
 
 

1 

The principal component-based clinical aging clock (PCAge) identifies 

signatures of healthy aging and provides normative targets for clinical 

intervention 

 

 

 

Sheng Fong1,2, Kamil Pabis3,4,5, Djakim Latumalea3,4,5, Nomuundari Dugersuren6, Maximilian 

Unfried3,4,5, Nicholas Tolwinski6,7, Brian Kennedy3,4,5, Jan Gruber3,4,5,6* 

 

 

 

1 Department of Geriatric Medicine, Singapore General Hospital, Singapore 

2 Clinical and Translational Sciences PhD Program, Duke-NUS Medical School, Singapore 

3 Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National 

University of Singapore, Singapore 

4 Center for Healthy Longevity, National University Health System, Singapore 

5 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 

Singapore 

6 Science Division, Yale-NUS College, Singapore 

7 Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore 

 

 

* Corresponding author 

E-mail: bchjg@nus.edu.sg (JG)  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292604doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.07.14.23292604
http://creativecommons.org/licenses/by-nd/4.0/


 
 

2 

Abstract 

Clinical healthy aging recommendations are disease-centric and reactive rather than focusing on 

holistic, organismal aging. In contrast, biological age (BA) estimation informs risk stratification by 

predicting all-cause mortality, however current BA clocks do not pinpoint aging mechanisms making it 

difficult to intervene clinically. To generate actionable BA clocks, we developed and validated a principal 

component (PC)-based clinical aging clock (PCAge) that identifies signatures (PCs) associated with 

healthy and unhealthy aging trajectories. We observed that by intervening in PC-specific space, 

angiotensin-converting-enzyme inhibitors (ACE-Is) or angiotensin receptor blockers (ARBs) normalize 

several modifiable clinical parameters, involved in renal and cardiac function as well as inflammation. 

Proactive treatment with ACE-I/ARBs appeared to significantly reduce future mortality risk and 

prevented BA acceleration. Finally, we developed a reduced BA clock (PC_mAge), based directly on 

PCAge, which has equivalent predictive power, but is optimized for immediate application in clinical 

practice. Our Geroscience approach points to mechanisms associated with BA providing targets for 

preventative medicine to modulate biological process(es) that drive the shift from healthy functioning 

toward aging and the eventual manifestations of age-related disease(s).   
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Introduction 

While prevention is proverbially better than the cure, current clinical recommendations promoting 

healthy aging focus on specific diseases and react to symptoms rather than focusing on organismal 

age1. Age is the most important risk factor determining individual risk of morbidity and mortality from 

most non-communicable diseases, hence the true biological age (BA) of an individual generally differs 

from chronological age (CA)2. Attempts to construct classifiers (biological aging clocks) to determine 

BA from observable physical features (biomarkers) have a long history2-4. These can be constructed 

based on a wide range of biological features, including clinical parameters5-13, DNA methylation 

(DNAm)14-21, and -omics data22-26.  

 

In addition to the biological feature space used, the operational definition of BA differs between 

approaches. Historically, BA is defined as the age at which the test subject’s physiology (as determined 

by its position in feature space) would be approximately normal for members of the reference cohort27,28. 

First-generation DNAm clocks follow this approach14,17, however, while such clocks have attained 

impressive accuracy in determining BA, they are generally less powerful predictors of future morbidity 

and mortality19,29. 

 

Recently, second-generation clocks have been constructed, aiming to directly predict future mortality 

from biological parameters18,19,30-32. Second-generation clocks define true BA as “Gompertz age”, or the 

age commensurate with an individual’s future risk of dying from all intrinsic causes19. Second-generation 

clocks share similarities with traditional clinical risk markers, such as the Atherosclerosis Cardiovascular 

Disease (ASCVD) score33, but differ in that they attempt to predict all-cause mortality better reflecting 

the high degree of interconnectivity between organ system and disease etiology10,18,19,25,30-32. Healthy 

aging is more than simply the absence of specific diseases, and unlike existing clinical risk markers, 

knowledge of true BA also allows identification of individuals likely to remain free from age-dependent 

morbidity and mortality for years to come, thereby providing normative targets for clinical intervention 

and individual guidance for the promotion of healthy aging.  

 

Second-generation clock construction requires large cohort data with subjects for whom both data on 

biological features and decades of disease and mortality follow-up have been collected34,35. For 
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standard clinical chemistry and physiological features, datasets meeting these criteria have recently 

become available, enabling generation of “clinical clocks” (CCs), which predict future mortality and 

morbidity directly from clinical features and biomarkers6,16,18,19,30,36-38. Equivalent historic data are not 

yet available for most types of -omics data, including DNAm. Current second-generation DNAm clocks 

have therefore been trained to either approximate BA predictions of CCs or to approximate levels of the 

underlying protein biomarkers themselves19-21,30.  

 

In settings where the relevant clinical features and blood markers are readily accessible, CCs have 

distinct advantages, not least because they can be evaluated in real-time, potentially informing patient 

care directly. The clinical and physiological features on which CCs are built also often have intrinsic and 

well-established biological and pathophysiological meaning, making their findings comparatively easy 

to interpret and act upon, clinically. The development and validation of more powerful CCs, as well as 

tools facilitating their clinical interpretation and application, should therefore be a priority. Our study 

focused on constructing improved CCs utilizing large clinical datasets and dimensionality reduction by 

principal component analysis (PCA).   
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Results 

PCAge predicts biological age 

We first applied PCA to a large set of features using the National Health and Nutrition Examination 

Survey (NHANES) 1999-2000 cohort as a training dataset, which was initially composed of 1,476 males 

and 1,536 females aged 40-84 years containing data from health-related questions, physiological and 

laboratory measurements without pre-selection. Individuals with missing values in the selected 

parameters were then removed, resulting in a final training dataset comprising 165 clinical parameters 

for 923 males and 852 females. The first 18 PCs, which accounted for 99% of the overall variance in 

the data including CA, were then selected as covariates in a Cox proportional hazards regression model 

to develop separate BA clocks (PCAge) for males and females. We then tested the PCAge clock in a 

separate testing cohort extracted from the NHANES 2001-2002 cohort. This cohort initially comprised 

1,619 males and 1,631 females aged 40-84 years, with complete data available for 1,094 males and 

942 females. The characteristics of the study participants for both training and testing cohorts are shown 

in Supplementary Table 1.  

 

As expected, PCAge was highly correlated with CA for both males and females (Fig. 1a). PCAge 

therefore captures the known dependence of all-cause mortality with CA. However, there were 

substantial residuals between CA and PCAge (PCAge Deltas). In both the training and testing cohorts, 

PCAge was significantly, negatively correlated with telomere length (Fig. 1b) and gait speed (Fig. 1c), 

which are markers of BA and physical performance, respectively. Importantly, beyond the age-

correlation itself, residuals in PCAge were directly predictive of residuals from age-adjusted telomere 

length and gait speed. Compared to control, the biologically younger subjects with large negative 

PCAge Deltas had significantly longer telomeres than expected for their CA (Fig. 1d) and walked 

significantly faster than expected (Fig. 1e). By contrast, biologically older subjects, with the largest 

positive PCAge Deltas had significantly shorter Delta Telomere lengths (Fig. 1d) and significantly slower 

Delta Gait speeds (Fig. 1e). These data demonstrate that PCAge, despite originally being trained on 

