insights into the analysis and interpretation of the results; all authors contributed to the writing.

References

7. National Advisory Committee on Immunization (NACI), Moore, D., Sinilaite, A. & Killikelly, A. Summary of the National Advisory Committee on Immunization (NACI) statement update on the recommended use of palivizumab to reduce complications of respiratory syncytial virus

35. Statistics Canada. Gross domestic product (GDP) at basic prices, by industry, provinces and territories. doi:10.25318/3610040201-ENG.

57. Bergman, G., Hærskjold, A., Stensballe, L. G., Kieler, H. & Linder, M. Children with hemodynamically significant congenital heart disease can be identified through population-

59. Canadian Institute for Health Information. *Hospital spending.*

60. CIHI: Canadian Institute for Health Information. *Care in Canadian ICUs.* 1–36 (2016).
Table 1. Model parameters used for cost-effectiveness analysis. All costs are inflated to 2023 Canadian dollars.

<table>
<thead>
<tr>
<th>wGA(^a)</th>
<th>LOS(^b) in paediatric ward: mean, distribution</th>
<th>LOS(^b) in ICU: mean, distribution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 32</td>
<td>6.1, Gamma(12.71,0.48)</td>
<td>9.5, Gamma(20.22,0.47)</td>
<td>20,23,58</td>
</tr>
<tr>
<td>≥ 33</td>
<td>3.9, Gamma(6.08,0.64)</td>
<td>5.2, Gamma(12.38,0.42)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RSV-related outcome</th>
<th>Disutility weights, mean</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without RSV</td>
<td>0.05</td>
<td>Beta(19.2, 364.6)</td>
</tr>
<tr>
<td>Outpatient</td>
<td>0.16</td>
<td>Beta(53.6, 281.4)</td>
</tr>
<tr>
<td>Paediatric ward</td>
<td>0.41</td>
<td>Beta(109.7, 157.9)</td>
</tr>
<tr>
<td>ICU</td>
<td>0.60</td>
<td>Beta(159.4, 106.2)</td>
</tr>
<tr>
<td>Wheezing</td>
<td>0.04</td>
<td>Beta(14.1, 338.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Direct healthcare costs</th>
<th>Unit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Office visit</td>
<td>$229</td>
<td>Per visit</td>
</tr>
<tr>
<td>ED visit</td>
<td>$342</td>
<td>Per visit</td>
</tr>
<tr>
<td>Paediatric ward</td>
<td>$1,491</td>
<td>Per diem</td>
</tr>
<tr>
<td>ICU</td>
<td>$3,638</td>
<td>Per diem</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age at hospitalisation</th>
<th>30 days’ follow up costs</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>< 29 days</td>
<td>$1,791</td>
<td>Per hospitalised infant</td>
</tr>
<tr>
<td>29–89 days</td>
<td>$1261</td>
<td></td>
</tr>
<tr>
<td>90 days to < 6 months</td>
<td>$423</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Model estimates of cost-effectiveness analyses associated with LAMA and maternal immunisation programs as standalone prevention strategies from healthcare and societal perspectives at the WTP of $50,000. All strategies were compared to the baseline with no intervention.

<table>
<thead>
<tr>
<th>Prevention strategy</th>
<th>Maximum PPD, $</th>
<th>Incremental costs, $ (95% CrI)</th>
<th>QALYs gained (95% CrI)</th>
<th>ICER, $/QALY (95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>700</td>
<td>1,682 (356 to 2,969)</td>
<td>0.034 (0.028 to 0.041)</td>
<td>49,798 (10,083 to 95,492)</td>
</tr>
<tr>
<td>L2</td>
<td>325</td>
<td>4,856 (3,309 to 6,343)</td>
<td>0.104 (0.096 to 0.113)</td>
<td>46,901 (31,108 to 63,114)</td>
</tr>
<tr>
<td>L3</td>
<td>265</td>
<td>29,881 (27,271 to 32,463)</td>
<td>0.638 (0.626 to 0.651)</td>
<td>46,850 (42,203 to 51,505)</td>
</tr>
<tr>
<td>L4</td>
<td>195</td>
<td>48,109 (44,701 to 51,581)</td>
<td>0.991 (0.975 to 1.008)</td>
<td>48,546 (44,529 to 52,681)</td>
</tr>
<tr>
<td>M1</td>
<td>125</td>
<td>24,737 (21,667 to 27,767)</td>
<td>0.602 (0.588 to 0.617)</td>
<td>41,112 (35,504 to 46,818)</td>
</tr>
<tr>
<td>Societal perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>1000</td>
<td>-18,999 (-37,818 to -2,556)</td>
<td>0.531 (0.209 to 0.902)</td>
<td>-35,780 (-42,004 to -12,552)</td>
</tr>
<tr>
<td>L2</td>
<td>1000</td>
<td>9,142 (14,380 to 31,445)</td>
<td>1.098 (0.640 to 1.562)</td>
<td>8,327 (-9,156 to 49,165)</td>
</tr>
<tr>
<td>L3</td>
<td>615</td>
<td>106,951 (78,357 to 133,509)</td>
<td>2.177 (1.664 to 2.736)</td>
<td>49,125 (28,547 to 81,032)</td>
</tr>
<tr>
<td>L4</td>
<td>420</td>
<td>133,404 (103,201 to 161,389)</td>
<td>2.669 (2.115 to 3.267)</td>
<td>49,990 (31,634 to 76,255)</td>
</tr>
</tbody>
</table>
Table 3. Model estimates of cost-effectiveness analyses associated with the combined LAMA and maternal immunisation program from healthcare and societal perspectives at the WTP of $50,000. All strategies were compared to the baseline with no intervention.

<table>
<thead>
<tr>
<th>Nirsevimab PPD, $</th>
<th>RSVpreF PPD, $</th>
<th>Incremental costs, $ (95% CrI)</th>
<th>QALYs gained (95% CrI)</th>
<th>ICER, $/QALY (95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthcare perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>100</td>
<td>21,447 (18,409 to 24,492)</td>
<td>0.622 (0.607 to 0.637)</td>
<td>34,491 (29,288 to 39,912)</td>
</tr>
<tr>
<td>195</td>
<td>125</td>
<td>30,369 (27,252 to 33,405)</td>
<td>0.622 (0.607 to 0.637)</td>
<td>48,838 (43,279 to 54,550)</td>
</tr>
<tr>
<td>Societal perspective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>335</td>
<td>111,100 (74,072 to 145,998)</td>
<td>3.204 (2.512 to 3.938)</td>
<td>34,643 (18,804 to 57,971)</td>
</tr>
<tr>
<td>420</td>
<td>355</td>
<td>111,879 (75,574 to 146,746)</td>
<td>3.204 (2.512 to 3.938)</td>
<td>34,894 (19,230 to 58,518)</td>
</tr>
</tbody>
</table>
Figure 1. Overall reduction of RSV-related inpatient care (paediatric ward and ICU admissions), outpatient care (office visit and ED visit), and death among infants under one year of age for: (A) standalone immunisation programs with nirsevimab (L1, L2, L3, L4) and RSVpreF (MI); and (B) combined nirsevimab and RSVpreF immunisation program (LMI), compared to the scenario without any prevention strategy.
Figure 2. Required doses of nirsevimab and RSVpreF per 100,000 population for prevention strategies (A), with total purchasing costs (B), and the estimated net monetary benefit (NMB) as a function of price per dose from healthcare (C) and societal (D) perspectives at the WTP threshold of $50,000.