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Abstract

Background

Respiratory pathogens inflict a substantial burden on public health and the economy. Although the
severity of symptoms caused by these pathogens can vary from asymptomatic to fatal, the factors that
determine symptom severity are not fully understood. Correlations in symptoms between infector-
infectee pairs, for which evidence is accumulating, can generate large-scale clusters of severe infections
that could be devastating to those most at risk, whilst also conceivably leading to chains of mild
or asymptomatic infections that generate widespread immunity with minimal cost to public health.
Although this effect could be harnessed to amplify the impact of interventions that reduce symptom
severity, the mechanistic representation of symptom propagation within mathematical and health
economic modelling of respiratory diseases is understudied.

Methods and Findings

We propose a novel framework for incorporating different levels of symptom propagation into models
of infectious disease transmission via a single parameter, α. Varying α tunes the model from having no
symptom propagation (α = 0, as typically assumed) to one where symptoms always propagate (α = 1).
For parameters corresponding to three respiratory pathogens — seasonal influenza, pandemic influenza
and SARS-CoV-2 — we explored how symptom propagation impacted the relative epidemiological and
health-economic performance of three interventions, conceptualised as vaccines with different actions:
symptom-attenuating (labelled SA), infection-blocking (IB) and infection-blocking admitting only mild
breakthrough infections (IB MB).

In the absence of interventions, with fixed underlying epidemiological parameters, stronger symptom
propagation increased the proportion of cases that were severe. For SA and IB MB, interventions were
more effective at reducing prevalence (all infections and severe cases) for higher strengths of symptom
propagation. For IB, symptom propagation had no impact on effectiveness, and for seasonal influenza
this intervention type was more effective than SA at reducing severe infections for all strengths of
symptom propagation. For pandemic influenza and SARS-CoV-2, at low intervention uptake, SA was
more effective than IB for all levels of symptom propagation; for high uptake, SA only became more
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effective under strong symptom propagation. Health economic assessments found that for SA-type
interventions, the amount one could spend on control whilst maintaining a cost-effective intervention
(termed threshold unit intervention cost) was very sensitive to the strength of symptom propagation.

Conclusions

Overall, the preferred intervention type depended on the combination of the strength of symptom
propagation and uptake. Given the importance of determining robust public health responses, we
highlight the need to gather further data on symptom propagation, with our modelling framework
acting as a template for future analysis.

1 Introduction 1

Respiratory pathogens, of which influenza and SARS-CoV-2 are prominent examples, are those that 2

cause infections in the respiratory tract, and are a major cause of mortality worldwide in high, medium 3

and low income countries [1]. Many respiratory pathogens have demonstrated their capability to cause 4

large-scale epidemics and/or pandemics. For example, seasonal influenza causes annual epidemics 5

which, prior to the COVID-19 pandemic beginning in 2020, were estimated to result in symptomatic 6

infection of 8% of the US population each year on average [2] and around 290,000 to 650,000 deaths 7

globally [3]. Pandemic influenza has also inflicted devastating consequences on global public health; 8

the 1918/19 Spanish flu pandemic is thought to have resulted in 50 million deaths worldwide [4], 9

while the 2009 H1N1 pandemic caused 200,000 deaths in its first year of circulation [5]. Since its 10

emergence in humans in 2019, SARS-CoV-2, the causative agent of COVID-19 disease, has resulted 11

in an estimated number of global deaths exceeding 6.5 million by the end of 2022 [6]. 12

Whilst the serious public health risks posed by respiratory diseases are evident, the resulting outbreaks 13

also come with a considerable economic cost. COVID-19 has had a massive impact on the global 14

economy, with the global cost in 2020 and 2021 estimated to be 14% of 2019 GDP [7]. These alarming 15

valuations were partially due to the high cost of interventions. For example, by September 2021, the 16

UK had spent £17.9bn on the test and trace programme, £13.8bn on the procurement of personal 17

protective equipment and £1.8bn on vaccine and antibody supply [8]. 18

Although the headline statistics on the health burden of these pathogens are somewhat bleak, many 19

respiratory pathogens are capable of causing of range of symptomatic outcomes. Often, infected 20

individuals experience, at worst, only mild symptoms, such as a runny nose, focused in the upper 21

respiratory tract. On the other hand, such pathogens also have the potential to cause severe symptoms, 22

primarily by infecting lower parts of the respiratory tract [9, 10]. Indeed, lower respiratory tract 23

infections account for more than 2.4 million deaths worldwide each year [1] and are a leading cause of 24

global mortality, especially amongst children and elderly people [11]. 25

The COVID-19 pandemic has heralded a paradigm shift in modelling the actions of interventions 26

when assessing public health control strategies, highlighting the importance of symptom severity and 27

leading to an increased understanding of the action of interventions beyond being purely infection- 28

blocking [12, 13]. Vaccines, whilst previously viewed in modelling terms as solely a way to prevent 29

infection, are now being considered to have a dual action of reducing symptom severity [14–16]. 30

Similarly, non-pharmaceutical interventions such as mask-wearing, social distancing and hand washing 31

were previously only thought of as ways to reduce transmission but are now thought to additionally 32

reduce the likelihood of symptomatic infection [17–21]. 33

Preparedness efforts against respiratory disease outbreaks and the contemporary evaluations of inter- 34

vention effectiveness motivate research into the relationship between the severity of illness, viral load 35
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and the transmission routes through which they spread. This research has revealed good biological 36

grounds for investigating symptom propagation for respiratory pathogens, where we define symptom 37

propagation as occurring when the symptoms of an infected individual depend, at least partially, on 38

the symptoms of their infector. Symptom propagation has been documented for Yersinia pestis, the 39

causative agent of plague. Those who develop the more severe form, pneumonic plague, are then able 40

to infect via the aerosolised route, which results in pneumonic plague in those infected [22]. 41

There is growing evidence that symptom propagation occurs for other respiratory pathogens. Prior 42

studies of influenza and SARS-CoV-2, have suggested two pathways through which symptoms may 43

propagate through chains of infection [23, 24]. The first pathway is through a dose-response relation- 44

ship. Individuals presenting with severe disease tend to shed more viral particles [25–28], meaning 45

that those they infect receive a larger infectious dose, in turn increasing the probability of more se- 46

vere disease outcomes [24, 29–31]. The second pathway is through differential transmission routes: it 47

is thought that severe disease arises more frequently for aerosol transmission (transmission involving 48

particles smaller than 5µm, which are sufficiently small and light to travel on air flows and to enter the 49

lower respiratory tract) than for close contact transmission (transmission involving direct or indirect 50

contact with an infected individual or transmission via large droplets, which are more likely to lodge 51

in the upper respiratory tract) [32]. The association with severity arises because aerosol transmis- 52

sion is more likely to cause infection in the lower respiratory tract, resulting in a higher probability 53

of more severe disease [23, 30, 33]. These studies give evidence for symptom propagation between 54

infector-infectee pairs, but its incorporation into epidemiological models is required to fully appreciate 55

its importance at a larger scale. 56

Symptom propagation has the potential to create chains of severe infections, resulting in large, inten- 57

sive outbreaks that could have devastating consequences for groups most at risk; on the other hand, it 58

could result in mild or asymptomatic infection spreading through a population, creating widespread 59

immunity whilst incurring a minimal cost to public health. In light of the observed differential symp- 60

tom severity that may be experienced for many pathogens, we are interested in exploring the public 61

health ramifications of a relationship between symptom severity of an infected individual and the 62

symptom severity of any subsequent cases caused by onward transmission. 63

We view the absence of a mechanistic representation of the propagation of symptom sets as a modelling 64

‘blind spot’, in light of the earlier described biological evidence already giving strong support of it being 65

a notable process for some pathogens [22]. Symptom severity has typically been modelled post-hoc 66

or separately from epidemiological dynamics. For example, it has become commonplace for models 67

to distinguish between asymptomatic and symptomatic infection, but asymptomatic infections are 68

generally assumed to occur with a fixed probability, independent of other infected individuals [34]. An 69

extension to this model has been explored by Paulo et al. [35], where the probability of severe disease 70

depended on the proportion of the population infected at the time, although not on their severity. 71

Other models in the literature capture multi-route transmission but do not invoke a relationship 72

between the route of transmission and symptom severity [23, 36–38]. Initial attempts to incorporate 73

symptom propagation into an epidemiological model of a respiratory tract infection can be seen in 74

Earnest [39] and Harris et al. [40]; however, work in this area remains rudimentary. 75

Another aspect meriting greater attention is the impact of symptom propagation on health economic 76

outcomes used to assess cost-effectiveness and help optimise public health strategies. For seasonal 77

influenza, there has been a focus in previous health economic studies on the cost-effectiveness of vac- 78

cination scenarios [41, 42]. On the other hand, in the context of COVID-19, although health economic 79

modelling studies have predominantly focused on vaccine rollout [43], there have been evaluations of 80

symptom-dependent interventions, such as comparing the effectiveness of symptomatic versus asymp- 81

tomatic testing [44] and considering quarantining measures that predominantly target symptomatic 82
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individuals [45]. At the time of writing, no work has been done to explore the effect of symptom 83

propagation on health economic outcomes. 84

In this paper, we develop a mathematical modelling framework that incorporates symptom propa- 85

gation and apply it to a range of pathogens to investigate the epidemiological and health-economic 86

implications of symptom propagation. First, we develop a generalisable, mechanistic infectious disease 87

transmission model that incorporates different strengths of symptom propagation via a single param- 88

eter, which we call α. Parameterising this model to capture three representative respiratory tract 89

pathogens of public health concern (seasonal influenza, pandemic influenza and SARS-CoV-2), we 90

conduct numerical experiments to explore the impacts of symptom propagation of different strengths 91

on epidemiological and health economic outcomes, both with no intervention and under three interven- 92

tions that we conceptualise of as vaccines with different modes of action. As well as symptom severity 93

propagation having important impacts on natural epidemiological dynamics (in the absence of inter- 94

vention), we found that when interventions were applied symptom propagation acted to amplify the 95

beneficial effects of symptom-attenuating interventions on community-level epidemiological outcomes. 96