survival only, is predictive of molecular and physiological parameters known to depend on BA.  
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Fig. 1: PCAge predicts BA in males and females. a, Scatter plot and linear regression curves of CA 
versus PCAge for males (blue dots) and females (red dots). Points that reside above each line depict 
subjects who were biologically older than their corresponding CA, while points that reside below each 
line depict subjects who were assigned BAs lower than their corresponding CA. PCAge Delta is the age 
difference between a subject’s BA (PCAge) and CA. A positive PCAge Delta indicates a biologically 
older person while a negative PCAge Delta indicates a biologically younger person. PCAge was highly 
correlated with CA for both males (blue symbols, R2=0.77, P<0.001) and females (red symbols, 
R2=0.81, P<0.001) in the test cohort. b-c, Scatter plots and linear regression curves of PCAge against 
telomere length and gait speed, respectively. In both the training and testing cohorts, PCAge was 
significantly negatively correlated with telomere length (Pearson correlation coefficient=-0.31, R2=0.10, 
P<0.001, n=3,260) and gait speed (Pearson correlation coefficient=-0.47, R2=0.14, P<0.001, n=2,682). 
d-e, Violin plots of PCAge Delta categorized into younger, control and older groups plotted against the 
delta scores for telomere length and gait speed. The control group represented the middle 50% of all 
subjects, and hence, the reference group, to which the younger (best 25% quartile) and older (worst 
25% quartile) groups were compared by two-sided t-tests. Compared to control, the biologically younger 
subjects with large negative (bottom 25% quartile) PCAge Deltas had significantly longer telomeres 
than expected for their CA (significant larger positive Delta Telomere lengths, P=0.01) and walked 
significantly faster than expected (significantly larger Delta Gait speeds, P<0.001). By contrast, 
biologically older subjects, with the largest positive (top 25% quartile) PCAge Deltas had significantly 
shorter Delta Telomere lengths (P<0.01) and significantly slower Delta Gait speeds (P<0.001). f-h, 
Kaplan-Meier survival curves showing actual survival in the test cohort over a 20-year follow up period 
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for males for mean CA (black line), biologically younger males in the best 25% quartile for BA per CA 
category (blue line, PCAge low), biologically older males in the worst 25% quartile for BA per CA 
category (purple line, PCAge high), biologically younger males in the best 25% quartile for ASCVD risk 
score per CA category (orange line, CVD risk low), and biologically older males in the worst 25% quartile 
for ASCVD risk score per CA category (red line, CVD risk high). Across all age categories, when 
compared to subjects with mean CA, male subjects in the best 25% quartiles (PCAge low), experienced 
significantly lower mortality over the 20-year follow-up (P=0.02 for the 55-64 age category, P<0.001 for 
the 65-74 age category, and P=0.03 for the 75-84 age category), whereas male subjects in the worst 
25% quartiles (PCAge high), experienced significantly higher mortality (P<0.001 for the 55-64 and 65-
74 age categories, and P=0.03 for the 75-84 age category). A limitation of the ASCVD score is that it is 
clinically validated only for ages 40-75 years, and hence, only individuals in this age bracket could be 
compared. In men, there were no statistically significant differences in the risk of dying between 
individuals with high clinical ASCVD score and high PCAge. However, there is a wider separation 
between the survival curves of the best 25% and worst 25% quartiles for PCAge when compared 
against low CVD risk versus high CVD risk, with the widest degree of separation observed in the 
chronologically 65–74-year-old males. PCAge also captures subjects that are aging unusually well, 
beyond just having low CVD risk. i-k, Kaplan-Meier survival curves over a 20-year follow up period for 
females similar to f-h for males. When compared to mean CA, significant survival differences were 
observed in females (P=0.05 for PCAge high in the 55-64 age category, P=0.03 for PCAge low in the 
65-74 age category, P<0.01 for PCAge high in the 65-74 age category, P=0.01 for PCAge low in the 
75-84 age category, and P<0.001 for PCAge high in the 75-84 age category), although this did not 
reach statistical significance for PCAge low in the 55-64 age category (P=0.06). In females, PCAge 
clearly outperforms the ASCVD score in predicting survival, specifically in those with CA between 65 
and 74 years (P<0.01 for PCAge high versus CVD risk high, although P=0.09 for PCAge low versus 
CVD risk low). Survival analyses were performed using log-rank tests. 
 

We next tested the performance of PCAge in predicting survival in unknown subjects by selecting 

subjects in the NHANES 2001-2002 test cohort within the best 25% and worst 25% quartiles for BA 

(PCAge). Across all age categories, when compared to subjects with mean CA, male subjects in the 

best 25% quartiles (PCAge low) experienced significantly lower mortality over the 20-year follow-up, 

whereas male subjects in the worst 25% quartiles (PCAge high) experienced significantly higher 

mortality (Fig. 1f-h). Similarly, when compared to mean CA, significant survival differences were 

observed in females, although this did not reach statistical significance for PCAge low in the 55-64 age 

category (Fig. 1i-k).  

 

Several of the biological features used to calculate PCAge have known associations with clinical 

disorders and associated disease risk. To directly test the performance of PCAge in predicting survival 

relative to a known clinical risk marker, we compared its predictive power against the ASCVD score, a 

widely used metric to predict the 10-year risk of cardiovascular disease (CVD) or stroke33. Unlike the 

ASCVD score, we found that PCAge effectively predicts survival and mortality in both males and 

females aged 40-84 years (Figs. 1f-g and 1i-j) (see also Supplementary Fig. 1 for the 45-54 

chronological age category). Formally, receiver operating characteristic (ROC) analysis demonstrates 
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that, overall, PCAge is significantly more informative than the ASCVD score (P<0.001) in predicting 

future mortality, even in subjects who had their ASCVD scores validated (Fig. 5b).  

 

Subjects with large (positive) PCAge Deltas of at least 20 years were significantly more likely to suffer 

from age-dependent diseases (median co-morbidity index=0.18, inter-quartile range=0.14-0.31, n=41 

males and 13 females, versus the mean and standard deviation of the median co-morbidity index for 

age and sex-matched subjects within the normal distribution which was 0.086+0.017, n=10,000 by 

bootstrapping, P<0.001) and die faster (median survival=4.7 more years, inter-quartile range=2.1-13.5 

years, n=41 males and 13 females, versus the mean and standard deviation of the median survival for 

age and sex-matched subjects within the normal distribution which was 17.9+0.35 more years, 

n=10,000 by bootstrapping, P<0.001) (Fig. 2a). 

 

 
Fig. 2: PCAge is robust to random error-in-variables and has precision. a, Ridgeline plots of male 
and female populations sorted by decade per CA. For each CA category, PCAge Deltas for both the 
male and female populations possessed a long tail towards the right composed of distinct sub-
populations that included subjects who were significantly biologically older, especially in the 65-74 and 
75-84 CA categories. b, Scatter plot and linear regression curve of PhenoAge versus PCAge for both 
males and females. The color gradient (ChronAge) reflects the CAs of the subjects. c, Distribution 
curves for the relative errors in the scores produced by the ASCVD score, and for BA prediction by 
PhenoAge and PCAge, when a Gaussian random error of 10% is introduced to each clinical parameter. 
While susceptibility to in-variable noise is unavoidable, not all clocks or risk scores are equally affected. 
PCAge, utilizing linear projections (PCAs) of a large number of variables, is less impacted by 
measurement errors and day-to-day variability than models directly using only a small number of 
features. d, Kaplan-Meier survival curves over a 20-year follow up period for subjects with PhenoAges 
of 55-64 years. In this 55-64 PhenoAge category, PCAge high (red) refers to biologically older subjects 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292604doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292604
http://creativecommons.org/licenses/by-nd/4.0/


 
 

9 

in the worst 25% quartile for PCAge, PCAge low (green) refers to biologically younger subjects in the 
best 25% quartile for PCAge, PhenoAge high (blue) refers to biologically older subjects in the worst 
25% quartile for PhenoAge, and PhenoAge low (purple) refers to biologically younger subjects in the 
best 25% quartile for PhenoAge. e, Kaplan-Meier survival curves over a 20-year follow up period for 
subjects with PCAges of 55-64 years. In this 55-64 PCAge category, labels for the curves were the 
same as for d. Survival analyses were performed using log-rank tests. 
 

PCAge is robust and precise 

To further explore the meaning of substantial residuals between BA (PCAge) and CA, we next 

compared PCAge to a well-validated clinical BA clock, PhenoAge19. We found that PCAge and 

PhenoAge were highly correlated (Pearson correlation coefficient=0.91, R2=0.83, P<0.001) (Fig. 2b). 

However, despite overall strong correlation, there were significant residuals between both clocks (Fig. 

2b and Supplementary Fig. 2). One explanation for these differences between both clocks is sensitivity 

to measurement error. Many clinical measurements are subject to random day-to-day variations, and 

for the type of parameters used here, typical variability has been estimated to be around 7-10% 

(https://www.westgard.cpm/biodatabase1.htm). We compared the relative sensitivity of the ASCVD 

score, PhenoAge and PCAge to such noise and found that the ASCVD score was impacted most 

significantly (Fig. 2c). By contrast, random errors largely averaged out in the PCs, and therefore, the 

relative error distribution for PCAge was the narrowest (Fig. 2c). The distribution of the relative error for 

PhenoAge was between that of the ASCVD score and PCAge, likely because it uses significantly fewer 

parameters (nine single parameters) compared to PCAge (165 parameters). PCAge may therefore 

capture additional biological processes, raising the question of whether the residuals between 

PhenoAge and PCAge are purely driven by noise or if they encode additional information. To test this 

question, we evaluated the performance of PCAge in survival prediction in subjects pre-selected 

according to their PhenoAge and vice versa. Across all PhenoAge categories, we found that PCAge 

was able to further stratify survival in subjects pre-selected to be of similar PhenoAge (Fig. 2d), but the 

opposite was not true, with PhenoAge Deltas providing no further stratification in subjects pre-selected 

and stratified by PCAge (Fig. 2e and Supplementary Fig. 3). Our findings therefore suggest that PCAge 

could identify additional healthy aging and at-risk individuals beyond those predicted by PhenoAge, 

because PCAge more precisely predicts BA and is robust to random error-in-variables and missing 

values.  

 

PCs can inform mechanisms of aging and age-related disease(s) 
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PCA is a linear transformation of the coordinate system, replacing the 165 clinical measures of the 

original feature space with derived coordinates comprising highly correlated features. The first 18 PCs 

of PCAge, collectively capture over 99% of the clinical data recorded for all subjects. This means that, 

by knowing just the first 18 PCs for a subject, the associated medical record can be reconstructed with 

99% accuracy. The meaning of individual PCs, comprising sets of correlated features, can be 

interpreted. To explore the biological meaning of these new coordinates, we first selected specific PCs 

within the first 18 PCs with significant predictive value in the PCAge model (those that were predictive 

of future mortality). We clustered all 2,017 male and 1,794 female subjects from both the training and 

testing cohorts based on their location along these significant PCs, utilizing k-means clustering (Fig. 

