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Abstract 

Background 

Long COVID is a debilitating chronic condition that has affected over 100 million people globally. It is 

characterized by a diverse array of symptoms, including fatigue, cognitive dysfunction and respiratory 

problems. Studies have so far largely failed to identify genetic associations, the mechanisms behind the 

disease, or any common pathophysiology with other conditions such as ME/CFS that present with similar 

symptoms. 

Methods 

We used a combinatorial analysis approach to identify combinations of genetic variants significantly 

associated with the development of long COVID and to examine the biological mechanisms underpinning its 

various symptoms. We compared two subpopulations of long COVID patients from Sano Genetics’ Long 

COVID GOLD study cohort, focusing on patients with severe or fatigue dominant phenotypes. We evaluated 

the genetic signatures previously identified in an ME/CFS population against this long COVID population to 

understand similarities with other fatigue disorders that may be triggered by a prior viral infection. Finally, we 

also compared the output of this long COVID analysis against known genetic associations in other chronic 

diseases, including a range of metabolic and neurological disorders, to understand the overlap of 

pathophysiological mechanisms.  

Results 

Combinatorial analysis identified 73 genes that were highly associated with at least one of the long COVID 

populations included in this analysis. Of these, 9 genes have prior associations with acute COVID-19, and 14 

were differentially expressed in a transcriptomic analysis of long COVID patients. A pathway enrichment 

analysis revealed that the biological pathways most significantly associated with the 73 long COVID genes 

were mainly aligned with neurological and cardiometabolic diseases.  

Expanded genotype analysis suggests that specific SNX9 genotypes are a significant contributor to the risk of 

or protection against severe long COVID infection, but that the gene-disease relationship is context dependent 

and mediated by interactions with KLF15 and RYR3. 

Comparison of the genes uniquely associated with the Severe and Fatigue Dominant long COVID patients 

revealed significant differences between the pathways enriched in each subgroup. The genes unique to 

Severe long COVID patients were associated with immune pathways such as myeloid differentiation and 

macrophage foam cells. Genes unique to the Fatigue Dominant subgroup were enriched in metabolic 

pathways such as MAPK/JNK signaling. We also identified overlap in the genes associated with Fatigue 
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Dominant long COVID and ME/CFS, including several involved in circadian rhythm regulation and insulin 

regulation. Overall, 39 SNPs associated in this study with long COVID can be linked to 9 genes identified in a 

recent combinatorial analysis of ME/CFS patient from UK Biobank. 

Among the 73 genes associated with long COVID, 42 are potentially tractable for novel drug discovery 

approaches, with 13 of these already targeted by drugs in clinical development pipelines. From this analysis 

for example, we identified TLR4 antagonists as repurposing candidates with potential to protect against long 

term cognitive impairment pathology caused by SARS-CoV-2. We are currently evaluating the repurposing 

potential of these drug targets for use in treating long COVID and/or ME/CFS.  

Conclusion 

This study demonstrates the power of combinatorial analytics for stratifying heterogeneous populations in 

complex diseases that do not have simple monogenic etiologies. These results build upon the genetic 

findings from combinatorial analyses of severe acute COVID-19 patients and an ME/CFS population and we 

expect that access to additional independent, larger patient datasets will further improve the disease insights 

and validate potential treatment options in long COVID.  

Keywords 

Long COVID, post-acute sequelae of COVID-19, PASC, post-Covid, post-acute COVID syndrome, POTS, 

ME/CFS, patient stratification, combinatorial analytics  

Introduction 

Post COVID-19 condition (or long COVID) is a debilitating syndrome that the World Health Organization (WHO) 

estimates affects up to 20% of people infected by SARS-CoV-21. Other more recent studies put the prevalence 

of long-term symptoms (over 3 months post-infection) in COVID-19 patients even higher2, with all estimates 

implying that over 100 million patients have been affected by the condition globally3. Even though symptoms 

decline for most patients over time, some patients still experienced symptoms such as post-exertional 

malaise or postural tachycardia syndrome (POTS)4 up to two years after infection5, and the long-term health 

consequences of long COVID remain unknown, with suggestions of a doubling of the risk of developing 

cardiovascular issues6. 

Reports indicate an extensive array of symptoms associated with long COVID7, with the most common being 

fatigue and post-exertional malaise (PEM)8, cognitive dysfunction9, mood disturbances10 and respiratory 

problems11. However, establishing a precise diagnosis for either of these diseases has proved challenging, in 

large part due to the complexity and diversity of their clinical presentation and their effects across multiple 

organ systems. In an attempt to provide some definitive metrics, a recent study developed a data-driven 

scoring framework for diagnosing long COVID based on the available symptom data12. 

Although many studies have investigated the genetic risks underlying long COVID, only one genome-wide 

association study (GWAS) has identified a single risk locus around the lead variant in FOXP413,14. Studies that 

used combinatorial analytical approaches to delineate genetic risk factors in similarly heterogenous 

populations have demonstrated more success, for example in severe COVID-1915 and ME/CFS16. 

Combinatorial analytics approaches identify combinations of features that together (rather than individually) 

are associated with the disease phenotype17. They capture the non-linear effects of interactions between 

multiple genes (and exogenous factors if available). These signals are distinct from and complementary to 

the monogenic, linear additive associations of single SNPs found by GWAS. In complex (multifactorial and 

heterogenous) diseases these non-linear combinatorial signals are significantly more important in 

understanding disease biology than in relatively monogenic disorders such as many cancers and rare genetic 

disorders18,19. 
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In this study we used combinatorial analytics to identify disease risk signatures (combinations of genetic 

variants significantly associated with the development of long COVID) and explored the biological 

mechanisms with which they are involved. We investigated subpopulations of long COVID patients who had 

experienced either severe disease or a fatigue dominant phenotype, to compare the underlying genes and 

pathways that explain some of the heterogenous manifestations of the disease.  

We also compared the output of this study against our previous ME/CFS analysis16 to understand similarities 

in post-viral fatigue and other phenotypes experienced by subsets of long COVID patients. Finally, we 

compared the pathways that were significantly enriched in this genetic analysis of long COVID against known 

genetic associations in other chronic diseases that are predominantly autoimmune, neurological and/or 

metabolic in nature, to evaluate any common pathophysiological mechanisms that might be shared by long 

COVID.  

Methods 

Sano Genetics GOLD Study Dataset 

Genotypic and phenotypic data for both cases and controls included in this study were generated from Sano 

Genetics’ Long COVID GOLD study20. Eligible participants (n = 1,996), recruited between 2020 and 2022, 

provided saliva samples for an at-home Sano DNA Test (evaluated via Illumina Global Screening Array with 

Multi-disease drop-in panel) and completed a questionnaire hosted on the Sano Genetics platform detailing 

their acute COVID-19 and long COVID symptoms (if experienced), as well as basic demographic data and 

other chronic health conditions (see Supplementary File 1). 

Symptom Based Score for Long COVID Severity 

Given the heterogeneity of post-COVID symptoms reported by the GOLD study and other previous studies, we 

developed a data-driven scoring method to characterize the severity of self-reported symptoms. We analyzed 

participant reported scores for each available long COVID symptom experienced pre- and post-acute COVID-

19, including breathlessness, fatigue, degree of muscle pain and change in mental health (see Supplementary 

Table 1 for more details). A ‘Total Change’ score was generated for each patient from the sum of the reported 

differences across symptoms pre- and post-COVID. 

Cohort Characteristics 

At the time of analysis, a total of 1,829 individuals in the GOLD study had a self-reported COVID-19 diagnosis. 

This COVID-19 cohort had a median age of 50 years [interquartile range (IQR) = 40 - 60] and median COVID-19 

recovery time of 169 days [IQR = 14 - 507.5] (Table 1). It consisted of 61.1% females and 92.6% self-reported 

their ethnicity as ‘White’. The most prevalent self-reported comorbidities (prior to or after COVID-19) in the 

cohort were anxiety or panic attacks (30.0%), depression (26.2%), asthma (25.5%), eczema (18.6%) and 

migraines (17.4%).  

Of those confirmed to have had COVID-19, 1,345 (73.5%) reported fatigue symptoms, 1,135 (62.1%) reported 

symptoms linked to concentration, 1,124 (61.5%) reported short-term memory symptoms and 714 (39.0%) 

reported breathlessness. The median ‘Total Change’ symptom score for the cohort was 15 [IQR = 2 - 35] 

(Supplementary Figure 1).  