These effects became even more stark for cost-effectiveness based assessments. For pathogens where 97

the propagation of symptom severity is an important attribute, our findings motivate the development 98

and use of a new class of models to help identify the most appropriate type of intervention to harness 99

the beneficial attributes of symptom propagation, delivering a reduced burden on public health and 100

more cost-effective control policy. 101

2 Methods 102

The propagation of symptom severity has been largely neglected in epidemiological modelling, with 103

symptom severity having typically been modelled post-hoc or separately from epidemiological dy- 104

namics. With an application to outbreaks of respiratory pathogens of public health concern (namely 105

seasonal influenza, pandemic influenza and SARS-CoV-2), we investigated the impact of the strength of 106

symptom propagation on epidemiological and health economic measures. Our methodology comprised 107

multiple aspects that we detail in turn: (i) a mathematical model of infectious disease transmission 108

that included two symptom severity classes (mild and severe) and a mechanism for symptom propaga- 109

tion (Section 2.1); (ii) incorporation of interventions into the model, with our implementation roughly 110

corresponding to three plausible modes of action of a vaccine (Section 2.2); (iii) approaches to assess 111

the health economic implications of proposed strategies (Section 2.3). 112

2.1 Infectious disease model including symptom severity and propagation 113

The basis of our infectious disease model is a standard deterministic, compartmental susceptible- 114

exposed-infectious-recovered (SEIR) model, described by a system of ordinary differential equations 115

(ODEs) [46, 47]. We extended the framework by stratifying infections according to two levels of 116

symptom severity, mild and severe, and mechanistically incorporating (the potential for) symptom 117

propagation (Fig. 1). 118

We expand below on: (a) the reasoning for the selection of two symptom severity classes; (b) a 119

description of how symptom severity was augmented into the compartmental framework; (c) the 120

transmission dynamics; (d) the mathematical formulation of the symptom propagation mechanism; 121

(e) the collection of ODEs describing the system dynamics (in the absence of interventions); (f) the 122

computational simulations performed to consider the implications of symptom propagation on our 123

three exemplar pathogens (seasonal influenza, pandemic influenza, SARS-CoV-2) in the absence of 124

interventions. 125
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(a) Two symptom severity classes 126

No formal scheme exists for classifying disease severity, with differing interpretations possible across 127

pathogens. For some pathogens, cases are typically stratified into “mild” or “severe”; in the context of 128

influenza, severe disease is generally associated with the development of a cough or fever [34, 48, 49]. 129

For other pathogens, severity is commonly stratified according to “asymptomatic” or “symptomatic” 130

infection, with SARS-CoV-2 being a notable example [40, 50]. Due to the ubiquity of “mild” and 131

“severe” within the literature for respiratory pathogens, we have decided to use this terminology 132

throughout. It should be noted, however, that the parameters chosen for mild COVID-19 disease, 133

such as the infectious period, are taken from estimates for the asymptomatic parameters. We model 134

the propagation of mild and severe symptoms because of the clinical importance of symptom severity 135

for respiratory tract infections but note that the framework can be applied to the propagation of 136

symptom sets in general. 137

(b) Infectious disease model compartments 138

Under our model structure of compartmentalising the population into susceptible, exposed (infected 139

but not yet infectious), infectious and recovered states, we further separated each of the exposed, 140

infectious and recovered states into two classes representing the two symptom severity levels (“mild” 141

and “severe”). In detail, EM (ES) contains individuals exposed to the disease who would go on to 142

develop mild (severe) disease. IM (IS) contains individuals who had become infectious and exhibited 143

mild (severe) symptoms. Note that we assumed there was no movement between the severity classes, 144

meaning an individual’s severity would be constant across their exposed and infectious periods. RM 145

(RS) contains individuals who had experienced mild (severe) disease and since recovered. 146

(c) Transmission dynamics 147

We assumed a dependence between disease severity and both the rate of transmission of infection, 148

βM , βS (for “mild” and “severe” cases, respectively), and the recovery rate from infection, γM , γS . 149

On the other hand, the incubation period, and thus the rate of becoming infectious, ϵ, took the same 150

fixed value for both severity classes due to data suggesting there is limited variation between mild and 151

severe cases [49, 50]. 152

Additionally, we assumed there was no waning immunity after recovery and we ignored demographic 153

processes (natural births and deaths) - as such we are modelling a single epidemic outbreak. In the 154

majority of scenarios, the simulated outbreaks occurred over a short time frame where the impacts 155

of these waning and demographic processes would be negligible. Equally, in the unusual case that 156

outbreaks persisted over a sustained time period (a decade and above), for the purposes of simplicity, 157

we wanted to maintain the focus on the impact of symptom propagation-associated factors. 158

We explored three disease parameter sets (Table 1), chosen to reflect a range of disease scenarios: 159

influenza-like parameters with R0 = 1.5 (seasonal influenza), influenza-like parameters with R0 = 3.0 160

(pandemic influenza) and early SARS-CoV-2-like parameters with R0 = 3.0. Specifically, R0 = 1.5 161

represented a pathogen that, on average, would spread through a population slowly and require mini- 162

mal interventions to be suppressed. In contrast, R0 = 3.0 represented a highly transmissible pathogen 163

with the potential to infect the majority of the population in the absence of strong interventions. These 164

values of R0 were chosen to reflect estimates in the literature of 1-1.69 for seasonal influenza [51–53], 165

1.95-3.5 for pandemic influenza [54–56] and 2.43-3.60 for wild-type SARS-CoV-2 [57–59]. To obtain 166

these fixed values of R0, we computed the required value of the transmission rate β for each value of α 167

by deriving an equation for R0 using the next-generation matrix approach (see Section S1). To better 168

align with approaches taken when analysing real-world infections, we chose to fix R0 as opposed to 169
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Table 1: Epidemiological parameter values for the (seasonal and pandemic) influenza and
SARS-CoV-2 scenarios. In each parameterisation, we calibrated the β value to acquire the stated
value of R0 in the respective scenario. All rates have a unit of ‘per day’ (day−1). (Top) Parameters
used for the two influenza scenarios: influenza-like parameters with R0 = 1.5 (seasonal influenza
parameterisation), influenza-like parameters with R0 = 3.0 (pandemic influenza parameterisation).
(Bottom) SARS-CoV-2-like parameters with R0 = 3.0.

Parameter Description Influenza value (day−1) Source

βM Mild transmission rate β
βS Severe transmission rate 2β Couch et al. [25]
ϵ Rate of becoming infectious 1/2 Cowling et al. [49]
γM Mild recovery rate 1/5 Cao et al. [60]
γS Severe recovery rate 1/7 Cao et al. [60]

Parameter Description SARS-CoV-2 value (day−1) Source

βM Mild transmission rate β
βS Severe transmission rate 4β Letizia et al. [61]
ϵ Rate of becoming infectious 1/5 Byrne et al. [50]
γM Mild recovery rate 1/7 Byrne et al. [50]
γS Severe recovery rate 1/14 Byrne et al. [50]

fixing the value of beta; R0 is the parameter most likely to be known from available empirical mea- 170

surements, with other model parameters (in this case β) inferred to generate the measured R0 value. 171

Our analysis with the value of β fixed instead of R0 can be found in Section S2 (Figs. S1 and S2). 172

Estimates for the other parameters were taken from studies of influenza A virus strains [25, 49, 60] and 173

estimates for wild-type SARS-CoV-2 [50, 61]. Comparing between the pandemic influenza and SARS- 174

CoV-2 parameter sets, the notable differences were SARS-CoV-2 having a higher ratio between mild 175

and severe transmission rates (four for SARS-CoV-2, two for pandemic influenza), a longer incubation 176

period (five days for SARS-CoV-2 versus two days for pandemic influenza) and a longer duration of 177

infection for both mild and severe cases (full details in Table 1). 178

(d) Incorporation of symptom propagation into the model framework 179

We encapsulated symptom severity and symptom propagation into the model framework through 180

two key parameters: α - the dependence on the symptom severity of the infector; ν - the baseline 181

probability of the pathogen causing severe disease in the absence of propagation effects. The parameter 182

ν is aligned with the idea of ‘virulence’ in that it is a measure of the intrinsic severity of the pathogen. 183

When α = 0, the symptom severity of the infected individual has no dependence on the infector’s 184

symptom severity; instead, the symptom severity of the infected individual depends entirely on ν - 185

this corresponds to the typical assumption applied to compartmental infectious disease models. When 186

α = 1, the symptom severity of an infected individual is wholly dependent on that of their infector, 187

meaning that symptom severity is always passed on with infection; in the case of no interventions, 188

this parameterisation is akin to a two-strain model, where one strain causes mild infections only and 189

the other strain causes severe infections only. When α ∈ (0, 1), the symptom severity of the infectee 190

has a partial dependence on the infector’s symptom severity and a partial dependence on ν. 191

Overall, our model of symptom propagation means that an infected individual, with probability α, 192
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Figure 1: Schematic showing how symptom severity was determined according to the
two symptom severity associated parameters, α and ν. White shaded individuals correspond
to those susceptible to infection, yellow shaded individuals correspond to infectious cases with mild
severity and red shaded individuals correspond to infectious cases with severe symptoms. The values
on the arrows show the corresponding probability. In brief, an infected individual has probability α
of copying the symptom severity of their infector and a probability 1− α of reverting to the baseline
probability of having severe disease, i.e. they developed severe disease with probability ν.

copies the symptom severity of their infector, whilst with probability 1−α, their symptom severity is 193

assigned randomly according to the underlying probability of having severe disease, ν (as depicted in 194

Fig. 1). 195

(e) Baseline model equations (without interventions) 196

The rate of change for each disease state was governed by the system of differential equations shown 197

in Eq. (1), with parameters as described in Table 1 and Fig. 1. This system of ODEs captures the 198

different levels of disease severity, the dependence of the infectee’s symptom severity on the infector’s 199

symptom severity (through the α parameter) and a baseline probability of an infected case having 200

severe disease (through the ν parameter). 201
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dS

dt
= −(λM + λS)S

dEM

dt
=
((

α+ (1− α)(1− ν)
)
λM + (1− α)(1− ν)λS

)
S − ϵEM

dES

dt
=
(
(1− α)νλM +

(
α+ (1− α)ν

)
λS

)
S − ϵES

dIM
dt

= ϵEM − γMIM

dIS
dt

= ϵES − γSIS

dRM

dt
= γMIM

dRS

dt
= γSIS

(1)

where the force of infection from mild cases, λM , and severe cases, λS , respectively, were given by:

λM =
βMIM
N

, λS =
βSIS
N

(2)

where N is the population size that is assumed to be constant. 202

(f) Exploring the effect of symptom propagation on epidemiological dynamics in the 203

absence of interventions: Simulation overview 204

In all our model simulations described here and throughout the manuscript, we considered an outbreak 205

arising within a population comparable in size to that of the UK (N = 67 million). All the scenarios 206

began with one infectious individual. We assumed that this individual would have severe symptoms 207

with probability given by the baseline probability of severe disease (ν). As the model used was fully 208

deterministic, we chose to simulate this effect by splitting the single infectious individual between the 209

two symptom severity classes so that IS was initialised to contain ν people and IM contained 1 − ν 210

people. The remainder of the population were initially susceptible (in the S class). The simulations 211

were run until there was less than one individual combined across all the infected classes (EM , ES , IM 212

and IS). 213

All code was produced using Matlab R2022a and is available at https://github.com/pasplin/ 214

symptom-propagation-mathematical-modelling. 215

To explore the effect of symptom propagation on the epidemiological dynamics of our three exemplar 216

pathogens, for set values of α (0 through 1 in 0.1 increments) and a fixed value of ν (0.2), we calculated 217

the following quantities: the final outbreak size (the number of recovered individuals at the end of 218

the simulation), the peak prevalence (the maximum number of individuals infected at any one time) 219

and the outbreak duration (the number of days until cumulatively there was less than one infected 220

individual across all of the infected classes). 221

We also inspected the dependence of the proportion of infections that were severe with respect to 222

changes in α and ν for the three exemplar pathogens. We tested combinations of α-ν values with an 223

increment of 0.05 for each parameter. 224

Across all simulations, for each value of α (and ν), β was chosen to generate a given R0 of the required 225

value for that disease parameterisation (further details in Section S1). 226
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2.2 Modelling interventions 227

To investigate how the strength of symptom propagation could impact epidemiological and health 228

economic assessments of infectious respiratory disease intervention strategies, we considered the roll- 229

out of three vaccines with different mechanistic actions on the infectious disease dynamics: (a) a 230

symptom-attenuating vaccine; (b) an infection-blocking vaccine (that did not impact the severity of 231

any breakthrough infections); (c) an infection-blocking vaccine that only admitted mild breakthrough 232

infections. Our vaccines having differing modes of action was motivated by contemporary studies 233

on effectiveness of SARS-CoV-2 vaccines that have estimated effectiveness with respect to infection, 234

symptoms, hospitalisation and mortality [14–16]. 235

We assumed a proportion of the population, given by the vaccine uptake, u, were vaccinated before 236

the start of the outbreak. In model terms, we moved a proportion, u, of those who would initially be 237

in the susceptible (S) class to the vaccinated class, V . 238

We assumed that all three vaccines were imperfect (below 100% efficacy, with details on the assumed 239

vaccine efficacies stated in the upcoming simulation overview subsection) and had a “leaky” action, 240

meaning the susceptibility of all those who were vaccinated was modulated by the vaccine efficacy- in 241

comparison, an “all-or-nothing” action would result in some of those who were vaccinated having full 242

protection and the rest remaining fully susceptible. To minimise complexity, in each simulation, we 243

only studied sole intervention use. 244

We highlight that the proportion of cases that were severe had a strong dependence on α, meaning 245

α would have a notable impact on the observed effectiveness of vaccination strategies, even when we 246

would intuitively expect symptom propagation to have no effect. Consequently, we sought to separate 247

the impact of symptom propagation on vaccination strategies from confounding epidemiological factors 248

that would result in an increase in severe cases. Therefore, we explored the effectiveness of the above- 249

described three vaccines for two values of α, 0.2 and 0.8, where for each value of α we chose the 250

appropriate value of ν to fix the proportion of cases (in the absence of interventions) that were severe 251

at 80%. This value was chosen to allow a large value of α to be considered, as in this case, the 252

proportion of cases that were severe was high regardless of the value of ν. Conceptually, we may 253

consider that the proportion of severe cases is ‘known’ from epidemiological data, and we are fitting 254

parameters to match this data. 255

We next provide an overview of the modifications to the model equations for each of the three vaccines 256

(depicted in Fig. 2). For each vaccine, we show the modified equations for EM and ES states (with 257

changes denoted by red text), with the equations for all other states being unchanged from those in 258

Eq. (1). We also introduce a V class, corresponding to susceptible individuals who are vaccinated. 259

(a) Symptom-attenuating vaccine 260

First, we considered a vaccine with a symptom-attenuating effect. Vaccinated individuals have prob- 261

ability η of having mild disease, and probability 1− η of their symptom severity being determined as 262

usual (Fig. 2(a)). 263

Updates to the V class, corresponding to susceptible individuals who are vaccinated, and the exposed 264

classes (ES and EM , with changes from the original model without vaccination - Eq. (1) - shown in 265

red font) followed these ODEs: 266
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(a)

(b)

(c)

Figure 2: Schematics depicting the mechanistic actions of each vaccine. Across all panels,
yellow shaded individuals correspond to infectious cases with mild symptoms, red shaded individuals
correspond to infectious cases with severe symptoms, blue shaded individuals correspond to those who
are vaccinated. The values on the arrows show the corresponding probability. The three vaccines
displayed are: (a) symptom-attenuating vaccine - an infected individual who is vaccinated had a
probability η of having mild disease, and a probability 1−η of their symptom severity being determined
as usual; (b) an infection-blocking vaccine - a vaccinated individual had a probability η of their
infection being prevented, and a probability 1 − η of being infected and their symptom severity
being determined as usual; and (c) an infection-blocking vaccine that only admits mild breakthrough
infections - a vaccinated individual had a probability η of their infection being prevented, and a
probability 1− η of being infected but only with mild disease.
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dV

dt
= −(λM + λS)V

dEM

dt
= η(λM + λS)V +

(
(α+ (1− α)(1− ν))λM + (1− α)(1− ν)λS

)(
S+(1− η)V

)
− ϵEM

dES

dt
=
(
(1− α)νλM + (α+ (1− α)ν)λS

)(
S+(1− η)V

)
− ϵES

(3)

(b) Infection-blocking vaccine 267

Next, we considered a vaccine with an infection-blocking effect. Vaccinated individuals are not infected 268

when exposed with probability η (Fig. 2(b)); otherwise infection and symptoms proceed as before. 269

The revised system equations were: 270

dV

dt
= −(1− η)(λM + λS)V

dEM

dt
=
(
(α+ (1− α)(1− ν))λM + (1− α)(1− ν)λS

)(
S+(1− η)V

)
− ϵEM

dES

dt
=
(
(1− α)νλM + (α+ (1− α)ν)λS

)(
S+(1− η)V

)
− ϵES

(4)

(c) Infection-blocking vaccine that only admits mild breakthrough infections 271

Lastly, we modelled a vaccine with a combined infection-blocking and symptom-blocking effect. The 272

action of this vaccine meant those who were protected were not infected when exposed with probability 273

η. Furthermore, all vaccinated individuals only develop mild disease, regardless of the efficacy of the 274

vaccine in blocking infection (Fig. 2(c)). 275

The revised system equations were: 276

dV

dt
= −(1− η)(λM + λS)V

dEM

dt
= (1− η)(λM + λS)V +

(
(α+ (1− α)(1− ν)λM + (1− α)(1− ν)λS

)
S − ϵEM

dES

dt
=
(
(1− α)νλM + (α+ (1− α)ν)λS

)
S − ϵES

(5)

Additionally, we modelled another infection-blocking vaccine that had an alternative manner in which 277

breakthrough infections could arise, namely breakthrough infections were only possible when the 278

infector was a severe case. We found no difference in results between this vaccine type and the 279

infection-blocking vaccine. We provide the model schematic, equations and summary of findings in 280

Section S4. 281

(d) Exploring the effect of symptom propagation on epidemiological dynamics in the 282

presence of vaccination: Simulation overview 283

Across our main vaccination analyses, the vaccine efficacy was fixed at 70% based on estimates of 284

COVID-19 vaccine efficacy [14, 15]. This vaccine efficacy level was also a reasonable selection for 285
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influenza vaccines since the vaccine efficacy during the 2009/10 season was estimated to be 72% vs the 286

pandemic H1N1 strain [62], and other studies have estimated influenza vaccine efficacy to be between 287

56-78% [63] and between 26-73% [64]. To assess sensitivity to vaccine efficacy, as supplementary 288

analyses, we also considered vaccine efficacies of 50% and 90%, where we found qualitatively similar 289

results (see Section S7, Figs. S16 to S23). 290

For the three vaccine types, two vaccine uptake levels (50% and 90%) and three sets of disease pa- 291

rameters, we calculated the proportion of the population in each recovered compartment (having had 292

mild or severe symptoms) at the end of the outbreak for two values of α (0.2 and 0.8), with ν chosen 293

to fix the proportion of cases that were severe without intervention at 80%. 294

For a range of values of α and ν (0 through 1 in 0.02 increments), we also calculated the difference in 295

the number of individuals severely infected when an infection-blocking vaccine was used compared to 296

a symptom-attenuating vaccine. 297

2.3 Health economic modelling 298

Often there are many potential intervention strategies that can be used to limit the spread of the 299

disease. Since public health decision makers have a finite budget, the cost of the intervention is 300

an important factor to consider alongside the resulting epidemiological outcomes. Thus, measures for 301

both the benefit to public health and the costs associated with the intervention and treatment warrant 302

consideration. 303

Measures of health quality and model parameterisation 304

The chosen measure to quantify disease burden was quality-adjusted life years (QALYs), which con- 305

sider both the quality and quantity of years lived [65]. We assumed there were no QALY losses 306

associated with mild cases. The magnitude of QALY loss from a severe case depended on whether 307

the case was hospitalised and whether it wasfatal; a proportion of severe cases was assumed to lead 308

to hospitalisation and fatalities, as dictated by the pathogen-specific hospitalisation rate and death 309

rate (parameter details in Table 2). Hospitalisations and fatalities also had an associated monetary 310

cost, where once again values differed for influenza and SARS-CoV-2 (Table 2). Further details of the 311

health economic model parameters are provided in Section S3. 312

We deemed an intervention to be cost-effective if the overall cost of implementing the intervention was 313

less than or equal to the value of QALYs gained from doing so. In particular, we computed threshold 314

unit intervention costs, the monetary cost of an intervention unit that would result in intervention 315

costs equalling the monetary value of QALYs gained. In this case, the threshold unit intervention cost 316

refers to the threshold cost per vaccine dose. 317

Determining whether an intervention is cost-effective requires setting a willingness to pay (WTP) 318

threshold per QALY - the amount one is willing to pay to gain one QALY. We used a default WTP 319

per QALY of £20,000, reflecting the typical criteria used in England that alternative intervention 320

strategies need to satisfy to be judged as cost-effective [70]. Equivalently, 321

Threshold unit intervention cost =

(WTP threshold)× (QALY loss prevented) + (hospital costs prevented)

intervention uptake×N
(6)

In all simulations, the threshold unit intervention cost was normalised with respect to the highest 322

absolute threshold unit intervention cost attained for that disease parameterisation across the range 323

of tested vaccine uptake values. 324
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Table 2: Description of parameters used in the health economic modelling. (Top) Values
applied to both the seasonal influenza and pandemic influenza disease parameterisations. (Bottom)
Values applied to the SARS-CoV-2 disease parameterisation.