3a-b). In k-means clustering, cluster membership is determined by the shortest distance of an 

individual’s coordinates from the center of a cluster, and the algorithm is optimized to maximize the 

distance between centers of clusters to achieve the greatest separation between clusters39. This means 

that the clustering algorithm assigns individuals to the same cluster that were similar to each other in 

the dimensionality reduced (PCA) feature space meaning they shared similar biological features. CA 

was not part of the data used by the clustering algorithm. Interestingly, there were no significant 

differences in CA between any of the male clusters (Supplementary Table 2) nor for most of the female 

clusters, suggesting that CA was not a major factor determining the biological features of individuals 

that separate subjects in feature space (Supplementary Table 2). To learn more about the subjects 

comprising each cluster, we next characterized clusters using demographic and medical data available 

for each of the subjects (Supplementary Table 2). We identified three unique themes, including healthy 

aging (green clusters), a cardio-metabolic axis formed by three separate clusters (purple, orange, and 

red clusters), and an additional group that we termed “multi-morbidity” (yellow clusters).  
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MCV=Mean Cell Volume; MCH=Mean Cell Hemoglobin; RDW=Red Cell Distribution Width; Hb=Hemoglobin; Bil=Bilirubin; LSBMD=Lumbar Spine 
Bone Mineral Density; TSBMD=Thoracic Spine Bone Mineral Density; DBP=Diastolic Blood Pressure; HR=Heart Rate; BNP=N-Terminal Pro-Brain 
Natriuretic Peptide; Cr=Creatinine; BUN=Blood Urea Nitrogen; UAlb=Urine Albumin; Na=Sodium; Cl=Chloride; HCO3=Bicarbonate; ULL=Upper 
Leg Length; MCC=Maximal Calf Circumference; ThC=Thigh Circumference; RLW=Right Leg Weight; LLW=Left Leg Weight; 
HbA1c=Glycohemoglobin; Glu=Glucose; SAlb=Serum Albumin; Glo=Globulin; Fib=Fibrinogen; CRP=C-Reactive Protein; TSat=Transferrin 
Saturation; Fe=Iron; WBC=White Blood Cell Count; Neu=Neutrophil Count; Neu%=Neutrophil Percent; Mono=Monocyte Count; Lym%=Lymphocyte 
percent. 
 
Fig. 3: PCs can inform mechanisms of aging and age-related disease(s). a, 3D plot of the five male 
clusters – “healthy aging” (green), “mild cardio-metabolic” (purple), “major cardio-metabolic” (orange), 
“cardio-metabolic failure” (red), and “multi-morbid” (yellow). b, 3D plot of the five female clusters 
represented by the same colors as males. For both plots, the z-axis refers to the CA after a 20-year 
follow-up period. Survivors are represented by large spheres while deaths that occurred during the 20-
year follow-up period are represented by small spheres. Subjects from the “healthy aging” clusters had 
the lowest median PCAge and the smallest (most negative) PCAge Delta (P<0.001). By contrast, 
subjects from the “cardio-metabolic failure” clusters had the highest median PCAge and PCAge Delta 
(P<0.001) (Supplementary Table 2). Centenarians are color coded in pink. When we compared the 
centenarians to individuals of the same initial CA but who did not attain centenarian status, we found 
that centenarians had significantly lower mean PCAge Delta (-3.43+4.72, n=14 versus +0.98+6.33, 
n=259, P<0.01 by unpaired t-test), indicating that there were significantly biologically younger already 
at the time of the initial survey (that is, 15 to 20 years before turning 100). c, Representative Kaplan-
Meier survival curves for male clusters in the 65-74 CA category. Males from the “healthy aging” cluster 
had the gentlest decline in survival, whereas males from the “cardio-metabolic failure” cluster had the 
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steepest decline in survival. Males from the “multi-morbid” clusters, although distinct from “cardio-
metabolic” clusters, experienced similar declines in survival to males from the “major cardio-metabolic” 
clusters (see also Supplementary Fig. 6 for females). Log-rank tests were statistically significant for all 
individual curve comparisons (P<0.001), except between the “major cardio-metabolic” (orange) and 
“multi-morbid” (yellow) clusters (P=0.8), and between the “major cardio-metabolic” (orange) and “mild 
cardio-metabolic” (purple) clusters (P=0.1). d, Scatter plot and linear regression curves of CA versus 
PCAge for each of the five male clusters. We defined cluster-specific biological aging rate as the rate 
with which BA (PCAge) increases with CA within each cluster. Males in the “healthy aging” cluster had 
the slowest aging rate, biologically aging on average 1.03 years per calendar year (slope=1.03, 
R2=0.87, P<0.001). Males from the cardio-metabolic axis had progressively faster aging rates 
(slope=1.07, R2=0.84, P<0.001 for “mild cardio-metabolic”, and slope=1.14, R2=0.70, P<0.001 for 
“major cardio-metabolic”), with the highest cluster-specific aging rate seen in the “cardiometabolic 
failure” males (slope=1.47, R2=0.61, P<0.001). Males from the “multi-morbid” cluster had faster aging 
rate (slope=1.06, R2=0.73, P<0.001) than “healthy agers”. e, Scatter plot and linear regression curves 
of CA versus PC4 for each of the five male clusters. f, Partial correlation network of the top 10% of 
clinical measures with highly weighted coefficients by absolute magnitude and direction within PC4 
space, which can be categorized by body composition, physiological functions, and physiological 
responses. The size of each parameter is proportional to its weight within PC4 space. Parameters in 
red had a positive weight and increased with CA, whereas parameters in yellow had a negative weight 
and decreased with CA. For example, fibrinogen (Fib) had the largest positive weight and increased 
with CA.  
 

Across sex and chronological age bins, subjects from the “healthy aging” (green) clusters were 

biologically, significantly younger, had a slower aging rate and significantly higher survival over the 20-

year follow-up period compared to other clusters (Fig. 3, Supplementary Figs. 6 and 7, and 

Supplementary Table 2). “Healthy agers” visited their healthcare providers more often but had 

significantly fewer hospitalizations over the last year (Supplementary Table 2 and Supplementary Fig. 

8). When treatment was indicated, they tended to be started on a chronic medication at an earlier age 

(Supplementary Table 2). These data suggest that early and proactive treatment of risk factors for age-

related disease(s) contributed to their more successful aging trajectory later in life. Across all clusters, 

there were six male and eight female centenarians. When we compared the centenarians to individuals 

of the same initial CA but who did not attain centenarian status, we found that centenarians had 

significantly lower mean PCAge Delta (Fig. 3a-b). For females, we also found significantly more 

centenarians in the “healthy aging” cluster than expected (P=0.03) (Supplementary Table 2). 

 

In contrast, subjects from the cardio-metabolic axis, comprising a spectrum across the “mild cardio-

metabolic” (purple) to the “major cardio-metabolic” (orange) and “cardio-metabolic failure” (red) clusters, 

exhibited increasingly elevated median PCAge Delta, progressive decline in survival, and overall faster 

aging rates (Fig. 3, Supplementary Figs. 6 and 7, and Supplementary Table 2). Along this cardio-

metabolic axis, members of the “cardio-metabolic” clusters became increasingly obese, sedentary, and 

frail (Supplementary Table 2). Members from the “cardio-metabolic failure” clusters were significantly 
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biologically older (Fig. 3d), and an overwhelming proportion suffered from, and died of, CVD 

(Supplementary Table 2). 

 

A distinct group of subjects, who were outside the cardio-metabolic axis, formed a “multi-morbid” 

(yellow) cluster, whose members also did not age successfully. These members had median PCAge 

Deltas significantly higher than “healthy agers” and “mild cardio-metabolic” members, but lower than 

the “major cardio-metabolic” and “cardio-metabolic failure” members (Supplementary Table 2). While 

the socioeconomic, lifestyle and behavioral factors were essentially identical between male and female 

members from the “healthy aging” and “cardio-metabolic” clusters, this was not true for the “multi-

morbid” cluster. The composition of this cluster revealed significant differences between males and 

females, suggesting that outside the cardio-metabolic axis, there are distinct, sex-specific factors 

preventing individuals form aging successfully (Supplementary Table 2). However, the male and female 

“multi-morbid” clusters were similar in that both had significantly more current smokers, abusers of 

alcohol, and their members had the lowest BMI amongst all the clusters (Supplementary Table 2). Many 

members suffered from, and died of, a variety of chronic diseases that were not cardiovascular-related 

(Supplementary Table 2). When treatment was indicated, there were significantly fewer members from 

the “multi-morbid” clusters who received the required chronic medications at an earlier age, and 

significantly more relatively younger members who required treatment were missed (Supplementary 

Table 2). In general, male members of the “multi-morbid” cluster accessed healthcare less frequently, 

and those who did relied more on emergency treatment (Supplementary Table 2). Taken together, these 

results complement our findings in the “healthy aging” cluster, suggesting that lack of early, 

preventative, and proactive treatment of age-related disease(s) and associated risk factors contributes 

to unsuccessful aging later in life. 