In the dataset, 1,489 (81.4%) individuals provided free-text responses on other symptoms that they 

experienced since their illness that were not covered elsewhere in the questionnaire. The most frequently 

reported symptoms included loss of smell, headache, pain, tinnitus, loss of taste, dizziness, insomnia and 

postural tachycardia syndrome (POTS) (see Supplementary Table 2 and Supplementary Figure 2). Following 

COVID infection, 353 (19.3%) individuals reported reducing their working hours while 359 (19.6%) people 

discontinued working altogether post-illness. 
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Long COVID Cohorts 

We defined two long COVID case populations from the GOLD study based on self-reported symptom changes 

three months post COVID-19 – ‘Severe’ long-haulers who reported the greatest variety and severity of 

symptoms and ‘Fatigue Dominant’ cases who reported predominantly fatigue-associated long COVID 

symptoms. 

The World Health Organization defines long COVID patients as those experiencing one or more symptoms 

post initial COVID-19 infection. However, the cohort in the GOLD study that met these criteria displayed a great 

range in the severity and length of self-reported symptoms experienced post COVID-19. Instead, we aimed to 

focus on the more ‘severe’ long haulers who reported the greatest degree of symptoms experienced as these 

are likely to be the patients experiencing long COVID symptoms that do not diminish over time without 

pharmaceutical intervention.  

The Fatigue Dominant’ cohort was chosen primarily due to their phenotypic similarity with ME/CFS, allowing 

us to explore potential commonalities between the diseases based on our previously published combinatorial 

analysis for ME/CFS16. 

The number and overlap in cases and controls included in the two datasets are included in Supplementary 

Figure 3.  

Severe Long COVID Cohort 

The Severe long COVID cohort (n = 1,323 where cases = 459 and controls = 864) was selected using the 

difference in scores reported pre- and post-acute COVID-19 for three long COVID symptom groups – namely, 

respiratory, fatigue and mental health. Severe cases were defined as those with a ‘Total Change’ score for 

these symptoms greater than or equal to the upper quartile of the distribution. The controls in this study were 

defined as samples with a ‘Total Change’ score greater than or equal to 0 but below the median of the 

distribution.  

Fatigue Dominant Long COVID Cohort 

The Fatigue Dominant cohort (n = 1,386 where cases = 477 and controls = 909) was selected using only a 

subset of symptoms relating to fatigue in the scores (‘Fatigue Change') reported for pre- and post-acute 

COVID-19 symptoms (see Supplementary Table 1). The controls in this study were defined as samples with a 

‘Fatigue Change’ score greater than or equal to 0 but below the median of the distribution.  

The characteristics of the two cohorts are described in Table 1, Figure 1 and Supplementary Figure 4.  

Table 1: Characteristics of the two long COVID cohorts derived from the GOLD study dataset. Data for fields marked 
with asterisk (*) were not available for all individuals. Comorbidities marked with † were consistently over-represented 
in cases compared to controls in all cohorts. 

 
Severe Long COVID 

n = 1,323 
Fatigue Dominant Long COVID 

n = 1,386 

 
Cases 

(n=459) 

Controls 
(n=864) 

Cases  

(n=477) 

Controls 
(n=909) 

Age [Median (IQR)] 45 (37-54) 54 (41-64) 45 (37-54) 54 (41-63) 

Sex [n (%)] *  
M: 129 (28.1) 

F: 329 (71.7) 

M: 402 (46.5) 

F: 462 (53.5) 

M: 121 (25.4) 

F: 355 (74.4) 

M: 429 (47.2) 

F: 480 (52.8) 

Self-reported Ethnicity [n (%)] * 
Wh = White 
As = Asian 
Mx = Mixed 
Bl = Black 
Ot = Other 
No = None 

Wh: 419 (91.3) 

Mx: 19 (4.1) 

As: 12 (2.6) 

Ot: 4 (0.9) 

Bl: 2 (0.4) 

No: 2 (0.4) 

Wh: 781 (90.4) 

As: 33 (3.8) 

Mx: 22 (2.5) 

Bl: 12 (1.4) 

Ot: 12 (1.4) 

No: 1 (0.1) 

Wh: 436 (91.4) 

Mx: 17 (3.6) 

As: 14 (2.9)  

Bl: 4 (0.8) 

Ot: 3 (0.6) 

No: 2 (0.4) 

Wh: 825 (90.1) 

As: 33 (3.6) 

Mx: 23 (2.5) 

Ot: 13 (1.4) 

Bl: 11 (1.2) 

No: 1 (0.1) 
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Recovery time in days (Median [IQR] ) 
479 

(247-572) 
18 

(8-122) 
484 

(256-573) 
18 

(8-111) 

COVID-19 related hospitalization [n (%)] 60 (13.1) 26 (3.0) 66 (13.8) 26 (2.9) 

Reported problems after COVID-19 related 
hospital discharge [n (%)] 

60 (13.1) 20 (2.3) 66 (13.8) 19 (2.1) 

Hospitalized [n (%)] 46 (10.0) 7 (0.8) 50 (10.5) 8 (0.9) 

Co-morbidities (pre-existing or post-COVID-
19) [n (%)] 

    

- Asthma† 108 (23.5) 121 (14.0) 110 (23.1) 133 (14.6) 

- Alzheimer’s disease 0 (0.0) 1 (0.1) 0 (0.0) 1 (0.1) 

- Coronary artery disease 2 (0.4) 13 (1.5) 3 (0.6) 13 (1.4) 

- Chronic fatigue syndrome† 36 (7.8) 6 (0.7) 40 (8.4) 5 (0.6) 

- Diabetes Type 1 1 (0.2) 9 (1.0) 1 (0.2) 10 (1.1) 

- Diabetes Type 2 15 (3.3) 33 (3.8) 13 (2.7) 33 (3.6) 

- Heart attack 5 (1.1) 7 (0.8) 3 (0.6) 7 (0.8) 

- Irritable bowel syndrome† 65 (14.2) 41 (4.7) 74 (15.5) 47 (5.2) 

- Kidney disease† 3 (0.7) 2 (0.2) 3 (0.6) 2 (0.2) 

- Liver disease† 9 (2.0) 6 (0.7) 8 (1.7) 7 (0.8) 

 

 

 (a) (b) 

Figure 1: Distribution of the (a) ‘Total Change’ score for cases and controls in the Severe long COVID and (b) ‘Fatigue 
Change’ (part of ‘Total Change’ score) score in the Fatigue Dominant long COVID cohorts. 

Dataset QC 

The two case-control datasets underwent a series of quality control (QC) procedures before they were 

analyzed using the PrecisionLife platform.  

Standard variant-level and sample-level QC procedures were applied to the dataset (comprising of 696,382 

SNPs) as described in the Genotype Quality Control section in Supplementary Information. Due to the small 

sample size of the two long COVID cohorts, the genotype data was filtered to exclude SNPs with minor allele 

frequency (MAF) < 5%. Very low frequency SNPs were removed as significant combinations involving rare 

variants are especially infrequent. This filter also increases the statistical power of combinatorial analysis to 

detect genotype-disease associations by reducing the amount of false discovery rate (FDR) correction 
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required when testing multiple SNP-genotype combinations. Following QC, the Severe dataset comprised of 

283,478 SNPs and the Fatigue Dominant dataset contained 283,444 SNPs. 

Combinatorial Analytics using the PrecisionLife Platform 

The PrecisionLife combinatorial analysis platform enables hypothesis-free identification of high-order 

combinatorial features (known as disease signatures), which may include multiple SNP genotypes and/or 

other multi-modal features in combination. These disease signatures capture both the linear and non-linear 

effects of genetic and molecular interaction networks and enable the identification of associations including 

those that are only relevant to a subgroup of patients. We have previously validated this analytical approach 

across a variety of complex chronic diseases where it has identified more associations with increased 

explanation of observed disease variance and reproducibility than comparable GWAS studies15,16,17. 

In the combinatorial analytics approach, disease signatures are identified and statistically validated in ‘layers’ 

of increasing combinatorial complexity, i.e., singletons, pairs, triplets etc. (also known as combinatorial order). 

Each disease signature is validated multiple times using several statistical tests at each stage of the process 

to avoid false positives. A more detailed description of the mining and validation stages is given in our 

previous ME/CFS study16.  