Description Influenza value Source

Probability of hospitalisation (given severe disease) 0.01 Hill et al. [41]
Probability of death (given severe disease) 0.001 Hill et al. [41]

QALY loss from a mild case 0 QALYs Assumption
QALY loss from a severe, non-hospitalised case 0.008 QALYs Hill et al. [41]
QALY loss from a non-fatal hospitalised case 0.018 QALYs Hill et al. [41]
QALY loss from a fatal hospitalised case 37.5 QALYs Hollmann et al. [66]

Total cost of a non-fatal hospitalised case £1,300 Hill et al. [41]
Total cost of a fatal hospitalised case £2,600 Hill et al. [41]
Willingness to pay threshold per QALY £20,000 NICE [67]

Description SARS-CoV-2 value Source

Probability of hospitalisation (given severe disease) 0.065 Moran et al. [68]
Probability of death (given severe disease) 0.02 Moran et al. [68]

QALY loss from a mild case 0 QALYs Assumption
QALY loss from a severe, non-hospitalised case 0.0035 QALYs Moran et al. [68]
QALY loss from a non-fatal hospitalised case 0.0059 QALYs Moran et al. [68]
QALY loss from a fatal hospitalised case 11.29 QALYs Moran et al. [68]

Total cost of a non-fatal hospitalised case £2,600∗ Vekaria et al. [69]
Total cost of a fatal hospitalised case £5,200∗ Vekaria et al. [69]
Willingness to pay threshold per QALY £20,000 NICE [67]
∗ Hospitalisation costs for SARS-CoV-2 are double those of influenza, based on the average hospital
stay being twice as long for SARS-CoV-2 versus influenza - further details available in Section S3.

Exploring the effect of symptom propagation on health economic outcomes: Simulation 325

overview 326

For the three vaccine types, two vaccine uptake levels (50% and 90%) and three disease parameteri- 327

sations, we conducted comparisons of the relative threshold unit intervention cost between two values 328

of α (0.2 and 0.8) with ν chosen to fix the proportion of cases that were severe without intervention 329

at 80%. We then explored how the threshold unit intervention costs varied with the vaccine uptake, 330

looking at uptake levels between 0% and 100% in 1% increments. 331

For the results presented in the main text, we applied a 3.5% discounting rate to both QALY losses and 332

monetary costs, as recommended [71]. For sensitivity purposes, we also tested having no discounting, 333

with results given in Section S6 (Figs. S14 and S15). 334

3 Results 335

3.1 Symptom propagation affects epidemiological dynamics 336

Initially, we explored the effect of varying the strength of symptom propagation on epidemiological 337

outcomes for a fixed baseline probability of severe disease, ν = 0.2. Since, for each set of parameters, 338
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the value of R0 was fixed, the resultant outbreak size remained mostly constant as we varied the 339

dependence on infector symptom severity, α (Figs. 3(a) to 3(c)), although there was a slight reduction 340

in final outbreak size as α approached 0.5 due to numerical inaccuracies (Fig. S6). As these differences 341

in case numbers were proportionally small, we assumed the final size to be fixed throughout the 342

remainder of the analysis. 343

Considering the stratification of cases by severity (mild or severe), the proportion of total cases that 344

were severe monotonically increased with α. As expected, when α = 0, the proportion of cases that 345

were severe was equal to the baseline probability of severe disease, ν = 0.2. This proportion increased 346

to effectively all cases being severe when α = 1 (Figs. 3(a) to 3(c)). Similarly, the proportion of cases 347

that were severe at the peak of the outbreak increased with α, with this proportion aligning with the 348

proportion severe overall (Figs. 3(d) to 3(f)). The outbreak duration also increased with α (Figs. 3(d) 349

to 3(i)) due to individuals with severe disease having a longer infectious duration. Comparing α = 1 350

with α = 0 across all three disease scenarios, we observed an increase of approximately 20% in the 351

outbreak duration. 352
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: The final outbreak size, peak prevalence and outbreak duration, by severity,
for three disease parameterisations, plotted for different symptom propagation strengths,
α. (a-c) Final outbreak size by severity. (d-f) Peak prevalence by severity. The intensity of the
shading denotes the symptom severity class, with severe cases in red and mild cases in yellow. (g-
i) Outbreak duration (note the different y-axis scales). In all panels, ν = 0.2. The three disease
parameterisations used were: (a,d,g) Seasonal influenza; (b,e,h) Pandemic influenza; (c,f,i) SARS-
CoV-2, with parameters as given in Table 1.
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(a) (b) (c)

Figure 4: The proportion of infections that were severe against changes in α and ν for
three parameter sets. The shading shows the proportion of infections that were severe, with darker
shading corresponding to a higher proportion being severe. Black lines correspond to the contours
taking values from 0.1 to 0.9, at increments of 0.1. The three disease parameterisations used were:
(a) Seasonal influenza; (b) Pandemic influenza; (c) SARS-CoV-2. The parameters were as given in
Table 1.

Overall, the qualitative patterns of the impact of symptom propagation differed relatively little between 353

the three sets of disease parameters. Unsurprisingly, seasonal influenza had a much lower final outbreak 354

size and peak prevalence than the other two disease parameterisations (Figs. 3(a) and 3(d), due to its 355

lower assumed R0 value). More interestingly, SARS-CoV-2 had a lower peak prevalence than pandemic 356

influenza, especially for low values of α (Figs. 3(e) and 3(f)), with longer generation times for SARS- 357

CoV-2 dominating the effects of a higher R0 value. SARS-CoV-2, compared to the two influenza 358

disease parameterisations, showed a slightly higher proportion of severe cases for intermediate values 359

of α . Furthermore, the proportion of cases that were severe (both overall and at peak) for SARS-CoV- 360

2 exhibited a roughly linear increase as α increased from 0 to 1, whereas for influenza these metrics 361

increased sub-linearly for α between 0 and 0.5, and approximately linearly for increasing α between 362

0.5 and 1 (Figs. 3(d) to 3(f)). 363

Next, we considered how the value of the baseline probability of severe disease, ν, impacted epidemio- 364

logical outcomes. As expected, the proportion of cases that were severe increased with ν (Fig. 4). For 365

values of α close to 0, the value of ν mostly determined the proportion of cases that were severe. In 366

contrast, when α was close to 1, the proportion of cases that were severe remained high, independent 367

of the value of ν. The relationship between α, ν and the proportion of cases that were severe was 368

consistent across parameter sets. 369

3.2 Symptom propagation increases the effectiveness of interventions that impact 370

symptom severity 371

In this section, we explored three types of intervention, corresponding to three plausible vaccination 372

scenarios: a symptom-attenuating vaccine (SA), an infection-blocking vaccine (IB) and an infection- 373

blocking vaccine that only admits mild breakthrough infections (IB MB). We considered two vaccine 374

uptake rates (50% and 90%) and two values of α (0.2 and 0.8). In order to highlight the differences 375

between vaccine types, the value of ν was chosen (as a function of a given value of α) to fix the 376

proportion of cases that were severe equal to 0.8. We additionally produced an analogous set of results 377

with ν fixed equal to 0.2 for comparison (Figs. S12 and S13), noting there would be an inherent relative 378

reduction in potential impact of SA interventions for that scenario. 379
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(a) (b) (c)

(d) (e) (f)

Figure 5: The proportion of the population in each disease state at the end of the
outbreak for the four intervention scenarios, two vaccine uptake levels and three dis-
ease parameterisations. The four groups of bars correspond to four intervention scenarios: no
intervention (No), a symptom-attenuating vaccine (SA), an infection-blocking vaccine (IB) and an
infection-blocking vaccine which only admits mild breakthrough infections (IB MB). The two bars in
each group correspond to two different strengths of symptom propagation: α = 0.2 (left bar with
hatched lines) and α = 0.8 (right bar with solid fill). Bar shading corresponds to the disease status:
red - recovered from severe infection (RS); yellow - recovered from mild infection (RM ); blue - suscep-
tible and vaccinated (V ); white - susceptible and not vaccinated (S). The two rows correspond to two
vaccine uptake levels: (a-c) 50%; (d-f) 90%. Columns correspond to different disease parameterisa-
tions: (a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. We fixed the vaccine
efficacy at 70% and all other parameters as given in Table 1, with ν chosen to fix the proportion of
cases that were severe equal to 0.8.