 

The cluster analysis shows that individuals separated in feature space along the major PCs selected 

by PCAge fall into distinct patient cohorts that differ not only by life expectancy but also by 

socioeconomic, lifestyle and behavioral factors as well as by their medical history. This is true even 

though none of these factors were originally included in the model, demonstrating that the biomedical 

parameters informing PCAge form a complex and tightly interconnected network with many of the 

behavioral and lifestyle factors known to impact healthy aging.   
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When applied to a centered and scaled data matrix, PCA captures features that show high degrees of 

correlation across the process that is being sampled. When applied to data from an aging cohort, PCs 

therefore comprise sets of biological features that undergo correlated change during aging. We next 

asked if membership of the “healthy aging” cluster was associated with specific PC coordinates and if 

parameters forming specific PCs could reveal aging processes and inform intervention strategies, 

aimed at moving subjects into the “healthy aging” cluster. We found that PC2, followed by PC4, resulted 

in the greatest separations between the “healthy aging” cluster and other clusters (Supplementary Table 

3). When we sorted the clinical measures within PC2 space by absolute magnitude and direction of 

their weights, we found that the clinical measures with highly weighted coefficients were mainly body 

composition and fat (Supplementary Table 4). PC2 encodes factors related to body composition, 

obesity, and several risk factors of metabolic disease. In terms of interventions, the implications are 

obvious and expected, suggesting that controlling risk factors of metabolic disease and increasing 

exercise would result in more successful aging.  

 

When we applied the same approach to PC4, we found that PC4 was substantially lower in the “healthy 

aging” clusters (Supplementary Table 3) compared to all other clusters. The PC4 value was significantly 

positively correlated with CA in all clusters (Fig. 3e and Supplementary Fig. 7b). It is noteworthy that 

high PC4 values were associated with less successful aging in both the “cardio-metabolic” and “multi-

morbid” clusters, despite the differences in body composition and disease spectrum that separate these 

two groups, suggesting that PC4 captures a common feature of all unsuccessful aging. To identify 

mechanisms related to unsuccessful aging that were encoded in PC4, we built a partial correlation 

network including only the top 10% (by weight in PC4) of clinical parameters measures (Fig. 3f). Based 

on the network of partial correlations between clinical measures, and utilizing knowledge from clinical 

physiology and pathophysiology, we then categorized these measures into biomedical categories, 

specifically body composition, physiological functions, and physiological responses. We found that PC4 

encodes important information on pathways relating to cardiac function, renal function, inflammation 

and immunity, glucose regulation, and iron storage and erythropoiesis (Fig. 3f). Elevated values in PC4 

appear to capture abnormal clinical measures thereby reflecting dysregulation in these pathways. 

Interestingly, the PC4 network gives substantial weight to markers of inflammation, a process known to 
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play a central role in many age-dependent diseases. Given that the parameters within the PC4 network 

define a network of features that are correlated across samples, any perturbation impacting one 

parameter or clinical measure can be expected to result in changes that are seen across multiple 

pathways. To explore this idea, we investigated conditions that cause perturbations in urine albumin in 

the PC4 network. 

 

ACE-I/ARBs normalize parameters within PC4 to reduce mortality risk and BA 

Microalbuminuria, which is often secondary to chronic hypertension and/or long-standing diabetes 

mellitus, is an early manifestation of chronic kidney disease, and is associated with increased 

cardiovascular risk40. Microalbuminuria is considered clinically significant when the urine albumin-to-

creatinine ratio (ACR) is >30 mg/g40. We first matched (i) healthy subjects with normal urine ACR and 

without hypertension, hyperlipidemia and diabetes mellitus, (ii) subjects with high urine ACR and not on 

treatment, and (iii) subjects treated with angiotensin-converting-enzyme inhibitors (ACE-Is) or 

angiotensin receptor blockers (ARBs) who had normal urine ACR (which indicates that they had been 

successfully treated) by CA, sex, smoking status (using the biomarker serum cotinine) and body mass 

index (BMI) (n=140 per group). We then compared the PC4 network of untreated subjects with high 

urine ACR against healthy subjects (Fig. 4a). In untreated subjects with high urine ACR, we found 

statistically significant increases in urine albumin (P<0.001), N-terminal pro-brain natriuretic peptide 

(NT-proBNP) (P<0.01), globulin (P<0.001), CRP (P=0.047), glycohemoglobin (HbA1c) (P<0.001), and 

glucose (P<0.001). Our results therefore show that untreated subjects with high urine ACR also had 

dysregulated pathways involving renal function, cardiac function, inflammation, and glucose regulation. 

These findings are expected and consistent with known associations and outcomes of albuminuria, but  

we also found a novel and unexpected increase in inflammation for untreated subjects with high urine 

ACR. Compared to healthy subjects, untreated subjects with high urine ACR had statistically 

significantly higher median PC4 value (P<0.001) (Fig. 4c), higher positive median PCAge Delta 

(P<0.001) (Fig. 4d), and a steeper decline in survival (P<0.001) (Fig. 4e), which confirmed that 

untreated subjects with high urine ACR were biologically older than healthy subjects.  
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Fig. 4: ACE-I/ARBs normalize modifiable clinical parameters, involved in renal function, cardiac 
function and inflammation, within PC4 space to reduce mortality risk and BA. a, Comparison of 
PC4 networks of subjects with high urine ACR and not on treatment superimposed on reference healthy 
subjects with normal urine ACR and without hypertension, hyperlipidemia and diabetes mellitus. b, 
Comparison of PC4 networks of ACE-I/ARB treated subjects superimposed on reference healthy 
subjects. Parameters in red had a positive weight and increased with CA, whereas parameters in yellow 
had a negative weight and decreased with CA. In the reference healthy subjects, the sizes of all 
parameters were initially re-scaled to be the same and small. During the comparison, parameters that 
became worse were scaled larger by log2 fold change relative to their original sizes in healthy subjects. 
Urine albumin (UAlb) was colored orange because it had the largest positive fold change in untreated 
subjects. Refer to Fig. 3 for list of abbreviations. c, Notched box plots of PC4 weights for healthy 
subjects (blue), untreated subjects with high urine ACR (red), and ACE-I/ARB treated subjects (green). 
d, Notched box plots of PCAge Delta for the same groups in c. Multiple group comparisons were 
performed using the Kruskal-Wallis test. Post-hoc analyses were performed using Dunn’s test. e, 
Kaplan-Meier survival curves for the same groups in c. Survival analyses were performed using log-
rank tests. 
 

Given these findings, treatments to normalize urine ACR using best clinical practice, such as an ACE-I 

or ARB40,41, might be expected to normalize PC4 values and PCAge. Apart from their reno-protective 

effects, ACE-I/ARBs have additional effects of lowering blood pressure and are cardio-protective, 

preventing heart failure42. Consistent with expectation, when we compared the PC4 network of ACE-

I/ARB treated subjects against healthy subjects, we found that there were no longer any significant 

differences in urine albumin, serum creatinine, and NT-proBNP (Fig. 4b). Surprisingly, however, 

successful treatment with ACE-I/ARBs also normalized CRP (Fig. 4b), which suggests that treatment 

with ACE-I/ARBs might result in additional anti-inflammatory effects, either directly or through effects 

on general systemic function. ACE-I/ARB treated subjects had statistically, significantly lower median 
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PCAge Delta (P<0.01), resulting in an overall negative (PCAge lower than CA) PCAge Delta (Fig. 4d). 

Consistent with this normalization of PCAge Deltas, treated subjects had better survival over the 20-

year follow-up period (P<0.01), with no remaining statistically significant differences in survival between 

ACE-I/ARB treated and healthy subjects (Fig. 4e).  

 

Finally, when we compared ACE-I/ARB treated to untreated subjects with high urine ACR, we not only 

found lower urine albumin (P<0.001) and NT-proBNP (P=0.047) levels, as expected, but also found 

statistically significantly lower levels of inflammatory markers, including serum globulin (P=0.011), CRP 

(P=0.047), fibrinogen (P=0.025), ferritin (P=0.03) and lactate dehydrogenase (P<0.001) in ACE-I/ARB 

treated subjects. Taken together, our data suggest that treatment of microalbuminuria with ACE-I/ARBs 

reduces mortality risk and BA by normalizing modifiable clinical parameters, involved in renal function, 

cardiac function, and even inflammation, along the axis in feature space defined by PC4 of PCAge. 