We applied the PrecisionLife platform to both long COVID case-control datasets in a hypothesis-free manner 

to identify combinations of SNP genotypes that are strongly associated with the development of long COVID 

symptoms when they co-occur in the same patient. The method prioritizes SNP genotype combinations that 

have high odds ratios, low p-values (p < 0.05) and high prevalence (>5%) in long COVID cases. A permutation-

based approach was used to compare the observed properties of the most highly associated SNP-genotype 

combinations to the null distribution for randomized datasets21, with p-value cut-offs based on a specified 

threshold (Benjamini-Hochberg FDR of 0.05) after multiple testing correction. Combinations passing these 

tests were reported as validated long COVID disease signatures. Finally, a merged network (disease 

architecture) view is generated by clustering all validated disease signatures based on their co-occurrence in 

patients in the dataset. 

SNPs found in multiple disease signatures often form the central hub of the disease architecture (see Figure 

2). These are termed ‘critical SNPs’ if the corresponding networks pass a further permutation-based statistical 

test. Potential critical SNPs are scored using a Random Forest (RF) algorithm with a 5-fold cross-validation 

framework to assess the accuracy with which they predict the case-control split in the dataset.  

 

Figure 2: Conceptual representation of features, combinations and disease signatures that form part of PrecisionLife’s 

combinatorial analytics methodology. In the case of the long COVID study all features were SNP genotypes, but other 

feature types, e.g., a patient’s expression level of a specific protein, medication history or clinical features such as their 

eosinophil level, can also be used, independently from or in combination with the genotype data. 

A cascade mapping process was used to map all the critical SNPs identified in the validated disease 

signatures to the human reference genome (GRCh38)22. SNPs identified in the coding region of a gene (or 

genes) were mapped directly to this gene and any remaining SNPs within 2kb upstream or 0.5kb downstream 
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were mapped to the nearest gene(s). Due to the uncertainty about the wide range of cells and tissues that 

have been implicated in long COVID etiology7, genes assigned by either expression quantitative trait loci 

(eQTLs) or chromatin interaction (Hi-C) data were not specifically prioritized for further analysis (as they 

would likely be in other indications) to avoid capturing any spurious associations from non-trait-related 

tissues or cells. Genes that could additionally be mapped using only eQTL or Hi-C data from the critical SNPs 

were observed and reported in Supplementary File 2, although these were not further evaluated. 

Finally, a semantic knowledge graph, including data from over 50 public data sources (see Supplementary 

Table 3), was used to annotate the SNPs and genes, including data on prior genetic associations to disease, 

chromosomal location, tissue expression profiles, splice variants, mouse phenotypes, protein 

function/structure, known active chemistry and any pre-existing scientific literature or clinical trials among 

other attributes. This allows us to generate evidence-backed mechanism of action hypotheses as to each 

genetic variant’s potential impact on a patient’s long COVID phenotype. 

Ancestry Analysis 

Ancestry inference for the samples in the GOLD study was performed using GRAF-pop23. To maximize the 

number of samples included in each case-control dataset, samples of all ancestries were included in the 

analysis. Since ancestry-specific analyses could not be performed due to limited samples in each cohort, we 

performed a logistic regression analysis to control for confounding effects of population structure. Any 

disease signatures that were no longer significantly associated with case-control status (p < 0.05 with 

Bonferroni FDR correction) in a logistic regression that also includes a binary ancestry variable for white-

European/other ancestry were considered false positives and removed from further analysis.  

Assessing Causality with Expanded Genotypes Analysis 

The disease signatures output by the PrecisionLife platform represent combinations of SNP genotypes that 

are significantly enriched in cases relative to controls. Expanded genotypes analysis (“EGA”) tests how the 

genotype of a critical SNP from the disease signature affects the odds of disease when the genotypes of all 

interacting SNPs are held constant.  

For each disease signature, we first assign patients to one of the possible combinations of the component 

SNP genotypes (the “expanded genotype signatures”). In the example illustrated in Figure 3, the validated 

disease signature is comprised of two SNPs, each in one of 3 states (0, 1 and 2), which can generate 9 (32) 

expanded genotype signatures. For combinations of 3, 4, and 5 SNPs, the number of expanded genotypes 

signatures is 27, 81, and 243 respectively. We then calculate the disease odds for patients with each 

expanded genotype signature. 
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Figure 3: Hypothetical example of an expanded genotypes analysis for a disease signature comprised of two SNPs. After 

controlling for the confounding effects of the interacting SNP genotype, patients with one or two copies of the critical SNP 

minor allele (genotypes “1” and “2”) have consistently elevated odds of disease relative to patients with the wild type 

genotype (“0”) at the critical SNP. 

For a given critical SNP of interest, we identify sets of expanded genotype signatures that share the same 

genotypes for all interacting SNPs (the blocks separated by the horizontal lines in Figure 3). We calculate the 

“EGA odds ratio” by dividing the disease odds ratio for an expanded genotype signature with a copy of the 

critical SNP minor allele by the disease odds ratio for the matching expanded genotype signature with the 

critical SNP homozygous wild type genotype.  

Due to the small number of patients associated with individual expanded genotype signatures, we may have 

insufficient statistical power to directly test whether the EGA odds ratios are significantly different from zero. 

Instead, the primary aim of the EGA is to test whether the observed directionality of the relationship between 

the critical SNP minor allele and disease phenotype is consistent across all or most expanded genotype 

signatures. If the critical SNP genotype does not affect disease, then we expect the minor allele genotype will 

be randomly associated with increased odds of disease for some expanded genotype signatures and 

decreased odds of disease for others, with no consistent biological pattern. 

In the hypothetical example shown in Figure 3, the EGA reveals that the critical SNP minor allele is 

consistently associated with elevated disease risk after controlling for the genotype of the interacting SNP. 

This pattern holds even though patients with the critical SNP minor allele have below average odds of disease 

when they also possess the wild type genotype at the interacting SNP. By controlling for the confounding 

effects of the interacting SNP, EGA allows us to gain a better understanding of the relationship between the 

critical SNP and disease. 

Each disease signature was assigned to one of the following seven categories based on the broad patterns 

observed from the EGA: universally causative, universally protective, SNP-specific causative, SNP-specific 

protective, combination-specific causative, combination-specific protective, or ambiguous. Definitions of each 

category are provided in Supplementary Table 5. Across these categories, the designation of “Causative” and 

“Protective” do not necessarily guarantee that the specific critical SNP identified in the analysis directly 

affects disease risk. The critical SNP could potentially be a neutral marker that is in strong linkage 

disequilibrium with the true biological variant. 
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We excluded all expanded genotype signatures which occurred in fewer than 15 patients from the EGA. 

Likewise, we did not consider disease signatures comprised of 4 or 5 SNPs due to the limited statistical 

power provided by the size of the available datasets. There are 81 possible expanded genotype signatures for 

a combination of 4 SNPs, which corresponds to only 17 patients per expanded genotype signature. More 

problematically, there are 243 possible expanded genotype signatures for a combination of 5 SNPs, which 

corresponds to fewer than 6 patients per expanded genotype signature. The stochastic noise associated with 

such small sample sizes make it very difficult to identify broad patterns across the full set of expanded 

genotype pairs.  

Phenotype Enrichment Analysis 

The available clinical data from the questionnaire was used to evaluate the long COVID patient profiles 

associated with each of the disease signatures generated by the analysis. We calculated the statistical 

significance of the association of a particular phenotype with a set of long COVID cases with shared genetic 

variants when compared against the rest of the case population. The two proportions Z-test was used for 

categorical variables, such as severity of acute COVID-19 and comorbidities, and Mann-Whitney U24 for any 

continuous variables, such as participant reported scores that reflect change in symptoms pre- and post-

COVID-19. Statistical associations were corrected for multiple testing using Benjamini-Hochberg method.  

Overlap Analysis (“Seeded” Approach)  

We evaluated the genetic overlap between the Severe and Fatigue Dominant cohorts by taking the SNPs 

identified in the hypothesis-free analysis for one dataset (seed SNPs) and testing whether any combinations 

involving them are also significantly associated with disease risk in the second dataset when analyzed by the 

PrecisionLife platform (see section ‘Combinatorial Analytics using the PrecisionLife Platform’).  

This hypothesis-driven or ‘seeded’ approach was performed in addition to a direct gene overlap analysis 

between the two cohorts. This approach mitigates the effects of stochastic differences in dataset 

composition when defining the combinatorial search space explored in our analyses. The number of possible 

SNP-genotype combinations is so extensive that it is impossible to sample the entirety of the space. This 

implies that true associations may remain unreported because they were not tested when the dataset was 

analyzed using the hypothesis-free approach. 