For all parameter sets and both uptake and α values, the IB MB vaccine type was, unsurprisingly, the 380

most effective at reducing both total and severe cases (Fig. 5). Similarly, a solely infection-blocking 381

vaccine was always more effective at reducing total cases than a symptom-attenuating vaccine. In the 382

case of seasonal influenza, both IB and IB MB were sufficient to fully suppress the outbreak (< 0.01% 383

of the population was infected), even at 50% uptake, whereas 90% uptake was required for the SA 384

vaccine to suppress the outbreak. However, in many cases, the symptom-attenuating vaccine was more 385

effective at reducing severe cases than the solely infection-blocking vaccine. This effect was seen for 386
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both α values for pandemic influenza or SARS-CoV-2 and 50% uptake (Figs. 5(b) and 5(c)). For these 387

two disease parameterisations, when the uptake was instead 90%, whether the SA or IB vaccine was 388

more effective at reducing severe cases depended on the value of α, with the higher value of α = 0.8 389

resulting in the SA vaccine being more effective (Figs. 5(e) and 5(f)). 390

Across all scenarios, the IB vaccine resulted in the same epidemiological outcomes for both values of 391

α. For the other two vaccine types (SA and IB MB), effectiveness was always higher for the higher 392

α value, with the exception of scenarios in which the outbreak was suppressed for both α values 393

(< 0.01% of the population was infected). Results were similar when considering peak prevalence 394

(Fig. S10). For all intervention scenarios (including no intervention), the duration was higher for 395

α = 0.8 compared to α = 0.2 for those instances where the outbreak was not effectively prevented 396

(>0.01% of the population was infected, Fig. S11). Inspection of temporal profiles of the outbreaks 397

revealed that, in all intervention scenarios, the peak prevalence occurred later for α = 0.8 than for 398

α = 0.2, even when no intervention was used (Figs. S7 to S9). For the no intervention and IB vaccine 399

scenarios, this delay was a noticeable change in the temporal dynamics between the two α values; 400

otherwise, the temporal dynamics largely exhibited similar qualitative behaviour. 401

We then explored the difference in the number of severe cases prevented by an IB vaccine and an SA 402

vaccine for the three disease parameterisations and two vaccination uptake levels, under a fixed vaccine 403

efficacy (70% ) (Fig. 6). We found that the IB vaccine was always more effective at preventing severe 404

cases in the case of seasonal influenza (Figs. 6(a) and 6(d)). For the other two parameter sets, the 405

results were qualitatively similar. For a lower vaccine uptake (50%), the SA vaccine was more effective 406

at reducing severe cases for almost all values of α and ν (red shaded cells of Figs. 6(b) and 6(c)). In 407

contrast, when the vaccine uptake was high (90%), which vaccine type was most effective at reducing 408

severe cases depended on the values of α and ν, with the SA vaccine being more effective for larger 409

values of α and ν (Figs. 6(e) and 6(f)). 410

3.3 Symptom propagation can affect health economic outcomes 411

Switching attention to how the strength of symptom severity propagation can impact health economic 412

assessments, the differences in the threshold unit intervention cost for the two values of α aligned with 413

our previously presented results (Fig. 7). 414

When comparing between vaccine types, we found that the IB MB vaccine always had the highest 415

threshold unit intervention cost of the three vaccine types considered. For the pandemic influenza and 416

SARS-CoV-2 parameterisations, SA always had a higher threshold unit intervention cost (and was, 417

therefore, more cost-effective) than IB when α = 0.8 (Figs. 7(b), 7(c), 7(e) and 7(f)). When α = 0.2, 418

SA was only more cost-effective than IB when uptake was low (50%) (Figs. 7(e) and 7(f)). 419

When comparing between the two α values, there was the least variation observed for the IB vaccine, 420

where the threshold unit intervention cost was roughly the same for the two α values in all uptake and 421

disease parameterisation scenarios. This result aligns with our previous finding that α had no effect 422

on epidemiological outcomes when an IB vaccine was used (Fig. 5). For the other two vaccine types, 423

SA and IB MB, the threshold unit intervention cost was higher when α = 0.8, unless the outbreak 424

was effectively contained (< 0.01% of the population was infected) for both α values, in which case 425

the threshold unit intervention costs were the same. In all of these scenarios, the relative difference 426

in threshold unit intervention cost was higher for the influenza parameter sets (16%-45% increase, 427

Figs. 7(a), 7(b), 7(d) and 7(e)) than for the SARS-CoV-2 parameter set (Figs. 7(c) and 7(f), 5%-16% 428

increase). The relative difference in outcomes between α values was also generally higher for the SA 429

vaccine than for the IB MB vaccine (14%-45% increase for SA vs 5%-16% for IB MB). In all cases, 430

as anticipated the observed differences in threshold unit intervention cost reflect the differences in 431
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(a) (b) (c)

(d) (e) (f)

Figure 6: The relative effectiveness in reducing severe cases of a symptom-attenuating
and infection-blocking vaccine as a function of α and ν, given a fixed efficacy (70%).
Rows correspond to the two vaccine uptake levels (a-c) 50%; (d-f) 90%, and columns to the different
disease parameterisations ((a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2).
Pixel shading denotes (for given combinations of α-ν values) the difference in the proportion of the
population severely infected between vaccine types, such that blue regions show parameter combina-
tions where the infection-blocking vaccine was more effective at reducing the number of severe cases
and red regions show those where the symptom-attenuating vaccine was more effective.

epidemiological outcomes (Fig. 5). 432

We then explored how vaccine cost-effectiveness varied for a range of α and ν values (Figs. S24 to S26). 433

We found that the threshold unit intervention cost increased with both α and ν irrespective of the 434

action of the vaccine as a consequence of higher values of α and ν causing a larger proportion of cases 435

to be severe. 436

We then applied greater scrutiny to how the threshold unit intervention cost depended on the level 437

of uptake for the three vaccine types and three disease parameterisations (Fig. 8). For both seasonal 438

influenza (Figs. 8(a) to 8(c)) and pandemic influenza (Figs. 8(d) to 8(f)), the difference in threshold 439

unit intervention cost (obtained for α = 0.2 and α = 0.8) decreased as vaccine uptake increased. 440

This was particularly noticeable for the SA vaccine, where the difference decreased somewhat linearly 441

until the point where the values converged. For the SARS-CoV-2 parameterisation, the difference in 442

threshold unit intervention cost between the two α values remained relatively constant as the uptake 443

increased, up until the point where the two values converged (Figs. 8(g) to 8(i)). 444

As previously, we observed different effects of α for the different types of vaccine. For the IB vaccine, 445

we found that the threshold unit intervention cost was equal for the two values of α at all vaccine 446
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(a) (b) (c)

(d) (e) (f)

Figure 7: Threshold unit intervention cost for the three types of vaccine, two vaccine
uptake levels and the three disease parameterisations. In all panels, we normalised threshold
intervention costs by the highest absolute threshold unit intervention cost obtained across the range of
tested vaccine uptake values. The three groups of bars correspond to: a symptom-attenuating vaccine
(SA), an infection-blocking vaccine (IB) and an infection-blocking vaccine which only admits mild
breakthrough infections (IB MB). The two bars in each group correspond to symptom propagation
strengths of α = 0.2 (left bar, hatched lines) and α = 0.8 (right bar, solid fill). The two rows
correspond to two vaccine uptake levels: (a-c) 50%; (d-f) 90%. Columns correspond to differing
disease parameterisations: (a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2.
Vaccine efficacy was fixed at 70% and all other parameters were as given in Table 1, with ν chosen to
fix the proportion of cases that were severe equal to 0.8.

uptake levels (Figs. 8(b), 8(e) and 8(h)). For the SA vaccine (Figs. 8(a), 8(d) and 8(g)) and IB MB 447

vaccine (Figs. 8(c), 8(f) and 8(i)), the threshold unit intervention cost remained higher for α = 0.8 448

as the uptake increased, up until the uptake level at which the outbreak was suppressed for both 449

α values. After this point, for both α values, the threshold unit intervention costs were equal and 450

decreased monotonically with vaccine uptake. 451

Across all uptake and disease parameterisation scenarios, the most cost-effective uptake (i.e. the 452

uptake that maximised the threshold unit intervention cost) varied minimally with α. There was a 453

consistent general relationship between the threshold unit intervention cost and the vaccine uptake 454

between the two α values. 455
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Variation of the threshold unit intervention cost with vaccine uptake. We nor-
malised threshold unit intervention costs for each disease parameterisation; the normalisation constant
was the highest absolute threshold unit intervention cost attained for the respective disease parame-
terisation across the range of tested uptake values. The three rows correspond to the three different
disease parameterisations: (a-c) seasonal influenza; (d-f) pandemic influenza; (g-i) SARS-CoV-2.
The three columns correspond to: (a,d,g) a symptom-attenuating vaccine (SA), (b,e,h) an infection-
blocking vaccine (IB) and (c,f,i) an infection-blocking vaccine that only admits mild breakthrough
infections (IB MB). The two lines correspond to two symptom propagation strengths; the dashed,
light purple line corresponds to α = 0.2 and the solid, dark purple line corresponds to α = 0.8. We
fixed the vaccine efficacy at 70% and all other parameters values were as given in Table 1, with ν
chosen to fix the proportion of cases that were severe equal to 0.8.
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We further explored the most cost-effective uptake value for a range of α and ν values and found that 456

the most cost-effective level of vaccine uptake (i.e the uptake with the highest threshold unit interven- 457

tion cost) generally remained constant across α and ν values (Figs. S27 to S29). Some exceptions to 458

this did arise for the vaccines that were symptom-attenuating and infection-blocking with mild break- 459

through infections. For certain disease parameterisations and efficacy values, we found large variation 460

in the most cost-effective uptake, from close to 0% to nearly 100% in some parameterisations. Between 461

scenarios, we did not observe a simple qualitative pattern of variation, although the regions where 462

uptake close to 0% was most cost-effective tended to have lower values of α and ν. 463

Lastly, to give insight into how outcomes could differ if symptom propagation was mistakenly omitted 464

from the modelled infection dynamics, we compared between the threshold unit intervention cost of 465

the most cost-effective uptake for a particular value of α and the threshold unit intervention cost for 466

the most cost-effective uptake at α = 0 (Figs. S30 to S32). We found that generally the difference in 467

threshold unit intervention costs increased with α for both the SA vaccine and the IB MB vaccines. 468