 

The reduced clinical clock (PC_mAge) recapitulates PCAge  

In clinical practice, it is impractical to measure all the 165 parameters that we included in our analysis 

to predict BA. We therefore set out to develop a reduced BA clock based on the full PCAge but using a 

minimal set of parameters that are routinely measured clinically (PC_mAge). Using sensitivity analysis 

of the full PCAge, we selected a subset of clinical parameters for inclusion such that PC_mAge retains 

the predictive power for PCAge while being amenable to routine clinical use. The final PC_mAge 

includes only parameters from the complete blood count, renal function tests, liver function tests, iron 

panel, vitamin B12, folate, CRP, fibrinogen, LDH, NT-proBNP, uric acid, glucose, HbA1c, lipid panel, 

urine ACR, blood pressure, pulse rate, BMI, smoking status, and a limited subset of medical history 

(Supplementary Table 5). All parameters used in PC_mAge can be measured in a standard clinical 

laboratory using only three blood samples (two collected into EDTA blood collection tubes and one into 

a serum separator blood collection tube), as well as one urine sample. The total estimated cost for 

laboratory tests is around 500 US dollars in a hospital setting.  

 

By design, PC_mAge is highly correlated with PCAge (Fig. 5a). To directly compare the performance 

of PC_mAge in predicting 20-year follow-up survival, we predicted 20-year survival for all subjects in 

the testing set using PC_mAge and PCAge, as well as PhenoAge and CA. We then compared the 
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performance of each of these clocks against actual survival over the 20-year follow-up period using 

ROC curves (Fig. 5b). There was no significant difference in the area under the curves (AUCs) between 

PCAge and PC_mAge. Overall, PC_mAge outperformed the ASCVD score, PhenoAge and CA in 

predicting future survival in the NHANES testing dataset (Fig. 5b).  

 

 
Fig. 5: PC_mAge recapitulates PCAge in BA prediction. a, Scatter plot and linear regression curve 
of PC_mAge versus PCAge for both males and females. The color gradient (ChronAge) reflects the 
CAs of the subjects. PC_mAge is highly correlated with PCAge (Pearson correlation coefficient=0.96, 
R2=0.84, P<0.001, n=2,036). b, ROC curves for 20-year mortality for PC_mAge (red), PCAge (blue), 
PhenoAge (brown), CA (black), and the ASCVD score (orange). There was no significant difference in 
the AUCs between PCAge (AUC=0.8643) and PC_mAge (AUC=0.8665). PCAge was also highly 
significantly more informative than the ASCVD score (AUC=0.8643 versus AUC=0.7594, P<0.001) in 
predicting future mortality, even in subjects who had their ASCVD scores validated. Compared to 
PC_mAge, simple CA (AUC=0.8289, P<0.001) and even PhenoAge (AUC=0.8474, P<0.001) were 
significantly less predictive of survival to the end of the 20-year follow-up. ROC curves were compared 
by DeLong’s test.   
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Discussion 

In this study, we apply data analytics to clinical markers generating BA estimation leading to mechanistic 

insights for preventative clinical intervention in aging. CCs can be linked to the pathophysiology of 

specific diseases. They are therefore an important class of BA clocks, potentially providing immediately 

clinically actionable insights. Our approach used PCA, a linear coordinate transformation based on 

data-matrix factorization by Singular Value Decomposition (SVD)43. When applied to data from cohorts 

of aging individuals, PCA facilitates both extraction and interpretation of feature-space trajectories 

associated with organismal aging5,44-47.  

 

We developed and validated a CC (PCAge) that estimates BA and is robust to random error-in-variables 

utilizing linear dimensionality reduction in a large clinical feature space, followed by Cox proportional 

hazards regression against mortality over a 20-year period. Based on data from a single survey time-

point, often decades before death, PCAge showed significant predictive efficacy over this 20-year 

follow-up and across a wide range of ages, illustrating the power of CCs in characterizing individual 

future aging trajectories, well before any specific pathology is present.  

 

Working in PCA/SVD coordinates is often viewed as coming with a tradeoff in terms of abstraction. PCA 

coordinates, being linear combinations of the original features, are viewed as abstract and difficult to 

interpret43,48. We show, however, that PCs, being directions in feature space, can be interpreted as 

distinct processes or themes in the data and this facilitates identification of mechanisms of age-

dependent failure and of potential intervention against them. By clustering subjects based on their 

location in the space spanned by those PCs that play a significant role in PCAge, we found that cluster 

membership was systematically associated with how successful subjects aged. A “healthy aging” 

cluster, in particular, succeeded in capturing subjects that were biologically younger and aged 

significantly more successfully. Parameter values defining subjects from this cluster can be interpreted 

as normative values, defining healthy physiology at all ages. Overall distance from this cluster was 

associated with less successful aging. Importantly, there are different ways to age unsuccessfully, and 

these are associated with moving away from the “healthy aging” cluster along different directions in PC 

space. By investigating specific PCs related to unhealthy aging, we found that PC2, for example, 

captures known risk factors related to obesity, metabolic disease, and CVD.  
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There are limitations to this study. For example, it is based on a cross-sectional dataset that does not 

allow a comparison of subjects before and after interventions. Further, PCAge/PC_mAge include 

several parameters that are risk markers for age-dependent pathologies. Specifically, both include all 

the parameters found in the ASCVD score. However, BA clocks and clinical risk markers differ both in 

goal and in approach. Clinical risk scores, by design, are hypothesis-driven and organ/disease-specific, 

aiming to predict and detect specific pathologies. They attempt to identify an individual’s proximity to a 

specific disease attractor. By contrast, CCs are data-driven and disease-agnostic, aiming to extract 

predictors of all-cause mortality from a collection of biological parameters, essentially quantifying the 

degree of an individual’s deviation from an optimal heathy aging trajectory. PCAge/PC_mAge are 

sensitive to a more complete set of mortality causes, and unsurprisingly, they generally outperform the 

ASCVD score in predicting overall future mortality. This advantage is most obvious for individuals who 

are aging unusually well (whose BA is lower than their CA), because low cardiovascular risk alone does 

not guarantee healthy aging, but healthy aging is incompatible with substantially elevated 

cardiovascular risk.  

 

The Geroscience approach aims to practice preventative medicine by understanding and intervening in 

fundamental processes of aging or modulating the biological process(es) that drive the shift from healthy 

functioning towards aging and the eventual manifestations of age-related disease(s). Geroscience 

shares many of the goals of traditional preventative medicine but seeks to push the boundaries of 

prevention back, long before disease or overt abnormalities are detectable, and PC analysis can aid 

this goal. For example, subjects in the “healthy aging” cluster had significantly lower values along PC4. 

Analysis of parameter weights for PC4 revealed that it encoded information on disease pathways 

relating to systemic inflammation and immunity, impaired cardiac and renal function, glucose regulation, 

iron storage and erythropoiesis. We reasoned that early and proactive control of parameters driving 

subjects from high to low PC4 values should result in lower BA and increased healthspan. To test this 

hypothesis, we took advantage of known connections between biological parameters driving PC4 and 

an intervention that modify them (ACE inhibitors). Indeed, we found that BA acceleration was 

attenuated, and survival normalized in individuals receiving this intervention, compared to matched 
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subjects who, at the time of survey, did not. This effect was not limited to risk parameters directly 

impacted by the intervention, but also showed an effect on inflammatory markers.  

 

Aging clocks are not replacements for disease-specific risk markers or tools for differential diagnosis. 

They differentiate subjects who are aging well from those who are aging poorly, pointing to interventions 

to help the latter. Early and proactive modification of known risk factors, using primary disease 

prevention approaches as well as existing pharmacological interventions, can play an important role in 

maintaining subjects on optimal aging trajectories, delaying manifestations of aging, including age-

related disease, and, in turn, prolonging and maintaining healthy lifespan. The goal of Geroscience is 

to intervene proactively at a time when interventions are most likely to be efficacious, years or decades 

before any overt pathology is present. BA clocks are to this Geroscience approach what clinical risk 

scores are to traditional primary prevention. Only fully developed BA clocks will allow healthcare 

providers and governments to navigate the complexities of the risk-benefit analysis required to add 

years to healthy lifespan by intervening decades before disease onset.   
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Methods 

Study design and participants 

The continuous NHANES IV is an ongoing cohort study, by the National Center for Health Statistics, 

designed to assess the health and nutritional status of a nationally representative population of adults 

in the United States34. The study involves a series of cross-sectional surveys that includes information 

on demographic, socioeconomic, dietary, health-related questions, medical and physiological 

measurements, as well as laboratory tests. The NHANES IV is approved by the National Center for 

Health Statistics Research Ethics Review Board. Data from the NHANES IV are publicly available34, 

and all study participants are de-identified. In this study, we included adults aged 40-84 years, recruited 

for the 1999-2000 and 2001-2002 cohorts. Linked mortality data was obtained from the National Death 

Index34, and available from Jan 1, 1999 until Dec 31, 2019. We excluded: (1) participants top-coded at 

age 85 years as we could not ascertain the exact CAs of these adults, (2) participants who died from 

accidental deaths as these were deemed to be not age-related, and (3) physiological and laboratory 

measurements with significant missing data, defined as more than 10% of the training dataset. This 

study was reported according to the STROBE guideline for cohort studies49. 