We also employed this technique when evaluating the overlap between the genes identified in our analysis of 

the UK Biobank ME/CFS population and the two long COVID cohorts generated from the GOLD study. Due to 

the low SNP overlap (n=42,500) between the arrays used to genotype the ME/CFS and long COVID datasets, 

we performed a seeded analysis using 383 SNPs in the Severe and Fatigue GOLD dataset that were within 

10kb up or downstream of the original 14 ME/CFS genes.  

Cross Disease Analysis 

Cross disease analysis can provide insights into potential drug repurposing opportunities or development of 

common therapies. We compared the genes that were significantly associated with Severe and Fatigue 

Dominant long COVID against a variety of other chronic diseases to identify shared pathophysiological 

mechanisms. These diseases included neurodegenerative, mental and behavioural disorders, cardiovascular, 

gastrointestinal, autoimmune and metabolic diseases (see Supplementary Tables 8 and 9). Disease-

associated genes identified for each indication group are those with known genetic links reported in 

OpenTargets25 (v 23.02, February 2023 release). Only genes with strong target-disease genetic association 

scores (>0.9 out of 1.0) have been used in this analysis for each indication group. 

Enrichment analysis was performed using the g:Profiler tool26 to determine pathways and biological 

processes that are significantly associated with the disease-associated genes for each indication group (p < 
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0.05, p-value correction for multiple testing using Benjamini-Hochberg). This allows us to explore 

up/downstream of individual gene targets to identify biological processes that are impacted across diseases.  

Results 

GWAS Analysis 

We evaluated the significance of individual genetic variants associated with the two long COVID datasets 

(Severe and Fatigue Dominant) using a standard GWAS analysis with PLINK27. As can be observed from the 

two Manhattan plots (Supplementary Figure 5), no SNP from either of the two cohorts reached the genome-

wide significance threshold (p < 5x10−8). 

Hypothesis Free Combinatorial Analysis 

Using the PrecisionLife combinatorial analysis platform, we identified 86 disease associated critical SNPs for 

the Severe cohort and 84 for the Fatigue Dominant cohort, mapping to 43 and 36 genes respectively. A total of 

74 unique genes were associated with at least one of the long COVID cohorts, including 5 genes which were 

identified in both the Severe and Fatigue Dominant cohorts.  

The disease signatures associated with each cohort were all combinations of 2 or more SNP genotypes, i.e., 

they were all combinatorial signals, predominantly involving combinations of 3-5 SNPs, that could not have 

been identified using GWAS (Figure 4). An example of one of the disease signatures identified in the analysis 

of the Severe long COVID cohort is shown in Table 3. None of the SNPs identified in disease signatures were 

observed to be in linkage disequilibrium (LD) with each other.  

All cases included in the analysis possessed at least one of the disease signatures found to be significant in 

the hypothesis-free study of its cohort. The complete list of genetic variants and their mapped genes 

identified from this study are listed in Supplementary File 2.  

Upon further evaluation, 118 (10%) disease signatures identified in the Severe cohort and 120 (8.4%) 

signatures in the Fatigue Dominant cohort comprised of SNPs that could be mapped to genes with shared 

biological functions or pathways (see Supplementary File 3). 

 

Figure 4: Distribution of combinatorial order (i.e., number of component SNPs) for the validated combinatorial disease 
signatures from the Severe and Fatigue Dominant long COVID cohorts.  

Table 2: Summary of PrecisionLife combinatorial analysis results on Severe and Fatigue Dominant long COVID cohorts 
generated from the GOLD study. 

 Severe Cohort Fatigue Dominant Cohort 
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Table 3: Example of one of the combinatorial disease signatures identified by the PrecisionLife combinatorial analysis 
of the Severe long COVID cohort. Bold text indicates the critical (RF-scored) SNPs (and the genes to which they are 
mapped) in this signature.  

SNP ID / 

Genotype 

Mapped 

Genes 

Severe Cohort Case Count for 

Individual SNPs  

(Control Count, Odds Ratio) 

Severe Cohort Case Count for 

Disease Signature  

(Control Count, Odds Ratio) 

rs2025994 / 0 

rs6777173 / 0 

rs11072524 / 1 

SNX9 

KLF15 

RYR3 

396 (703, 1.06) 

164 (226, 1.36) 

141 (186, 1.43) 

 

57 (23, 4.67) 

 

 

 

Figure 5: Disease architecture diagrams representing (a) the Severe and (b) Fatigue Dominant long COVID patient 
populations generated by the PrecisionLife platform. Each circle represents a disease-associated SNP genotype, and 
edges represent their co-association in patients in disease signature(s). The critical SNP genotypes identified in each 
case population are highlighted in dark green. 

As there were limited number of cases and controls of non-European ancestry (see Supplementary Table 6) in 

each of the two datasets, we evaluated the output to identify any disease signatures that may be confounded 

by population structure effects rather than reflecting a true disease signal.  

Total disease signatures (n) 1,188 1,435 

Disease signatures by number of 

component SNPs (n)  

0 , 2 , 88 , 322 , 776 0 , 25 , 191 , 225 , 994 

Odds ratio of disease signatures 

(relative to mean odds, Median [Q1-Q3]) 
77.9 [19.5 - 80.0] 22.5 [9.4 - 23.6] 

RF scored “critical” SNPs (n) 86 84 

RF scored genes (n)  43 

36  

(35 after ancestry confounder 

check) 

Cases containing at least one disease 

signature (%) 

100% 100% 
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All disease signatures in the Severe cohort passed the ancestry confounder analysis. We identified 129 (9%) 

disease signatures in the Fatigue Dominant cohorts that did not pass the ancestry confounder check 

(Supplementary Table 7). However, when we removed the SNPs and mapped genes represented only by these 

potentially confounding disease signatures (and not also by one or more additional true disease signatures), 

only one gene (AC005005.1) associated with the Fatigue Dominant cohort linked to the critical SNP, 

rs4820946, was eliminated from all final disease associated gene lists. This reduced the 74 genes found to 

73. 

The cohort analysis indicates that fewer than 15% of cases that were assigned to either one or both long 

COVID case groups, were hospitalized with severe COVID-19 or reported co-associated chronic diseases such 

as diabetes, cardiovascular disease or cognitive impairment. This meant that the number of cases with these 

phenotypes was too low to identify any associations, such as COVID-19 severity or a particular comorbidity, 

with genetic disease signatures.  

Enrichment analysis of the fatigue, respiratory and mental health symptom-based scores for the Severe long 

COVID patients was used to investigate the clinical characteristics of the disease signatures identified in the 

Severe cohort study. Unfortunately, the population sizes were too small to reach statistical significance (p 

<0.05) after multiple-testing correction (see Supplementary File 4). 

From the two independent hypothesis-free analyses of the datasets, we identified SNP genotypes mapping to 

5 genes that were found to be significantly associated with disease in both the Severe and Fatigue Dominant 

long COVID cohorts. For each gene, more than 70% of cases from both cohorts possessed at least one 

disease signature containing an associated SNP (Table 4). These genes have a range of different functions 

and potential mechanism of action hypotheses as to their role in the development of long COVID. 
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Table 4: List of genes significantly associated with long COVID in both the Severe and Fatigue Dominant cohorts. 

Seeded Analysis to Test Overlap between Long Covid Cohorts 

The two independent analyses of the Fatigue Dominant and Severe cohorts indicated that 5 genes were 

strongly associated with long COVID in both cohorts. We performed two seeded analyses to understand if any 

additional genes identified in either the Fatigue or Severe cohorts were also significant in the other population.  

This approach revealed that 28 / 43 genes identified in the Severe cohort were also significantly associated 

with disease in the Fatigue Dominant cohort, and 25 / 35 genes from the original Fatigue Dominant analysis 

were also associated in the Severe cohort. This left 15 genes unique to the Severe cohort and 10 genes 

unique to the Fatigue Dominant cohort. 

The unique genes, the percentage of total cases they were associated with, and their biological functions are 

summarized in Tables 5 and 6.  

Table 5: List of genes that were uniquely associated with the Severe case cohort. 