4 Discussion 469

In this paper, we make three main contributions to the literature. Firstly, we introduce a parsimo- 470

nious and generalisable mechanistic mathematical framework to model infectious disease transmission 471

that incorporates symptom propagation of different strengths via a single parameter, α. Secondly, 472

we demonstrate substantial impacts of symptom propagation on epidemiological outcomes. For pa- 473

rameterisations corresponding to seasonal influenza, pandemic influenza and SARS-CoV-2, we demon- 474

strate that, for a given value of R0, even for a low baseline probability of severe disease, ν, (which 475

we conceptualise as relating to the virulence of the pathogen) the proportion of cases that experience 476

severe disease can approach one as the strength of symptom propagation, α, increases. Thirdly, we 477

apply three types of intervention, corresponding to three plausible vaccination scenarios (symptom- 478

attenuating, SA, infection-blocking, IB, and infection-blocking with mild breakthrough infections, 479

IB MB), and demonstrate important impacts of symptom propagation on epidemiological and health 480

economic outcomes. We showed that although the strength of symptom propagation had no effect 481

on epidemiological outcomes for IB interventions, differences were seen for interventions that acted to 482

reduce symptom severity, with the effectiveness of these interventions in reducing the number of severe 483

and total cases increasing with the strength of symptom propagation. The strength of symptom prop- 484

agation also affected the relative effectiveness of SA and IB interventions in reducing severe cases, with 485

the optimal type of intervention dependent on a combination of uptake and α. In the health economic 486

analysis, we found that the strength of symptom propagation had important implications for the cost- 487

effectiveness of SA interventions, and to a lesser extent, IB MB interventions. Thus, we demonstrated 488

how symptom propagation influences both epidemiological and health economic outcomes, which can 489

alter the balance between preferred intervention types. 490

A cornerstone of our encapsulation of symptom propagation was the parameter α, the dependence 491

of the symptoms of an infected individual on the symptoms of their infector. Our general finding 492

was that the proportion of cases that were severe increased with α. Although the effect of symptom 493

propagation on the proportion of cases that are severe has not received attention in previous modelling 494

studies, this result aligns with suggestions that symptom propagation, at least through a dose-response 495

relationship, could lead to severe outbreaks and intense epidemics [24]. This result also aligns with the 496

findings of Paulo et al. [35], who found that the inclusion of a dose-response relationship in their model 497

led to an increase in the incidence of severe disease and higher mortality. The appreciable effect of α 498

on epidemiological outcomes motivates the inclusion of symptom propagation in models of infectious 499

disease transmission, both when simulating an outbreak from a given set of parameters and when 500
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estimating parameters from an empirical data set. It also highlights the importance of examining in 501

more detail the basic biological mechanisms of symptom propagation for respiratory pathogens. 502

We found that the proportion of cases that were severe not only increased with α, but also with the 503

baseline probability of severe disease, ν. In many scenarios, for a given value of α, it was possible to 504

compute the value of ν that returned a pre-specified proportion of cases that were severe. However, 505

this was limited to relatively low values of α, since for high values of α the proportion of cases that 506

were severe was large regardless of the value of ν. As a result of this, when the proportion of cases that 507

were severe was fixed, the proportion chosen was relatively high (80%) to allow for the consideration 508

of a value of α close to one. We acknowledge that it may be unrealistic for such a high percentage of 509

cases to have severe symptoms, with the proportion of cases that are mild estimated to be 43% for 510

influenza (where mild is defined as subclinical) [72] and 44% for SARS-CoV-2 (where mild is defined as 511

asymptomatic) [73]. It may also be the case that such high values of α (i.e. high amounts of symptom 512

propagation) are unrealistic, although we know that for certain diseases, such as plague, the value of 513

α is close to one [22]. Instead, this overestimation of the proportion of cases that are severe for high 514

values of α may be due to our subjective parameterisation of some of the epidemiological parameters, 515

for example, the relative transmissibility of mild and severe disease. Alternatively, it may be that 516

such strengths of symptom propagation are realistic, but are not observed due to behavioural changes 517

not included in this model, since individuals displaying symptoms have been shown to reduce their 518

contact with others in their community [74]. The inclusion of behavioural responses is an important 519

area of infectious disease modelling identified for dedicated research. 520

When exploring the effect of symptom propagation on the effectiveness of interventions, we found 521

that interventions affecting symptom severity (i.e. the symptom-attenuating intervention or infection- 522

blocking intervention with mild breakthroughs infections) were consistently more effective at reducing 523

cases and were more cost-effective for a higher value of α; exceptions to this were when the inter- 524

vention suppressed the outbreak for both α values under consideration (α = 0.2 and α = 0.8). In 525

contrast, varying α had little or no effect on epidemiological outcomes when the intervention was 526

purely infection-blocking. These results suggest that determining the effect, if any, of an intervention 527

on the symptoms experienced by individuals is critical to understand whether symptom propagation 528

is an important consideration when investigating the effectiveness of the intervention. 529

Given increasing evidence that many interventions used to prevent the spread of disease also reduce 530

symptom severity, it may be the case that symptom propagation should be considered more often 531

than not. Indeed, vaccinated individuals are more likely to have asymptomatic disease in addition to 532

having a lower risk of infection, as was the case for COVID-19 vaccines [75]. Additionally, it has been 533

indicated that non-pharmaceutical interventions such as social distancing and mask-wearing can reduce 534

the infectious dose for onward transmission, leading to less severe disease in those infected [20, 21, 76]. 535

For disease parameterisations with a higher R0 (corresponding to pandemic influenza and SARS-CoV- 536

2) and a high intervention uptake, comparisons between intervention types showed that given a strong 537

symptom propagation action, a symptom-attenuating intervention was more effective at reducing 538

severe cases than an infection-blocking intervention, even though total outbreak sizes were larger. 539

This finding suggests dual benefits of SA interventions: reduced numbers of severe cases alongside 540

widespread population immunity. Similar effects have been described previously. For example, a 541

so-called “variolation effect” has been discussed in the context of mask-wearing during the COVID- 542

19 pandemic; some authors hypothesise that masks could act to reduce the inoculum dose leading 543

to reduced disease severity in those infected, and that this effect could have been used to generate 544

widespread immunity before vaccines became available [19, 21]. 545

The intervention type ranked as most effective at reducing severe cases (when comparing between 546

23

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 24, 2024. ; https://doi.org/10.1101/2023.07.12.23292544doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.12.23292544
http://creativecommons.org/licenses/by/4.0/


them) had a notable dependence on α, ν and the disease parameterisation. Accordingly, symptom 547

propagation may be an important factor to consider when choosing between intervention types. A 548

renewed analysis of interventions for the containment, suppression and management of respiratory 549

pathogens of public health concern could result, for example via the examination of interventions 550

that can create large-scale population immunity while minimising the number of severe cases. Such 551

modelling analysis is only viable by us taking a contemporary approach to capturing actions of inter- 552

ventions, rather than treating them as being solely infection blocking. The data arising from SARS- 553

CoV-2 vaccines having a stratification of efficacy for different health episode outcomes (infection, 554

symptomatic, hospitalisation, mortality) [14–16] motivates a similar richness of data collection being 555

undertaken for other pathogens. Seasonal influenza is one such pathogen where additional information 556

would be informative; vaccination effectiveness has historically been assessed using a ‘test-negative’ 557

design, meaning patients with influenza-like illness are tested for influenza, with reported vaccine 558

effectiveness usually relating solely to the prevention of symptomatic infection [77], without further 559

stratification of outcomes. 560

There are a number of limitations to the work conducted in this paper. First, there was some un- 561

certainty in the parameters used in the epidemiological model. We sourced parameters from the 562

literature, where disparate estimates were reported. Certain parameters, such as the relative trans- 563

missibility of mild and severe disease, were difficult to measure. Whilst acknowledging that our results 564

may be sensitive to the parameterisations chosen, to retain our focus on the implications of symptom 565

propagation and interventions that had different modes of action, we took a pragmatic approach of 566

considering a single fixed relative transmissibility scaling for each pathogen informed by the available 567

literature. These relative transmissibility scalings were also dissimilar, two for influenza and four for 568

SARS-CoV-2 giving us more breadth in our coverage of disease parameter space. A notable limitation 569

of these choices is that the transmission rates do not account for changes in contact patterns that we 570

would expect to see for those with more severe disease, and hence may be an overestimation of the 571

real values. The inclusion of heterogeneity in contact patterns is highlighted as an area for future 572

work. In future work, it would be valuable to include heterogeneity in contact patterns as a function 573

of symptom severity. 574

Additionally, whilst our intent is for our model to be generalisable to other respiratory pathogens for 575

which symptom propagation is possible, the assumptions made in this paper may not be well suited 576

to all such pathogens. In particular, the assumption that severe disease is more transmissible and has 577

a longer infectious period may not hold. If this assumption were removed and mild and severe disease 578

were to produce the same number of secondary cases, we would expect the proportion of cases that 579

were severe to be similar regardless of the strength of symptom propagation. 580

Second, definitions of severity of infection can vary appreciably, showcased by prior work on the two 581

pathogens focused upon in this study (influenza and SARS-CoV-2) [34, 40, 49, 50]. An inevitable 582

consequence was there being uncertainty in quantifying health economic parameters (such as QALY 583

losses and hospitalisation rates) for our “mild” and “severe” infection categorisations. Creating a 584

formal definition of severity in this context requires a deeper biological understanding of how symptom 585

propagation occurs and, in turn, further research. We would encourage a conceptual re-analysis of 586

the symptoms of respiratory infections from a clinical standpoint, leading to a new framework for 587

categorising clinical outcomes informed by an understanding not only of patient-level symptoms, but 588

also symptom propagation and its implications for onward transmission, along with the formulation 589

of associated data collection protocols. Indeed, although we have chosen to focus on only two severity 590

classes, this simplification may not always be appropriate. An extension of this model to include a 591

separate asymptomatic class or a continuum of severity could be explored in future work (or even 592

qualitatively different symptom sets that do not straightforwardly map to levels of severity), with 593
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model structural choices informed by data where appropriate. 594

We also recognise that there are many factors not included in this model which are known to affect 595

symptom severity, and future work could extend the framework presented here to incorporate charac- 596

teristics such as age, immune status and multiple strains. Age structure could be of particular interest 597

because it has previously been suggested that the combination of age-dependent mixing and age- 598

dependent severity might cause correlations between the severity of the infector and the infectee [40]. 599