 

The entire NHANES 1999-2002 dataset was initially composed of 5,700 participants and 186 clinical 

parameters, which included data from health-related questions, physiological and laboratory 

measurements. Utilizing the health-related questions, we generated three derived indices, including a 

co-morbidity index, self-health index, and healthcare use index.  

 

The co-morbidity index included data on 22 co-morbidities (hypertension, diabetes mellitus, renal 

impairment, asthma, anemia, arthritis, congestive heart failure, coronary heart disease, angina, 

previous myocardial infarction, previous stroke, emphysema, thyroid disease, obesity, chronic 

bronchitis, liver disease, malignancy, osteoporosis, previous hip fracture, previous wrist fracture, 

previous spine fracture, and cognitive impairment). The index was calculated as the sum of the total 

number of co-morbidities reported divided by the maximum number possible (22). The self-health index 

was calculated based on two questions reporting on a subject’s general health condition and on their 

current health compared to one year ago. Options for the general health question were: “good general 

health” (or better), “fair general health” or “poor general health”. Options for the question regarding 
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current health compared to one year ago were: “better current health”, “about the same” or “worse 

current health”. Affirmative answers were scored as 1 while negative answers were scored 0. An 

aggregate index was generated according to the following formula: self-health index = [(“fair general 

health” x 2) + (“poor general health” x 4)] x [1 – (“better current health” x 0.5) + (“worse current health”)]. 

Therefore, subjects who became more ill would receive twice the penalty for current health status, 

whereas subjects who were recovering would receive a modifier of 0.5. The healthcare use index was 

based on the number of times a subject received healthcare over the past year as coded by NHANES 

“HUQ050”34. These three indices were included directly as clinical parameters without normalization. 

 

After excluding any parameters with more than 10% missing observations and all subjects with 

incomplete records, the resulting dataset was reduced to 3,811 participants and 165 clinical parameters. 

Our final training cohort, composed of the NHANES 1999-2000 study participants, included 923 males 

and 852 females, while our testing cohort, composed of the NHANES 2001-2002 study participants, 

included 1,094 males and 942 females (see Supplementary Table 1 for baseline characteristics).  

 

Biological age - definition used and determination from hazard ratio       

True BA typically differs from CA2. Individual humans, at the same CA, do not have identical mortality 

and disease risks because genetic, socioeconomic, environmental, lifestyle and stochastic factors 

substantially impact individual risk profiles and health trajectories. Attempts to construct BA clocks differ 

in exactly how BA is defined. Some approaches use a training cohort to train models to predict CA from 

biological features, treating individual deviations from predicted CA as evidence of BA deceleration or 

acceleration. This approach essentially compares each individual with the reference cohort, determining 

their relative position in the feature space that is spanned by the chosen biological parameters. The BA 

of an individual is then defined as the age at which that individual’s position in feature space would be 

approximately normal for the reference cohort27,28.  

 

A different approach uses mortality risk as the dependent variable, directly building models to predict 

future mortality from biological parameters18,19,30-32. In this scheme, the true BA of an individual is 

defined as the “Gompertz age” of the reference cohort at which subjects of the reference cohort have 

the same all-cause mortality risk as the individual in question50. Defining an individual’s true BA as the 
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age commensurate with that individual’s risk of dying from all intrinsic causes has the advantage of 

making BA clinically actionable for risk stratification. This definition of BA also addresses the problem 

that different clocks (e.g. based on different parameter sets or mathematical/machine learning (ML) 

methods) often do not agree with each other, sometimes producing vastly different BA estimates for the 

same individual. This might occur because the appearance of an individual may be different when 

viewed through the lens of different feature spaces and compared to different training cohorts. However, 

clocks trained to predict “Gompertz” BA can be compared by testing them directly against historically 

observed all-cause mortality.  Here we adopt “Gompertz” BA, following the approach by Levine et al19.  

 

We first generated two Cox proportional hazard models from the training cohort51. The NULL models 

for males and females were fitted to predict the mortality hazard (h0) of dying over the follow-up period, 

based on CA and sex alone. This NULL model also yields the sex-specific mortality rate doubling time 

(MRDTsex) for the training cohort. A second Cox model was then constructed by taking into 

consideration the covariates (PCs) for each subject of the training cohort. This model was then used to 

predict the hazard of dying as a function of an individual’s position in PC-transformed feature space 

(hpc). Finally, differences in “Gompertz age” are calculated that result in an equivalent relative hazard 

ratio hpc/h0, thereby converting the hazard ratio into a corrected “Gompertz age” (Dage) as follows: 

Dage = 	
&'(

)*+
),

)

&'	(.)
∙ 𝑀𝑅𝐷𝑇456  

The final BA was then calculated by adding this age correction to the subject actual CA:  

BA = CA + Dage. 

 

Singular Value Decomposition/Principal Component Analysis – motivation and 

construction  

Typical ML tools and methods require datasets that contain many more examples (such as subjects) 

than there are parameters for each example52. Biomedical datasets suitable for the construction of ML-

based BA clocks require multi-decade follow-up on human mortality, making them exceptionally 

expensive and time-consuming to collect. For this type of data, the dimensionality of the feature space 

(the number of features collected for each subject) is often relatively large compared to the number of 

individuals for which complete mortality or disease follow-up is available. Additionally, these clinical data 
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are typically subject to significant sources of stochastic (day-to-day variability, measurement errors) and 

systematic (batch effects, reporting bias, hidden confounders, technological artifacts, changes in 

measurement technology over time) sources of noise53-55.  

 

One approach to address these challenges is dimensionality reduction, that is, transformation of data 

from a high-dimensional feature space into an approximately equivalent, lower-dimensional space. PCA 

is a commonly used dimensionality reduction technique that is based on Singular Value Decomposition 

(SVD)43. SVD factorizes a data matrix into rank-one components with components arranged in order of 

importance (as defined by the amount of the original information each component encodes). When 

applied to a centered data matrix, SVD results in a transformation of the coordinate system of feature 

space, such that the original features are replaced by an equal number of “principal components” (PCs). 

The transformation into PC-space is a linear transformation (e.g. rotation), mapping the original 

coordinate system of feature space to the new PC system, such that the coordinate axes (PCs) align 

with directions in feature space along which the covariance (or, depending on normalization, correlation) 

between features is maximal across samples (patients). The resulting set of PC vectors are an 

orthogonal base of the original feature space. 

 

Aging is a major source, often the major source, of variance in any dataset derived from cohorts of 

aging animals and this is one of the reasons why PCA is a powerful technique to extract aging patterns 

from such cohort data44-46. Importantly, because SVD/PCA is an analytical matrix factorization 

technique, it, unlike regression methods, feature selection or non-linear techniques such as 

autoencoders, involves no model fitting, loss of data, objective function or algorithmic optimization, and 

is therefore not subject to hyper-parameter selection.  

 

PCA can be used to reduce the dimensionality of a dataset by omitting contributions from PCs 

(directions in feature space) that explain only a small amount of the overall variance, although this 

approach may result in loss of some useful information56. Alternatively, since individual aging PCs, by 

definition, capture sets of features that exhibit correlated change during aging, the individual PCs may 

capture specific themes, processes, or pathways from the data. The usefulness of this approach in the 

construction of BA clocks was explored by Nakamura et al.5 and, more recently, by Higgins-Chen et 
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al.56 who demonstrated that DNAm clocks constructed from PC-transformed data exhibit increased 

reliability and reproducibility compared to clocks directly trained on DNAm data.  

 

For the construction of PCAge and PC_mAge, we first normalized the clinical parameters of the training 

dataset into z-scores, before transforming them into PC coordinates using the SVD function of R version 

4.2.0 (https://www.R-project.org/). For the testing cohort, we used the singular vectors derived for the 

training cohort to project each subject’s normalized feature-space coordinates into the same PC 

coordinate system of the training set.   

 

PCAge and PC_mAge development and validation 

The first 18 PCs of the training data, which accounted for 99% of the overall variability in that dataset, 

together with each subject’s CA, were selected as covariates in the Cox proportional hazards regression 

model, trained against data from 20 years mortality follow-up. The hazard ratio for each individual was 

then converted into an age correction as outlined above. Separate BA clocks (PCAge) were trained for 

males and females in this way, exclusively using the data for the NHANES 1999-2000 cohort. These 

models were tested and validated against the NHANES 2001-2002 cohort.  

 

The purpose of PC_mAge was to construct a BA clock with similar predictive power but using only a 

subset of clinical parameters. For the construction of PC_mAge, we selected 61 parameters that are 

routinely measured clinically or can be extracted from clinical records. The relevant parameters are 

listed in Supplementary Table 5. With the exception of CA, basophils number, smoking status and 

morbidity indices, each parameter was normalized with reference to its median value obtained from the 

“healthy aging” cluster. Parameters were normalized separately for male and females by subtraction of 

the median and division by the median absolute deviation (MAD) in the “healthy aging” clusters for 

males or females, respectively (Supplementary Table 5). Smoking status was determined by binning 

the serum cotinine levels according to known cut-offs demonstrated in previous studies to correspond 

with qualitative smoking status57 – 0 to <10 ng/mL (non-smokers=0), 10 to <100 ng/mL (light 

smokers=1), 100 to <200 ng/mL (moderate smokers=2), and >200 ng/mL (heavy smokers=3). This 

approach is subject to less recall bias when compared to utilizing questionnaire data on smoking status. 