Gene 

% patients with 

corresponding 

disease 

signature in 

Severe cases 

(Severe 

controls) 

Gene Function 
Mechanism of Action Hypothesis  

in Long COVID 

ADIPOQ 67.1  (20.6) Adiponectin 

Controls fat metabolism and insulin 

sensitivity33 

Prevents SARS-CoV2-induced acute 

lung injury34  

Gene 

% patients 

with 

corresponding 

disease 

signature in 

Severe cases 

(Severe 

controls) 

% patients 

with 

corresponding 

disease 

signature in 

Fatigue cases 

(Fatigue 

controls) 

Gene Function 
Mechanism of Action Hypothesis 

in Long COVID 

D2HGDH 90.6  (12.5) 70.2  (1.5) 

Catalyzes the oxidation of D-2-

hydroxyglutarate (D-2-HG) to 

alpha-ketoglutarate  

Involved in mitochondrial 

functioning, also exhibits anti-

inflammatory effects28  

GUCY1A2 82.1  (7.9) 71.9  (1.6) 

Guanylate cyclase, catalyzes the 

conversion of GTP to 3',5'-cyclic 

GMP and pyrophosphate 

Downregulated (hub gene) in 

SARS-CoV-2 infection29  

PCSK2 93.9  (32.9) 94.9  (10.6) 

Proprotein convertase subtilisin, 

processes hormones, involved in 

glucagon release 

Maintains energy homeostasis, 

regulates circulating GLP-1 

levels30. Blood glucose, insulin 

resistance and diabetes 

associated with long COVID31 

CCDC146 92.4  (15.2) 86.8  (3.7) 

Coiled-coil domain containing 146, 

a ubiquitous centriole and 

microtubule-associated protein 

Associated with cognitive 

functioning and type 2 diabetes32  

PGPEP1  82.4  (34.0) 91.0  (5.7) 

Removes 5-oxoproline from 

various penultimate amino acid 

residues 

Novel, possibly regulates various 

hormones and neuropeptides 
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C1orf50 88.0  (9.6) Chromosome open reading frame 50 Novel 

CETP 72.3  (5.6) Cholesteryl ester transfer protein 

Role in insulin resistance, metabolic 

syndrome, macrophage-induced 

inflammation35  

CPLX4 71.2  (4.8) Complexin 4 Novel  

DLC1 26.8  (3.3) GTPase, deleted in liver cancer 1  Autophagy36, oncogene 

DSCAML1 47.3  (2.3) 

Down syndrome cell adhesion 

molecule like 1 

Regulates corticotropin-releasing 

hormone in HPA axis, attenuated 

response to acute stressors37 

ENSG00000283580 88.02 (9.6) Novel protein Novel  

ENSG00000285082 52.3  (6.5) Uncharacterized protein Novel   

ETS1 30.5  (1) 

Transcription factor, v-ets avian 

erythroblastosis virus E26 oncogene 

homolog 1  

Differentially regulated in peripheral 

blood of severe COVID-19 patients, 

modulates cytokine response38 39 40 

MARCH8 74.5  (5.8) 

Membrane-associated ring finger, 

ubiquitin protein ligase 

Downregulates host transmembrane 

protein, confers resistance to multiple 

viruses including SARS-CoV41 42 

NOL4 37.7  7.6) Nucleolar protein 4 
Differentially expressed in infective 

endocarditis43  

PDE6C 39.7  (8.3) 
Phosphodiesterase 6C, cGMP-

specific  

Novel  

PGPEP1  82.4  (34) Pyroglutamyl-peptidase I Novel  

SNX9 41.2  (9.7) 

Sorting nexin 9 Regulated by chronic inflammation, 

trafficking of mitochondrial-derived 

vesicles44 45 

TLR4 52.3 (6.5) Toll-like receptor 4 

Mediates innate immune response, 

genetic link to long-term cognitive 

dysfunction post COVID-1946 47 

 

Table 6: List of genes that were uniquely associated with the Fatigue Dominant case cohort. 

Gene  

% patients with 

corresponding 

disease 

signature in 

Fatigue cases 

(Fatigue 

controls) 

Gene Function 
Mechanism of Action Hypothesis in 

Long COVID 

ABCA9 74.6  (1.5) ATP-binding cassette 
Cholesterol responsive gene involved in 

monocyte differentiation48 

ACOT12 14.3  (1.6) Acyl-coA thioesterase 
Acetyl-coA signaling and cholesterol 

biosynthesis49  

ANKRD6 25.6  (1.1) Ankyrin repeat domain 6 
Possible links to muscle function and 

lipid metabolism50,51 

LYRM2 25.6  (1.1) LYR motif containing 6 
Assembly of NADH-dehydrogenase 

complex, involved in cellular respiration52  

POR 23.9  (2.2) Cytochrome P450 oxidoreductase 
Downstream of MAPK signaling in 

oxidative stress pathway53  
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RRBP1 71.2  (17.6) Ribosome binding protein 1 

Relocates to mitochondrial vicinity during 

mitochondrial protein import stress, 

involved in endurance capacity in 

skeletal muscle during exercise54  

SPTBN5 72.3  (1.54) Spectrin, beta, non-erythrocytic 5  Novel  

TNIK 74.4  (19.1) TRAF2 and NCK interacting kinase Regulates JNK signaling55  

TNS1 83.2  (2.97) Tensin 1  
Lack of AMPK increases tensin 

expression56  

TPST1 84.5  (2.64) Tyrosylprotein sulfotransferase 1  Required for monocyte recruitment57  

A comparative pathway enrichment analysis using the g:Profiler tool revealed that there were significant 

differences in the biological pathways associated with the lists of unique genes from the Severe and Fatigue 

Dominant cohorts (Figure ). Genes that were uniquely associated with the Severe long COVID cohort were 

more likely to be found in immune pathways such as myeloid differentiation, macrophage foam cells and lipid 

signaling pathways. Genes that were uniquely associated with the Fatigue Dominant cohort were linked to 

metabolic pathways such as JNK/MAPK signaling cascades.  

 

Figure 6: Pathway enrichment plot for disease-associated genes found in the Severe and Fatigue Dominant long 
COVID cohorts. GeneRatio represents the ratio of genes found in the pathway compared to the genes associated with 
a cohort and p.adjust represents the p-value adjusted for multiple testing. The dots in the plot are colour-coded based 
on their corresponding p.adjust values.  

Comparison of Long COVID with ME/CFS 

We also used the seeded analysis approach to test for overlap between disease signatures associated with 

long COVID and those associated with ME/CFS in our previous study16.  

Taking the list of SNPs within genes that were identified to be significant within the UK Biobank ME/CFS 

population, we found that 24 SNPs were also associated with long COVID in the Severe cohort. Of these 24 

SNPs, 9 were critical (RF scored) within the Severe long COVID population, mapping to 5 genes (Table 7).  

In the Fatigue Dominant cohort, 27 SNPs were associated with long COVID, of which 12 SNPs were also 

common with the Severe cohort (Supplementary Table 4). 7 of these 27 SNPs were critical (RF scored) SNPs 
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within the Fatigue Dominant long COVID cases, mapping to 5 genes previously found in the ME/CFS study 

(Table 7).  

Table 7: List of critical SNPs significantly associated with long COVID in the Severe and Fatigue Dominant long COVID 
cohorts that can be linked to genes identified in a combinatorial analysis of UK Biobank ME/CFS patients. 

Genes identified in UK Biobank 

ME/CFS study 

 

Critical SNP identified in 

Severe cohort  

(within 10 kb 

up/downstream of gene) 

Critical SNP identified in 

Fatigue Dominant cohort 

(within 10 kb 

up/downstream of gene) 

CLOCK - rs62303689 

SLC15A4 rs11059915 rs11059915 

GPC5 

- rs1536620 

- rs16946160 

rs462954 - 

rs9560843 - 

rs989236 - 

rs9301839 - 

ATP9A 

- rs6096573 

rs77771672 rs77771672 

rs2426361 - 

INSR rs8110533 rs8110533 

USP6NL rs11257114 - 

Comparison of Long COVID Genes Identified with Acute COVID-19 Studies 

Whilst few GWAS significant variants have so far been identified in long COVID58, we sought to compare the 

73 unique genes identified in our long COVID studies against the literature for any evidence within severe 

COVID-19 and/or long COVID. Of these genes, at least 9 have prior associations – such as differential 

expression and genetic susceptibility analyses - to acute COVID-19 after reviewing available publications in 

PubMed and other data sources such as OpenTargets (Table 8).  