As such, the inclusion of age structure could amplify the effects of symptom propagation. Also, as 600

a consequence of not modelling demographic characteristics, we assumed intervention uptake to be 601

uniform across the population. In reality, those identified as risk groups, such as healthcare workers 602

or immuno-compromised people, are likely to be targeted first as part of any intervention policy, as 603

seen in the vaccine roll-out during the COVID-19 pandemic [78]. We expect that such targeting would 604

amplify the increase in intervention effectiveness caused by strong symptom propagation and antici- 605

pate this effect could be seen for all intervention types, even purely infection-blocking interventions. 606

Further work is required to investigate these potential dependencies. 607

In addition to extensions to the deterministic, compartmental ODE model used in this paper, the 608

model framework could be applied to a range of model types [47]. If applied to a stochastic model 609

at a localised spatial level (population size of the order of hundreds rather than millions), we could 610

expect symptom propagation to result in a large variation in the proportion of cases that are severe, 611

depending on the severity of the initial cases. We would likely find that, even for relatively weak 612

symptom propagation, a stochastic model may generate large variation in the proportion of cases that 613

are severe, with the potential for outbreaks to be predominantly severe. The symptom propagation 614

model framework could also be applied to network or spatial models. In these cases, we might expect 615

symptom propagation to result in large spatial heterogeneity in the severity of (local) outbreaks, 616

leading to increased strain on local healthcare services despite the larger-scale outbreak severity being 617

similar to what is predicted by a model with no spatial structure. 618

Another identified key area of future work is the estimation of the α parameter, i.e. the strength 619

of symptom propagation. However, due to the complex nature of symptom severity and the many 620

confounding factors, performing this inference is non-trivial. A large volume of individual data with 621

both information on symptom severity and who infected whom is required. Major challenges include 622

separating symptom propagation from the effects of strains and from the impact of genetic similarity 623

between an individual and the person who infected them (e.g. in the case of related individuals). 624

Nevertheless, the public health benefits of such estimations will make surmounting such challenges 625

rewarding, including informing the relative importance of transmission from those who are asymp- 626

tomatic (and therefore the optimal approach for contact tracing) and the role of vaccines that may 627

reduce symptom severity as well as infection burden. Close dialogue with appropriate data holders 628

will be a crucial aspect to successfully accomplish these goals. 629

In summary, these findings demonstrate the importance of including symptom propagation in models 630

of infectious disease transmission to assist decision makers in planning infection control and mitigation 631

strategies, where insights on epidemiological and health economic implications of possible actions are 632

required and where there is evidence to support the presence of symptom propagation for a given 633

pathogen. There are still questions around whether, and to what extent, symptom propagation occurs 634

for various pathogens and, although evidence in the literature supporting symptom propagation is 635

accumulating, we believe it would be beneficial to reduce the uncertainty around this topic. We 636

conclude that the consideration of symptom propagation should be commonplace in the modelling of 637

infectious diseases and in evaluating proposed control policies from a health economics perspective. 638

To heighten the robustness of future modelling analyses, this motivates data collection to promote the 639

use of data-driven models and the development of analytic methods to identify the extent of symptom 640
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propagation (i.e. the value of α) for pathogens of concern. 641
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S1 Calculating the basic reproduction number, R0, and calibrating
β

The basic reproductive number, R0, is commonly used in epidemiology to indicate a disease’s potential
to spread through a population. It is defined as the average number of secondary cases generated by
an average infectious individual in a fully susceptible population. R0 can be formulated as

R0 = (average number of infections generated per unit time)× (average infectious period).

We calculated the value of R0 using the next-generation matrix (NGM) approach. This method was
developed by Diekmann et al. [1] to calculate the value of R0 in heterogeneous populations where
compartments are split into a finer structure (e.g. into age classes). The next generation matrix is
defined to be

K =

k11 · · · k1n
...

...
kn1 · · · knn


where kij is the average number of type-i cases generated by a type-j case in a fully susceptible
population. This can be applied to the ODE model by considering a vector containing the number of
people in each infectious class, which then multiplies by K at each time step. This vector grows at a
rate given by the dominant eigenvalue of K - the eigenvalue with the largest absolute value - with R0

being this dominant eigenvalue.

In the case of our model,

K =

(
kMM kMS

kSM kSS

)
=

(
βM
γM

(α+ (1− α)(1− ν)) βS
γS

(1− α)(1− ν)
βM
γM

(1− α)ν βS
γS

(α+ (1− α)ν)

)

R0 is an eigenvalue of K and thus solves

0 = λ2 − (kMM + kSS)λ+ (kMMkSS − kMSkSM )

= λ2 −
(
βM
γM

(α+ (1− α)(1− ν)) +
βS
γS

(α+ (1− α)ν)

)
λ+

βMβS
γMγS

α

If βM = β, βS = rβ, then the derived equation for R0 simplifies to

rα

γMγS
β2 −R0

(
(1− (1− α)ν)

γM
+

r(α+ ν − αν)

γS

)
β −R2

0 = 0

from which, for a given value of R0, we calculated the required value of β.
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S2 Results with fixed β

In the main text we fixed the value of R0 for each parameter set by choosing an appropriate value of
β for each value of α. Here we show our results with fixed β instead. For each of the three disease
parameterisations we chose βM to give the stated value of R0 when α = 0: R0 = 1.5 for seasonal
influenza, R0 = 3.0 for pandemic influenza and SARS-CoV-2.

We found that the value of R0 increased with α (Fig. S1) and similarly with the total outbreak size
and peak prevalence (Fig. S2). As with our main text results, the proportion of cases that were severe
increased with α (Fig. S2). However, the outbreak duration decreased with α (Fig. S2)

(a) (b) (c)

Figure S1: The basic reproduction number, R0, for three disease parameterisations,
plotted for different symptom propagation strengths, α and fixed values of β. In all
panels, ν = 0.2. The three disease parameterisations used were: (a) Seasonal influenza; (b) Pandemic
influenza; (c) SARS-CoV-2, with parameters as given in Table 1. For each of the three disease
parameterisations we chose βM to give the stated value of R0 when α = 0: R0 = 1.5 for seasonal
influenza, R0 = 3.0 for pandemic influenza and SARS-CoV-2.

S3 Health economic model: Parameterisation details

S3.1 Likelihood of hospitalisation and death

Hospitalisation and death rates were taken from Hill et al. [2] for influenza and Moran et al. [3] for
SARS-CoV-2.

S3.2 Quality-adjusted life years (QALYs)

We assumed that mild disease had sufficiently minimal symptoms, thereby causing no QALY losses.

We took influenza QALY losses for severe, non-fatal cases were taken from Hill et al. [2]. For SARS-
CoV-2, we used estimates for years lived with disability (YLD) per case from Moran et al. [3]. We
used the YLD for “severe” (non-ICU) and “critical” (ICU) hospitalised cases to estimate QALY losses
for non-fatal hospitalised cases. We used the YLD for ”moderate” and ”post-acute consequences” to
estimate QALY losses for severe non-hospitalised cases.

The QALY losses per death depend primarily on the number of healthy years lost and therefore the
age of the individual. Our model was not stratified by age class, so to estimate the average QALY
losses per death, we used estimates of the total QALY losses from deaths during an outbreak and
divided by the number of deaths. For influenza, we used data from an outbreak in Spain during the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S2: The final outbreak size, peak prevalence and outbreak duration, by severity,
for three disease parameterisations, plotted for different symptom propagation strengths,
α and fixed values of β. (a-c) Final outbreak size by severity. (d-f) Peak prevalence by severity.
The intensity of the shading denotes the symptom severity class, with severe cases in red and mild cases
in yellow. (g-i) Outbreak duration (note the different y-axis scales). In all panels, ν = 0.2. The three
disease parameterisations used were: (a,d,g) Seasonal influenza; (b,e,h) Pandemic influenza; (c,f,i)
SARS-CoV-2, with parameters as given in Table 1. For each of the three disease parameterisations
we chose βM to give the stated value of R0 when α = 0: R0 = 1.5 for seasonal influenza, R0 = 3.0 for
pandemic influenza and SARS-CoV-2.
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2009 H1N1 pandemic [4]. For SARS-CoV-2, we used a study of COVID-19 cases in the Republic of
Ireland from March 2020 to February 2021 [3].

S3.3 Monetary costs

Hospital costs for influenza were taken from Hill et al. [2]. Hospital costs for SARS-CoV-2 were
estimated under the assumption that costs would be twice as much as influenza, due to the average
length of stay being roughly twice as long for SARS-CoV-2 (around 13 days [5]) than for influenza
(around 7 days [6]).

S3.4 Discounting

A common component of health economic modelling is discounting, which assigns a lower value to costs
and health outcomes that occur in the future [7]. For the scenarios where we applied a discounting
rate of 3.5%, the discounted value (of QALYs lost or monetary costs, as appropriate) in year y was
given by

Discounted value(y) = Raw value(y)

(
1

1 + 0.035

)y−1

5

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 24, 2024. ; https://doi.org/10.1101/2023.07.12.23292544doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.12.23292544
http://creativecommons.org/licenses/by/4.0/


S4 Alternative infection-blocking and modified breakthrough infec-
tion intervention

Throughout this section, we modelled an infection-blocking vaccine for which breakthrough infections
were only possible when the infector was a severe case (Fig. S3).

Figure S3: Schematic of the infection-blocking and modified breakthrough infection vac-
cine. If challenged by infection from a mild case, a vaccinated individual would be guaranteed to
be protected. If challenged by infection from a severe case, a vaccinated individual had a probability
η of their infection being prevented and a probability 1 − η of being infected, with their symptom
severity then being determined as usual. Yellow shaded individuals correspond to infectious cases
with mild symptoms, red shaded individuals correspond to infectious cases with severe symptoms and
blue shaded individuals correspond to those who are vaccinated. The values on the arrows show the
corresponding probability.

S4.1 Modified model equations

Under the use of such an intervention, the model dynamics are governed by the following system of
ODEs. Recall that the V class denotes those who were susceptible and vaccinated, whilst we denote
with red font those terms that include the action of the intervention:

dS

dt
= −(λM + λS)S

dV

dt
= −(1− η)λSV

dEM

dt
= (α+ (1− α)(1− ν))λMS + (1− α)(1− ν)λS

(
S+(1− η)V

)
− ϵEM

dES

dt
= (1− α)νλMS + (α+ (1− α)ν)λS

(
S+(1− η)V

)
− ϵES

dIM
dt

= ϵEM − γMIM

dIS
dt

= ϵES − γSIS

dRM

dt
= γMIM

dRS

dt
= γSIS
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where the force of infection from mild cases, λM , and severe cases, λS , respectively, were given by:

λM =
βMIM
N

, λS =
βSIS
N

.