However, in cases where data on cotinine are not available, this score can also be populated directly 
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from data obtained by questionnaire without any change to PC_mAge. As for PCAge, feature-space 

coordinates were transformed into PC space and models were optimized separately for males and 

females based on the mortality follow-up for the 1999-2000 training cohort.  

 

PCs were selected for inclusion in the final model using regularized Cox regression using glmnet version 

4.1-758,59 and the survival package version 3.5-560 in R, with a 10-fold cross-validation and for alpha 

values of 1, 0.75 and 0.5. Consensus PCs with significant coefficient among all models were included 

in the final Cox model. Individual proportional hazard ratios were transformed into age deltas and added 

to CA for each subject as described above. For PC_mAge, we also extracted a version of the clock 

parametrized in the original (non-PC) feature space by multiplying the SVD-derived coordinate 

transformation matrix with the weight matrix in PC space to obtain discrete parameter weights for each 

of the 61 parameters included in PC_mAge. These individual, parameter-level weights for the clinical 

parameters can be found in Supplementary Table 5, and enable PC_mAge to be calculated directly 

from parameter values using only a spreadsheet. 

 

Equation for BA: 

PC_mAge (𝑋8) = 	𝛽:; ∙ 𝐶𝐴 +	∑ 𝛽@A
@BC ∙ 𝑋@D +	𝐶E 

where: 

𝑋8 = {𝑋@}, Vector of n=61 parameters used for PC_mAge (for given subject) 

𝑋8D = 	 {𝑋@D},  𝑋@D = 	
HIJK5L@MAI

N;OI
  , Normalized parameters (for given subject) 

𝑚𝑒𝑑𝑖𝑎𝑛@ =	 sex-specific median value for ith parameter over “healthy aging” cluster (Supplementary 

Table 5) 

𝑀𝐴𝐷@ =	 sex-specific median absolute deviation value for ith parameter over “healthy aging” cluster 

(Supplementary Table 5) 

 

Clustering analyses 

Utilizing the cluster61 and factoextra62 packages in R for k-means clustering by Euclidean distance, we 

clustered the 2,017 male and 1,794 female participants from the entire dataset according to their PC 

coordinates. We selected PC numbers 2, 3, 4, 7, 10, 11, 13, 17 and 18 for clustering, based on their 

significant weights in the PCAge model. We generated five distinct clusters each for males and females. 
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The optimal number of clusters was determined by characterizing the clusters to minimize the degree 

of overlap in information/themes between clusters. 

 

Interpretation of PCs and partial correlation network analysis 

Partial correlation network analysis of PC4 was performed by selecting the top 10% clinical measures 

by absolute magnitude of weights within PC4. For these parameters, we generated partial correlations 

using the ppcor63 package in R. Edges below a hard threshold of 0.1 were set to zero and the remaining 

edges were used as edge weights to construct a network using the igraph64,65 package in R. Clinical 

parameters were then categorized by body composition, physiological functions, and physiological 

responses, based on domain knowledge to aid interpretation of the partial correlation network.  

 

PhenoAge and ASCVD score 

PhenoAge19 and the ASCVD score33 were constructed, and functions to calculate them from the data 

matrix were implemented, based on the equations provided in the original publications. 

 

Statistical analyses 

Correlation analyses were performed using linear regression and the strength of correlation was 

determined using Pearson correlation coefficient. Two-sided t-tests were used to compare the Delta 

Telomere lengths and Delta Gait speeds between groups, to compare the PCAge Deltas of 

centenarians to non-centenarians, and to compare PC1s from PCAge between males and females. 

Survival analyses were performed using log-rank tests. Kruskal-Wallis tests were performed on 

continuous variables during cluster characterization. Post-test pairwise comparisons using Wilcoxon 

rank sum test with continuity correction were performed between clusters. Hypergeometric probability 

distributions were used to compare categorical variables during cluster characterization. Kruskal-Wallis 

tests were used to compare clinical parameters between multiple groups involving healthy subjects, 

untreated subjects with high urine ACR, and ACE-I/ARB treated subjects. Post-hoc analyses were 

performed using Dunn’s test. ROC curves were compared using DeLong’s test. All statistical analyses 

were performed using R version 4.2.0 (https://www.R-project.org/).  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292604doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292604
http://creativecommons.org/licenses/by-nd/4.0/


 
 

29 

Acknowledgements 

We thank the National Health and Nutrition Examination Survey participants and staff who made this 

study possible. We thank Ce-belle Chen for her careful reading of the manuscript. This research was 

funded by the Ministry of Education in Singapore, grant number IG21-SG103 to Nicholas Tolwinski, and 

grants IG21-SG007 and A-0007215-00-00 to Jan Gruber. Sheng Fong is supported by the Research 

Training Fellowship (MOH-001294-00) from the National Medical Research Council Singapore.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292604doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292604
http://creativecommons.org/licenses/by-nd/4.0/


 
 

30 

References 
 
1 Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709-713 (2014). 

https://doi.org:10.1016/j.cell.2014.10.039 
2 Ingram, D. K. Toward the behavioral assessment of biological aging in the laboratory mouse: 

concepts, terminology, and objectives. Exp Aging Res 9, 225-238 (1983). 
https://doi.org:10.1080/03610738308258457 

3 Comfort, A. Test-battery to measure ageing-rate in man. Lancet 2, 1411-1414 (1969). 
https://doi.org:10.1016/s0140-6736(69)90950-7 

4 Ferrucci, L. et al. Measuring biological aging in humans: A quest. Aging Cell 19, e13080 (2020). 
https://doi.org:10.1111/acel.13080 

5 Nakamura, E., Miyao, K. & Ozeki, T. Assessment of biological age by principal component 
analysis. Mech Ageing Dev 46, 1-18 (1988). https://doi.org:10.1016/0047-6374(88)90109-1 

6 Libert, S., Chekholko, A. & Kenyon, C. A Physiology Clock for Human Aging. bioRxiv (2022). 
https://doi.org:https://doi.org/10.1101/2022.04.14.488358 

7 Drewelies, J. et al. Using blood test parameters to define biological age among older adults: 
association with morbidity and mortality independent of chronological age validated in two 
separate birth cohorts. Geroscience 44, 2685-2699 (2022). https://doi.org:10.1007/s11357-
022-00662-9 

8 Park, J., Cho, B., Kwon, H. & Lee, C. Developing a biological age assessment equation using 
principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol 
Geriatr 49, 7-12 (2009). https://doi.org:10.1016/j.archger.2008.04.003 

9 Pyrkov, T. V. et al. Quantitative characterization of biological age and frailty based on locomotor 
activity records. Aging (Albany NY) 10, 2973-2990 (2018). 
https://doi.org:10.18632/aging.101603 

10 Tian, Y. E. et al. Heterogeneous aging across multiple organ systems and prediction of chronic 
disease and mortality. Nat Med 29, 1221-1231 (2023). https://doi.org:10.1038/s41591-023-
02296-6 

11 Nakamura, E. & Miyao, K. A method for identifying biomarkers of aging and constructing an 
index of biological age in humans. J Gerontol A Biol Sci Med Sci 62, 1096-1105 (2007). 
https://doi.org:10.1093/gerona/62.10.1096 

12 Zhong, X. et al. Estimating Biological Age in the Singapore Longitudinal Aging Study. J Gerontol 
A Biol Sci Med Sci 75, 1913-1920 (2020). https://doi.org:10.1093/gerona/glz146 

13 Hastings, W. J., Shalev, I. & Belsky, D. W. Comparability of biological aging measures in the 
National Health and Nutrition Examination Study, 1999-2002. Psychoneuroendocrinology 106, 
171-178 (2019). https://doi.org:10.1016/j.psyneuen.2019.03.012 

14 Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol 14, R115 
(2013). https://doi.org:10.1186/gb-2013-14-10-r115 

15 Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood 
test, the DunedinPoAm DNA methylation algorithm. Elife 9 (2020). 
https://doi.org:10.7554/eLife.54870 

16 Belsky, D. W. et al. Quantification of biological aging in young adults. Proc Natl Acad Sci U S 
A 112, E4104-4110 (2015). https://doi.org:10.1073/pnas.1506264112 

17 Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging 
rates. Mol Cell 49, 359-367 (2013). https://doi.org:10.1016/j.molcel.2012.10.016 

18 Levine, M. E. Modeling the rate of senescence: can estimated biological age predict mortality 
more accurately than chronological age? J Gerontol A Biol Sci Med Sci 68, 667-674 (2013). 
https://doi.org:10.1093/gerona/gls233 

19 Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany 
NY) 10, 573-591 (2018). https://doi.org:10.18632/aging.101414 

20 Lu, A. T. et al. DNA methylation GrimAge version 2. Aging (Albany NY) 14, 9484-9549 (2022). 
https://doi.org:10.18632/aging.204434 