Table 8: Known associations of genes identified in either one or both of the cohorts of long COVID patients with acute 
COVID-19. 

Gene Long COVID Cohort Function COVID-19 Associated Literature 

ADIPOQ Severe Adiponectin 
Prevents SARS-CoV2-induced acute lung 

injury34  

APCDD1 
Severe and Fatigue 

Dominant 

Adenomatosis polyposis coil 

down-regulated 1 

Bioinformatics analysis indicates APCDD1 

is a dysregulated gene in COVID-1959 

ETS1 Severe 

Transcription factor, v-ets avian 

erythroblastosis virus E26 

oncogene homolog 1  

Differentially regulated in peripheral blood 

of severe COVID-19 patients, modulates 

cytokine response38 39 40 

GPC6 
Severe and Fatigue 

Dominant 
Glypican 6 

OpenTargets COVID-19 association 

(Reactome) - may interact with SARS-CoV-

2 spike protein60  
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GUCY1A2 
Severe and Fatigue 

Dominant 

Guanylate cyclase 1, soluble, 

alpha 2 

Differentially expressed in SARS-CoV-2 

infection29 

MARCH8 Severe 
Membrane-associated ring 

finder, E3 ubiquitin protein ligase 

Downregulates host transmembrane 

protein, confers resistance to multiple 

viruses including SARS-CoV41 42 

SOX5 
Severe and Fatigue 

Dominant 

SRY (sex determining region Y)-

box 5 

SOX5+ autoreactive memory B cells in 

COVID-1961  

TENM3 
Severe and Fatigue 

Dominant 

Teneurin transmembrane 

protein 3 

Genetic variant link to COVID-19 infection 

susceptibility62  

TLR4 Severe Toll-like receptor 4 

Mediates innate immune response, genetic 

link to long-term cognitive dysfunction post 

COVID-1946 47 

 

We also compared our results against the blood derived gene expression signatures associated with post-

acute sequelae identified by Thompson et al63. There are several key differences between the studies – 

Thompson et al recruited individuals hospitalized with severe acute COVID-19 infection, whereas the majority 

of individuals in our study experienced milder forms of the disease (Table 1). We are also drawing 

comparisons from a transcriptomic study derived from whole blood against a combinatorial study of germline 

genetic variants.  

Nonetheless, we found that 14 of the 73 genes (Severe=7 and Fatigue Dominant=7) identified in our analyses 

were also differentially expressed at the transcriptomic level in patients experiencing long COVID 

(Supplementary Table 10).  

Overlap Between Long COVID and Other Diseases 

We identified genes with known genetic associations across a wide range of complex diseases including 

neurodegenerative, mental or behavioral, cardiovascular, gastrointestinal, autoimmune and metabolic 

diseases (see Supplementary Tables 8 and 9). We evaluated the degree of overlap at a biological process 

level (using mapping of genes to biological processes in Gene Ontology64,65) to identify the common 

pathophysiological mechanisms that are shared between those diseases and long COVID. 

27 biological processes are significantly enriched in the 73 long COVID genes identified in this analysis, of 

which 19 processes are also significantly enriched in at least one other indication group (Supplementary 

Table 13). Based on these 19 pathways, long COVID genes shared the greatest number of biological 

processes (>50%) with cardiovascular disease and mental or behavioral disease followed by gastrointestinal 

disease, neurodegenerative disease, autoimmune disease and metabolic disease (Figure 7, Supplementary 

Table 13). 
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Figure 7: Heatmap plot showing 19 biological processes (Gene Ontology biological process terms) shared between 73 
long COVID genes identified in the GOLD cohort and genes with genetic evidence in one or more indication groups 
(neurodegenerative, mental or behavioral, cardiovascular, gastrointestinal, autoimmune and metabolic disorders). For 
each indication group, only the significantly enriched biological processes (p < 0.05) are shown in blue and the 
intensity of the color is based on the p values of the Gene Ontology term in each indication group.  

Expanded Genotypes Analysis to detect Causal Features 

We conducted expanded genotypes analysis for all Severe cohort RF scored genes (see Tables 3 and 4) found 

in disease signatures with 2 or 3 SNP genotypes. These comprise 5 genes corresponding to 23 disease 

signatures, including a disease signature that contains two RF scored genes (see Table 8).  

We found that the critical SNP is universally protective across at least 2 validated disease signatures for 3 of 

the 5 RF scored genes (ADIPOQ, NOL4, and PDE6C). That is, when we control for the genotypes at the 

interacting SNPs, expanded genotype signatures featuring at least one copy of the critical SNP minor allele 

are consistently associated with lower odds of severe long COVID relative to expanded genotype signatures 

with the homozygous wild type genotype for the critical SNP. In all but one of the remaining disease 

signatures for these genes, the critical SNP minor allele is most often associated with decreased odds of 

severe long COVID, with narrow exceptions: i.e., when it fails to co-occur with the minor allele of an interacting 

SNP (“SNP-specific protective effect”) or when it co-occurs with a specific set of genotypes at multiple 

interacting SNPs (“combination-specific causative effect”).  

The critical SNP minor alleles for these three genes are typically associated with decreased risk of severe long 

COVID, which either implies that they represent broadly protective variants or causative variants that are in LD 

with the wild type allele at the genotyped SNP. This relationship only becomes apparent, however, when we 

control for the confounding effects of other causative and/or protective variants. Only one validated disease 

signature for these three genes fails to exhibit a consistent biological association between the critical SNP 

minor allele and disease, indicating a potential false positive. 

In contrast, the gene SNX9 consistently is associated with more complex interactions that highlight the 

combinatorial dynamics of disease. For example, we identified a disease signature comprising three SNPs 

that is associated with strongly elevated odds of long COVID. This disease signature includes: 

• critical SNP rs2025994 located approximately 40kb upstream of the SNX9 coding region 

• interacting SNP rs6777173 located 12 kb upstream of KLF15 

• interacting SNP rs11072524 located in an intron of RYR3 
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We found that the SNX9 minor allele offers significant protection against the risk of long COVID among 

patients who possess a copy of the minor allele at either interacting SNP (i.e., a SNP-specific protective 

effect). That is, patients with the SNX9 heterozygous or homozygous minor allele genotype consistently have 

lower odds of developing severe long COVID than patients with the SNX9 homozygous wild type genotype, 

after controlling for the confounding effects of the genotypes at the two interacting SNPs (see Table 9). Due 

to the small sample sizes associated with many expanded genotype signatures, these individual comparisons 

are not statistically significant. However, if we pool all patients in this cohort, then patients with a copy of the 

SNX9 minor allele have significantly lower odds of disease than patients who are homozygous for the SNX9 

wild type allele (odds ratio = 0.52, 41 cases / 134 controls vs. 316 cases / 532 controls, Fisher’s Exact Test 

p=0.00047; note that these totals include patients with rare expanded genotype signatures not shown in Table 

9). 

A different pattern arises among patients who are homozygous for the wild type genotype at both interacting 

SNPs. Here, patients with a copy of the SNX9 minor allele have higher odds of disease than patients who are 

homozygous for the SNX9 wild type allele (odds ratio = 1.86, 19 cases / 22 controls vs. 74 cases / 160 

controls), although the odds ratio is not statistically significant (Fisher’s Exact Test p=0.075).  

Together these results suggest that the SNX9 genotype is a significant contributor to the risk of severe long 

COVID infection, but that the gene-disease relationship is context dependent and mediated by interactions 

with KLF15 and RYR3. Similar non-linear interactions are represented by three additional disease signatures 

comprised of the same SNX9 critical SNP and different interacting SNPs. Monogenic approaches such as 

GWAS that do not consider these gene-gene interactions can fail to detect potentially important drivers of 

disease.  

Finally, the expanded genotypes analysis did not provide any additional insight into the relationship between 

DLC1 and disease. This could indicate that the biological relationship between DLC1 is highly complex or that 

the result is a false positive. However, the disease signatures associated with strongly elevated odds of 

severe long COVID all contain the rare homozygous minor allele genotype for the DLC1 critical SNP. Due to 

small sample sizes, we were unable to analyze other expanded genotype signatures containing the potentially 

causative genotype. Thus, the ambiguous results may reflect the fact that the relationship between the DLC1 

minor allele and long COVID does not carry over into heterozygous patients. 