21 Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 
(Albany NY) 11, 303-327 (2019). https://doi.org:10.18632/aging.101684 

22 Hwangbo, N. et al. A Metabolomic Aging Clock Using Human Cerebrospinal Fluid. J Gerontol 
A Biol Sci Med Sci 77, 744-754 (2022). https://doi.org:10.1093/gerona/glab212 

23 Robinson, O. et al. Determinants of accelerated metabolomic and epigenetic aging in a UK 
cohort. Aging Cell 19, e13149 (2020). https://doi.org:10.1111/acel.13149 

24 Unfried, M. et al. LipidClock: A Lipid-Based Predictor of Biological Age. Front Aging 3, 828239 
(2022). https://doi.org:10.3389/fragi.2022.828239 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292604doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292604
http://creativecommons.org/licenses/by-nd/4.0/


 
 

31 

25 Nie, C. et al. Distinct biological ages of organs and systems identified from a multi-omics study. 
Cell Rep 38, 110459 (2022). https://doi.org:10.1016/j.celrep.2022.110459 

26 Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks 
multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging 1, 598-615 
(2021). https://doi.org:10.1038/s43587-021-00082-y 

27 Klemera, P. & Doubal, S. A new approach to the concept and computation of biological age. 
Mech Ageing Dev 127, 240-248 (2006). https://doi.org:10.1016/j.mad.2005.10.004 

28 Kwon, D. & Belsky, D. W. A toolkit for quantification of biological age from blood chemistry and 
organ function test data: BioAge. Geroscience 43, 2795-2808 (2021). 
https://doi.org:10.1007/s11357-021-00480-5 

29 Pyrkov, T. V. et al. Extracting biological age from biomedical data via deep learning: too much 
of a good thing? Sci Rep 8, 5210 (2018). https://doi.org:10.1038/s41598-018-23534-9 

30 Liu, Z. et al. A new aging measure captures morbidity and mortality risk across diverse 
subpopulations from NHANES IV: A cohort study. PLoS Med 15, e1002718 (2018). 
https://doi.org:10.1371/journal.pmed.1002718 

31 McCrory, C. et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-
Related Clinical Phenotypes and All-Cause Mortality. J Gerontol A Biol Sci Med Sci 76, 741-
749 (2021). https://doi.org:10.1093/gerona/glaa286 

32 Zhang, Y. et al. DNA methylation signatures in peripheral blood strongly predict all-cause 
mortality. Nat Commun 8, 14617 (2017). https://doi.org:10.1038/ncomms14617 

33 Goff, D. C., Jr. et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a 
report of the American College of Cardiology/American Heart Association Task Force on 
Practice Guidelines. Circulation 129, S49-73 (2014). 
https://doi.org:10.1161/01.cir.0000437741.48606.98 

34 Centers for Disease Control and Prevention (CDC). National Center for Health Statistics 
(NCHS). National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. 
Department of Health and Human Services, Centers for Disease Control and Prevention (1999-
2002).  

35 Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide 
range of complex diseases of middle and old age. PLoS Med 12, e1001779 (2015). 
https://doi.org:10.1371/journal.pmed.1001779 

36 Li, S. et al. Genetic and Environmental Causes of Variation in the Difference Between Biological 
Age Based on DNA Methylation and Chronological Age for Middle-Aged Women. Twin Res 
Hum Genet 18, 720-726 (2015). https://doi.org:10.1017/thg.2015.75 

37 Sebastiani, P. et al. Biomarker signatures of aging. Aging Cell 16, 329-338 (2017). 
https://doi.org:10.1111/acel.12557 

38 Ferrucci, L., Hesdorffer, C., Bandinelli, S. & Simonsick, E. Frailty as a Nexus Between the 
Biology of Aging, Environmental Conditions and Clinical Geriatrics. Public Health Rev 32, 475–
488 (2010). https://doi.org:https://doi.org/10.1007/BF03391612 

39 MacQueen, J. B. Some Methods for classification and Analysis of Multivariate Observations. 
Proceedings of the fifth Berkeley symposium on mathematical statistics and probability 1, 281–
297 (1967).  

40 Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical 
Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney 
inter., Suppl 3, 1-150 (2013).  

41 Kidney Disease: Improving Global Outcomes (KDIGO) Diabetes Work Group. KDIGO 2022 
Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int 
102, S1-S127 (2022).  

42 Heidenreich, P. A. et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: 
A Report of the American College of Cardiology/American Heart Association Joint Committee 
on Clinical Practice Guidelines. J Am Coll Cardiol 79, e263-e421 (2022). 
https://doi.org:10.1016/j.jacc.2021.12.012 

43 Strang, G. Introduction to linear algebra. Fifth edition. edn,  (Cambridge Press, 2016). 
44 Tarkhov, A. E. et al. A universal transcriptomic signature of age reveals the temporal scaling of 

Caenorhabditis elegans aging trajectories. Sci Rep 9, 7368 (2019). 
https://doi.org:10.1038/s41598-019-43075-z 

45 Avchaciov, K. et al. Unsupervised learning of aging principles from longitudinal data. Nat 
Commun 13, 6529 (2022). https://doi.org:10.1038/s41467-022-34051-9 

46 Pyrkov, T. V. & Fedichev, P. O. Biological age is a universal marker of aging, stress, and frailty. 
bioRxiv (2019). https://doi.org:https://doi.org/10.1101/578245 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292604doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292604
http://creativecommons.org/licenses/by-nd/4.0/


 
 

32 

47 Hofecker, G., Skalicky, M., Kment, A. & Niedermuller, H. Models of the biological age of the rat. 
I. A factor model of age parameters. Mech Ageing Dev 14, 345-359 (1980). 
https://doi.org:10.1016/0047-6374(80)90008-1 

48 Bafei, S. E. C. & Shen, C. Biomarkers selection and mathematical modeling in biological age 
estimation. NPJ Aging 9, 13 (2023). https://doi.org:10.1038/s41514-023-00110-8 

49 Vandenbroucke, J. P. et al. Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE): explanation and elaboration. PLoS Med 4, e297 (2007). 
https://doi.org:10.1371/journal.pmed.0040297 

50 Gompertz, B. On the nature of the function expressive of the law of human mortality : and on a 
new mode of determining the value of life contingencies ; In a letter to Francis Baily / by 
Benjamin Gompertz.  (Printed by W. Nicol, 1825). 

51 Cox, D. R. Regression models and life tables (with discussion). J R Statist Soc B 34, 187-220 
(1972).  

52 Jain, K. & Chandrasekaran, B. in Handbook of Statistics Vol. 2    835-855 (North-Holland 
Publishing Company, 1982). 

53 Faul, J. D. et al. Epigenetic-based age acceleration in a representative sample of older 
Americans: Associations with aging-related morbidity and mortality. Proc Natl Acad Sci U S A 
120, e2215840120 (2023). https://doi.org:10.1073/pnas.2215840120 

54 Ricos, C. et al. Current databases on biological variation: pros, cons and progress. Scand J 
Clin Lab Invest 59, 491-500 (1999). https://doi.org:10.1080/00365519950185229 

55 Volk, R. J. et al. Reliability of self-reported smoking history and its implications for lung cancer 
screening. Prev Med Rep 17, 101037 (2020). https://doi.org:10.1016/j.pmedr.2019.101037 

56 Higgins-Chen, A. T. et al. A computational solution for bolstering reliability of epigenetic clocks: 
Implications for clinical trials and longitudinal tracking. Nat Aging 2, 644-661 (2022). 
https://doi.org:10.1038/s43587-022-00248-2 

57 O'Connor, R. J. et al. Changes in nicotine intake and cigarette use over time in two nationally 
representative cross-sectional samples of smokers. Am J Epidemiol 164, 750-759 (2006). 
https://doi.org:10.1093/aje/kwj263 

58 Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Generalized Linear Models 
via Coordinate Descent. J Stat Softw 33, 1-22 (2010).  

59 Simon, N., Friedman, J., Hastie, T. & Tibshirani, R. Regularization Paths for Cox's Proportional 
Hazards Model via Coordinate Descent. J Stat Softw 39, 1-13 (2011). 
https://doi.org:10.18637/jss.v039.i05 

60 Therneau, T. M. A Package for Survival Analysis in R.  (2023).  
61 Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster Analysis 

Basics and Extensions. R package version 2.1.4.  (2022).  
62 Kassambara, A. & Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data 

Analyses.  (2020).  
63 Kim, S. ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. 

Commun Stat Appl Methods 22, 665-674 (2015). https://doi.org:10.5351/CSAM.2015.22.6.665 
64 Csardi, G. & Nepusz, T. The igraph software package for complex network research. 

InterJournal, Complex Systems 1695, 1-9 (2006).  
65 Csardi, G. et al. igraph for R: R interface of the igraph library for graph theory and network 

analysis (v1.5.0). Zenodo (2023). https://doi.org:https://doi.org/10.5281/zenodo.8046777 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2023. ; https://doi.org/10.1101/2023.07.14.23292604doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.14.23292604
http://creativecommons.org/licenses/by-nd/4.0/