Table 8: Expanded Genotypes Analysis results for 5 RF-scored genes identified in the Severe cohort linked to disease 
signatures of 2 or 3 SNPs (one disease signature contains SNPs associated with two genes).  

Target Gene SNX9 ADIPOQ DLC1 NOL4 PDE6C 

Universally causative minor allele 0 0 0 0 0 

Universally protective minor allele 0 3 0 2 2 

Minor allele with SNP-specific causative effect 2 0 0 0 0 

Minor allele with SNP-specific protective effect 2 3 0 0 2 

Minor allele with combination-specific causative effect 0 3 0 2 0 

Minor allele with combination-specific protective effect 0 0 0 0 0 

Ambiguous / no consistent effect  0 1 2 0 0 

 

Table 9: Assessing the effects of the SNX9 rs2025994 genotype on severe long COVID when controlling for the 
genotypes of the interacting SNPs rs6777173 (KLF15) and rs11072524 (RYR3). We present comparisons for genotype 
combinations that are present in more than 10 patients (which excludes the 18 patients who are homozygous for the 
SNX9 minor allele). None of the EGA odds ratios for the individual comparisons are statistically significant after 
correcting for multiple testing. However, among patients who possess a copy of the minor allele at either interacting 
SNP, presence of the SNX9 minor allele consistently results in lower odds of disease relative to the homozygous wild 
type genotype (Fisher’s Exact Test p=0.00047). Among patients who possess only wild type alleles for both interacting 
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SNPs, presence of the SNX9 minor allele results in higher odds of disease relative to the homozygous wild type 
genotype, but the difference is not statistically significant (Fisher’s Exact Test p=0.075). 

KLF15 
minor allele 

count 

RYR3 
minor 
allele 
count 

SNX9 homozygous wild type 

Odds  
(Cases:Controls) 

SNX9 heterozygous 

Odds  
(Cases:Controls) 

EGA Odds Ratio: SNX9 
heterozygous vs. 

homozygous wild type 
(95% confidence 

interval) 

0 0 
0.46 

(74:160) 
0.89 

(17:19) 
1.93 

(0.95 – 3.93) 

0 1 
2.48 

(57:23) 
0.70 

(7:10) 
0.28 

(0.10 – 0.83) 

1 0 
0.43 

(114:267) 
0.28 

(14:50) 
0.66 

(0.35 – 1.23) 

1 1 
0.63 

(48:76) 
0.24 

(6:25) 
0.38 

(0.15 – 0.99) 

2 0 
0.66 

(71:108) 
0.21 

(6:28) 
0.33 

(0.13 – 0.83) 

2 1 
0.49 

(17:35) 
0.38 
(3:8) 

0.77 
(0.18 – 3.29) 

 

Evaluation of Potential Novel Drug Targets and Repurposing Opportunities 

We evaluated the genes identified in the study to find potential novel drug targets and their associated 

mechanistic patient stratification biomarkers (the disease signatures that connect patient subgroups with the 

mechanistic etiology for their disease). As described in our previous ME/CFS paper, the use of combinatorial 

analytics to identify novel targets has been validated in other diseases such as ALS, where these novel targets 

have demonstrated disease modifying activity in in vitro models66.  

Of the 73 unique genes found across the two cohorts, 42 are potentially tractable targets for drug 

development strategies based on annotations from OpenTargets (defined by a score of greater than 0 across 

at least one metric for tractability), see Supplementary Table 11. This includes 26 targets that are suited to an 

antibody approach and 18 that are amenable to modulation by small molecules.  

Most (> 90%) of the genes are expressed in a wide range of tissues (Supplementary Figure 6) although the 

expression profile of the genes in specific cell types is variable (Supplementary Figure 7). Approximately 44% 

(n=30) of the genes are expressed in inhibitory neurons followed by 41% in excitatory neurons (n=28) and 40% 

in oligodendrocyte precursor cells (n=27). 

Using a systematic repositioning approach67, we identified 13 long COVID targets that already have drugs in 

clinical development. As these drugs or development candidates may require fewer preclinical studies and 

already have a known safety profile, they could represent a quicker and de-risked strategy for developing 

potential new treatments. We are exploring the repurposing potential of these compounds for the treatment of 

long COVID and ME/CFS (where appropriate). 

From this analysis for example, we identified TLR4 as an attractive repurposing candidate. Our analysis 

indicates that 52% of cases included the Severe long COVID cohort had at least one disease signature 

containing a variant containing TLR4 and there is additional supporting evidence that inhibition of TLR4 in a 

mouse model prevents long term cognitive pathology such as synapse elimination and memory deficits that 

is caused by the SARS-CoV-2 Spike protein46. Clinical studies have already shown that antagonizing TLR4 

signaling dampens the pathological cytokine storm observed in patients with severe acute COVID-19 and 

reduces mortality rates in hospitalized COVID-19 patients68,69. However, our analysis also indicates that 

antagonism of TLR4 may demonstrate therapeutic effects in long term pathology caused by SARS-CoV-2.  
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We performed a search of the GlobalData70 database to further understand the number and stage of 

development of TLR4 antagonists that are in clinical pipelines. This revealed a total of 88 unique drugs that 

target TLR4 (either singularly or as part of a combination therapy), including 8 in development for acute 

COVID-19, the most advanced of which (Paridiprubart, Edesa Biotech Inc) is currently being evaluated in a 

Phase 3 study in hospitalized COVID-19 patients with Acute Respiratory Distress Syndrome (ARDS)71. 

Discussion 

As an approach to identify the drivers of the complex disease biology of long COVID, combinatorial analytics 

yields more useful signal than GWAS. No SNPs reached the genome-wide significance threshold in either the 

Severe or Fatigue Dominant cohorts. This underlines the difficulties involved in using monogenic analysis 

approaches to understanding disease associated genetic variants and mechanistic etiologies in 

heterogeneous and polygenic diseases, especially with small datasets.  

Using combinatorial analytics, we identified 73 unique genes in a long COVID population and highlighted the 

relevance of subsets of these genes to the different sub-cohorts of the disease population. At least 9 of the 

genes identified in this study have been linked to acute COVID-19, and despite key differences in the study 

designs, we also observe that 14 of the 73 genes were differentially expressed in a transcriptomic analysis of 

long COVID patients. We can form strong mechanism of action hypotheses for each gene’s role in the 

development of long COVID.  

Splitting the population into two long COVID subtypes, Severe and Fatigue Dominant, allowed us to explore the 

genetic and biological differences underpinning different clinical manifestations. The comparative pathway 

enrichment analysis identified differences in pathways between the genes uniquely associated with the 

Severe long COVID group and those uniquely associated with the Fatigue Dominant phenotype (Figure ). The 

greater number of genes involved in immune response in the Severe long COVID cohort may also indicate a 

more severe form of the acute infection. This may potentially arise as a result of patients experiencing higher 

viral loads than average, as we identified 4 genes that have been functionally linked to SARS-CoV-2 host 

response and/or acute severe COVID-19 (Table 5).  

The pathway enrichment analysis also highlighted an overrepresentation of genes involved in macrophage 

foam cell differentiation. The formation of foam cells leading to a profibrotic macrophage phenotype is 

critical in the development of atherosclerosis72. However, there is also evidence that profibrotic pulmonary 

macrophages contribute to acute respiratory distress syndrome (ARDS) and lung injury associated with 

patients with severe COVID-1973.   

The genes that were associated only with the Fatigue Dominant long COVID cohort are enriched in MAPK and 

JNK signaling cascades as well as other metabolic processes involved in mitochondrial function and cellular 

respiration (Table 6). As discussed in our previous ME/CFS paper, dysregulated mitochondrial function, 

resulting in the inability to increase respiration rates in response to increased demand from stressors such as 

exercise74, may result in the post-exertional malaise (PEM) that is a hallmark of ME/CFS. The finding of similar 

pathways in the Fatigue Dominant long COVID cohort suggests that these patients may also struggle to meet 

energy demands.  

It is known that NK cell effector function (cytotoxic activity) regulated by MAPK signaling cascades, including 

via the c-Jun N-terminal kinase (JNK)75 signaling pathway, is dysregulated within patients with ME/CFS, who 

exhibit reduced NK cell cytotoxic activity76. Further work will be required to confirm if similar pathological 

events occur in patients who develop fatigue dominant long COVID.  

When we evaluated the degree of similarity between the genes associated with ME/CFS and long COVID, we 

found 13 critical SNPs (39 in total) within at least one of the long COVID populations that could be mapped to 

a gene previously associated with ME/CFS.   
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In both Severe and Fatigue Dominant long COVID populations, we identified SNPs mapping to the genes 

ATP9A, INSR, CLOCK, SLC15A4 and GPC5. All of these genetic variants were found in a higher proportion of 

the Fatigue Dominant and Severe long COVID populations than in the ME/CFS case group. This finding may 

indicate that the long COVID case group defined by fatigue symptoms is more homogenous than those within 

the self-reported ME/CFS population, which likely includes a mix of viral and non-viral triggers of chronic 

fatigue symptoms.  

We found that the CLOCK gene is significantly associated with Fatigue Dominant long COVID and ME/CFS. 

CLOCK (Circadian Locomotor Output Cycles Kaput) is an important regulator of circadian rhythm, disruptions 

of which have been associated with pain, insomnia, insulin resistance, immunological function and impaired 

mitochondrial function77,78,79,80,81. Interestingly, one of the most common variants identified in ~86% of the 

long COVID Fatigue Dominant population mapped to the gene NLGN1. NLGN1 is also transcriptionally 

activated by CLOCK in the forebrain82, which could indicate multiple genetic contributions to dysregulated 

circadian rhythm in long COVID. 

Of the remaining 4 genes common between long COVID and ME/CFS, we identified 3 common variants in the 

genes ATP9A, INSR and SLC15A4 in both Severe and Fatigue Dominant cohorts (Table 7).  

SLC15A4 encodes a transmembrane transport that has previously been associated with inflammatory 

autoimmune diseases such as systemic lupus erythematosus from genome-wide association studies83,84. 

However, SLC15A4 also plays a key role in mitochondrial function, with knock down of the gene resulting in 

impaired autophagy and mitochondrial membrane potential under cell stress85.  

We also hypothesized that the genetic variants in ATP9A and INSR both contribute to dysregulated insulin 

signaling in subgroups of ME/CFS patients. Type 2 diabetes-related signaling pathways and insulin resistance 

were also a key theme within the genes associated with long COVID, and 11 of the gene targets identified in 

this analysis have prior associations with type 2 diabetes in the OpenTargets database (Supplementary Table 

12). Metabolic dysfunction and type 2 diabetes may increase risk of developing severe acute COVID-1986 and 

epidemiological studies have demonstrated that there is an increased risk of developing diabetes post COVID-

19 compared against controls who had not been infected with SARS-CoV-287. Furthermore, increased 

incidence of insulin resistance and glycemic dysregulation was observed in patients 2 months post COVID-19 

and in long COVID patients31,88.  

Several of the biological processes that genes identified in this study are significantly enriched for – such as 

foam cell differentiation – are also associated with known genetic links to metabolic diseases such as type 2 

diabetes (Figure ). Metabolic dysfunction has a variety of biological consequences, including increased levels 

of chronic inflammation, dysregulated immune response to acute infection, endothelial cell dysfunction and 

defects in coagulation pathways. All of these have been linked to long COVID and severe acute COVID-19 

pathogenesis89.  

It is therefore plausible that patients with genetic variants that predispose them to metabolic dysfunction and 

insulin resistance are more likely to suffer from long term pathological sequelae after the acute phase of 

COVID-19 infection. From these findings we would indeed expect this population to have increased rates of 

new-onset type 2 diabetes compared to the non-long COVID population. Unfortunately, longitudinal health 

record data after the survey was completed was not available to validate this hypothesis in this analysis. 

Similarities in indications observed from the cross-disease analysis have also highlighted shared pathways 

and biological processes associated with genetic drivers of these indications. The results are supported by 

common clinical manifestations reported in long COVID studies. Of the 27 pathways significantly enriched in 

the long COVID genes identified in this analysis, 16 (60%) are associated with gene targets previously 

associated with mental or behavioral disease (Figure ). This includes indications such as major depressive 

disorder, anxiety disorder and schizophrenia. A recent meta-analysis of over 10,000 patients indicated that 

neurological and neuropsychiatric symptoms, such as brain fog, attention deficits and fatigue, were some of 

the most reported 3 months after acute COVID-1990. This analysis may indicate some of the genetic 

underpinnings of these manifestations post-COVID. 
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Study Limitations 

There are several limitations to this study. The most obvious is that the available datasets, even in a disease 

as topical, prevalent, and debilitating as long COVID are still very small, which notwithstanding the improved 

sensitivity offered by the combinatorial analytics approach, inevitably poses limits on the statistical power of 

the study. 

The most challenging limitation is the poor representation of diverse ancestries, which is essential to gain a 

deeper understanding of the variability of disease etiology and achieve a level of health equity. As 

demonstrated by the cohort analysis, even though considerable effort was made to recruit as diverse a 

population as possible, the majority of participants recruited to the GOLD study were of self-reported white 

Caucasian ancestry. It is evident that long COVID is a highly heterogeneous disease with a variety of different 

symptoms, clinical presentations and underlying disease mechanisms including neurological and metabolic 

dysregulation. From this dataset, we cannot understand the varying prevalence of these symptoms, or the 

effects that different genetic ancestries, socioeconomic factors, pathogen exposure levels or geographical 

differences may have in influencing the risk and presentation of long COVID in different ancestries.  

Our cohort analysis also revealed that the incidence of other comorbidities (such as type 2 diabetes, 

cardiovascular disease etc.) was lower than expected for a cohort with the same average age as the long 

COVID population. This may indicate a degree of ‘otherwise healthy’ volunteer bias that limits this dataset as a 

representative sample of long COVID. Alternatively, it could reflect a problem with under-reporting of other 

medical conditions within the self-reported questionnaire.  

All the non-genomic data was self-reported by the participants via a questionnaire upon recruitment to the 

study, including long COVID symptoms, level of acute COVID-19 severity and medical history. Unfortunately, 

no further EHR/primary care data was available. This method for reporting the degree of long COVID 

symptoms experienced is likely to be more subjective and prone to memory lapses and retrospective 

interpretation than direct and concurrent clinical information. This creates challenges in identifying the most 

relevant clusters of long COVID symptoms (e.g., respiratory, fatigue, GI etc.) and evaluating the severity of 

those symptoms experienced by different subgroups of cases. 

We were unable to fully evaluate some of the most significant consequences and secondary diagnoses 

associated with long COVID disease. In particular, we would have liked to evaluate the specific drivers 

underlying the development of POTS, which was only recorded as part of participants’ free-text responses and 

not captured in the main questionnaire. In the absence of consistent diagnosis and clinical reporting for POTS, 

we attempted to analyze the symptoms that patients reported when recruited to the study. Tachycardia, 

dizziness, palpitations, brain fog and even in some cases POTS were recorded but in insufficient numbers for 

a meaningful analysis. 

Hospital admission with a more severe form of acute COVID-19 has previously been identified as a risk factor 

for the development of long COVID91. We were unable to test this finding, as fewer than 10% of any of our 

case cohorts were hospitalized with COVID-19. As a result, there was insufficient data available to explore if 

long COVID cases with the 9 variants mapped to genes previously associated with acute COVID-19 (Table 8) 

were more likely to have experienced a more severe form of acute COVID-19.  

Finally, there is some emerging evidence that vaccination against COVID-19 may be protective against the 

development of long COVID92. The majority of cases included in our study were recruited in 2021 and the 

questionnaire did not contain any questions regarding vaccination status, or if the participants contracted 

acute COVID-19 before or after vaccination. As such, we are unable to evaluate the effect of vaccination on 

long COVID development within this cohort. There is also evidence that omicron variants are less likely to 

cause long-term symptoms even after adjusting for vaccine status93. However, it was also not possible to 

assess the association of SARS-CoV-2 variant status with long COVID risk. 
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Conclusions and Future Perspectives  

The results of this study, while encouraging and building consistently on findings in ME/CFS and other 

diseases with related symptomology, still need to be validated and replicated within an independent long 

COVID population, which ideally would have much deeper clinical phenotype and longitudinal history 

information.  

Various groups have been collecting large acute COVID-19 and long COVID patient datasets over the last 3 

years and we hope that they will now make the individual patient level data available to the wider research 

community quickly. We can realistically expect that analyzing an independent, larger and more detailed 

patient dataset using combinatorial analytics approaches will further improve the disease insights that we are 

gaining in long COVID, offering routes forward to alleviate the massive unmet medical need which has 

blighted the lives of millions of patients.  
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