S4.2 Simulation overview

As for the interventions studied in the main text, we ran a range of values of α and ν (both between
0 and 1, with an increment of 0.02); for each combination of α and ν, β was chosen to fix R0 at the
desired value in the no intervention case.

Performing analogous methods as for the other interventions, per α-ν pair we ascertained the vaccine
uptake that maximised the intervention unit threshold value. We also explored the model’s sensitivity
to the vaccine efficacy, in this case modulating the risk of a breakthrough infection by a vaccinated,
severe infection case.

S4.3 Summary of findings

Across the collection of results, we report no difference in the outcomes between the (solely) infection
blocking vaccine and the infection blocking vaccine where only severe cases could cause breakthrough
infections (Figs. S4 and S5).
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(a) (b) (c)

(d) (e) (f)

Figure S4: Proportion of the population in each disease state at the end of the out-
break for each disease parameterisation given use of an infection blocking vaccine where
only severe cases can cause breakthrough infections. The three groups of bars correspond to
three intervention scenarios: no intervention (No), an infection blocking vaccine (IB) and an infection
blocking vaccine for which only severe cases can cause breakthrough infections (IB S). The two bars
in each group correspond to symptom propagation strengths of α = 0.2 (left bar, hatched lines) and
α = 0.8 (right bar, solid fill). Bar shading corresponds to disease status: red - recovered from severe
infection (RS); yellow - recovered from mild infection (RM ); blue - susceptible and vaccinated (V );
white - susceptible and not vaccinated (S). The two rows correspond to two vaccine uptake levels:
(a-c) 50%; (d-f) 90%. Columns correspond to differing disease parameterisations: (a,d) seasonal
influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. We fixed the vaccine efficacy at 70% and
all other parameters were as given in Table 1, with ν chosen to fix the proportion of cases that were
severe equal to 0.8.
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(a) (b) (c)

(d) (e) (f)

Figure S5: The threshold unit intervention cost, under each disease parameterisation,
for an infection blocking vaccine for which only severe cases can cause breakthrough
infections. We normalise the threshold unit intervention cost by the highest absolute threshold unit
intervention cost attained across the range of tested vaccine uptake values. The two groups of bars
correspond to an infection blocking vaccine (IB) and an infection blocking vaccine for which only severe
cases can cause breakthrough infections (IB S). The two bars in each group correspond to symptom
propagation strengths of α = 0.2 (left bar, hatched lines) and α = 0.8 (right bar, solid fill). The two
rows correspond to two vaccine uptake levels: (a-c) 50%; (d-f) 90%. Columns correspond to differing
disease parameterisations: (a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2.
The efficacy was fixed at 70% and all other parameters were as given in Table 1 with ν chosen to fix
the proportion of cases that were severe equal to 0.8.
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S5 Additional epidemiological outcomes

S5.1 Final outbreak size and peak prevalence

(a) (b) (c)

(d) (e) (f)

Figure S6: The final outbreak size and peak prevalence for three parameter sets whilst
varying the dependence on the infector’s symptom severity, α. The top row shows the
total proportion of the population infected across both severity classes. The bottom row shows the
proportion of the population infected across both severity classes at the peak of the outbreak. Note
that the y-axis scale varies between plots in the same row.
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S5.2 Temporal intervention plots

Figure S7: Temporal profiles of infection prevalence in the absence of interventions and
our three types of intervention for a pathogen with seasonal influenza-like attributes.
The four columns correspond to four intervention scenarios: no intervention, a symptom-attenuating
vaccine, an infection-blocking vaccine and an infection-blocking vaccine that only admits mild break-
through infections. The rows correspond to two vaccine uptake levels, 50% and 90%. We fixed the
vaccine efficacy at 70%. The line colour denotes the disease severity, with the pink line showing the
proportion of the population who were infectious with mild disease and the red line showing the pro-
portion of the population who were infectious with severe disease. The line style denotes the value
of α, with the solid lines corresponding to α = 0.2 and the dotted lines corresponding to α = 0.8.
Throughout, ν was chosen to fix the proportion of cases that were severe equal to 0.8. Note the
differing scales on the y-axis.
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Figure S8: Temporal profiles of infection prevalence in the absence of interventions and
our three types of intervention for a pathogen with pandemic influenza-like attributes.
The four columns correspond to four intervention scenarios: no intervention, a symptom-attenuating
vaccine, an infection-blocking vaccine and an infection-blocking vaccine that only admits mild break-
through infections. The rows correspond to two vaccine uptake levels, 50% and 90%. We fixed the
vaccine efficacy at 70%. The line colour denotes the disease severity, with the pink line showing the
proportion of the population who were infectious with mild disease and the red line showing the pro-
portion of the population who were infectious with severe disease. The line style denotes the value
of α, with the solid lines corresponding to α = 0.2 and the dotted lines corresponding to α = 0.8.
Throughout, ν was chosen to fix the proportion of cases that were severe equal to 0.8. Note the
differing scales on the y-axis.
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Figure S9: Temporal profiles of infection prevalence in the absence of interventions and
our three types of intervention for a pathogen with SARS-CoV-2-like attributes. The four
columns correspond to four intervention scenarios: no intervention, a symptom-attenuating vaccine,
an infection-blocking vaccine and an infection-blocking vaccine that only admits mild breakthrough
infections. The rows correspond to two vaccine uptake levels, 50% and 90%. We fixed the vaccine
efficacy at 70%. The line colour denotes the disease severity, with the pink line showing the proportion
of the population who were infectious with mild disease and the red line showing the proportion of
the population who were infectious with severe disease. The line style denotes the value of α, with
the solid lines corresponding to α = 0.2 and the dotted lines corresponding to α = 0.8. Throughout,
ν was chosen to fix the proportion of cases that were severe equal to 0.8. Note the differing scales on
the y-axis.
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S5.3 Additional intervention bar plots

(a) (b) (c)

(d) (e) (f)

Figure S10: Impact of disease parameterisation, action of intervention and intervention
efficacy on peak infection prevalence. The four groups of bars correspond to four intervention
scenarios: no intervention (No), a symptom attenuating vaccine (SA), an infection blocking vaccine
(IB) and an infection blocking vaccine which only admits mild breakthrough infections (IB MB). The
two bars in each group correspond to symptom propagation strengths of α = 0.2 (left bar, hatched
lines) and α = 0.8 (right bar, solid fill). Bar heights correspond to the peak in infection prevalence,
with red and yellow bars representing severe and mild cases, respectively. The two rows correspond to
two levels of vaccine uptake: (a-c) 50%; (d-f) 90%. The columns corresponded to one of the disease
parameterisations: (a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. We fixed
the vaccine efficacy at 70%. All other parameters were as given in Table 1 with ν chosen to fix the
proportion of cases that were severe equal to 0.8.
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(a) (b) (c)

(d) (e) (f)

Figure S11: Impact of disease parameterisation, action of intervention and interven-
tion efficacy on outbreak duration. In each panel, the four groups of bars correspond to four
intervention scenarios: no intervention (No), a symptom attenuating vaccine (SA), an infection block-
ing vaccine (IB) and an infection blocking vaccine which only admits mild breakthrough infections
(IB MB). The two bars in each group correspond to symptom propagation strengths of α = 0.2 (left
bar, hatched lines) and α = 0.8 (right bar, solid fill). Bar heights correspond to outbreak duration in
days. The two rows correspond to two levels of vaccine uptake: (a-c) 50%; (d-f) 90%. The columns
corresponded to one of the disease parameterisations: (a,d) seasonal influenza; (b,e) pandemic in-
fluenza; (c,f) SARS-CoV-2. We fixed the vaccine efficacy at 70%. All other parameters were as given
in Table 1 with ν chosen to fix the proportion of cases that were severe equal to 0.8.
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S5.4 Outcomes conditional on ν = 0.2

(a) (b) (c)

(d) (e) (f)

Figure S12: End of outbreak disease status composition under an alternative baseline
severity assumption. Analogous to Fig. 5 in the main manuscript, except here we used a fixed
value of ν = 0.2 (instead of calibrating the value of ν to attain 80% of cases being severe in the
no intervention scenario). In each panel, the four groups of bars correspond to four intervention
scenarios: no intervention (No), a symptom attenuating vaccine (SA), an infection blocking vaccine
(IB) and an infection blocking vaccine which only admits mild breakthrough infections (IB MB). The
two bars in each group correspond to symptom propagation strengths of α = 0.2 (left bar, hatched
lines) and α = 0.8 (right bar, solid fill). The shading of the bar corresponds to four disease status
compartments: red - recovered from severe infection (RS); yellow - recovered from mild infection
(RM ); blue - susceptible and vaccinated (V ); white - susceptible and not vaccinated (S). The two
rows correspond to two uptake levels: (a-c) 50%; (d-f) 90%. Columns correspond to differing disease
parameterisations: (a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. We fixed
the vaccine efficacy at 70% and all other parameters were as given in Table 1.
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(a) (b) (c)

(d) (e) (f)

Figure S13: Threshold unit intervention costs for three interventions and three disease
parameterisations under an alternative value of ν. Analogous to Fig. 7 in the main manuscript,
except here we used a fixed value of ν = 0.2 (instead of calibrating the value of ν to attain 80% of cases
being severe in the no intervention scenario). In all panels, we normalised threshold unit intervention
costs by the highest absolute threshold unit intervention cost attained across the range of tested
intervention uptake values. The three groups of bars correspond to three interventions: a symptom
attenuating vaccine (SA), an infection blocking vaccine (IB) and an infection blocking vaccine that only
admits mild breakthrough infections (IB MB). The two bars in each group correspond to symptom
propagation strengths of α = 0.2 (left bar, hatched lines) and α = 0.8 (right bar, solid fill). The two
rows correspond to two vaccine uptake levels: (a-c) 50%; (d-f) 90%. Columns correspond to differing
disease parameterisations: (a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2.
Vaccine efficacies were fixed at 70% and all other parameters were as given in Table 1.
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S6 Sensitivity to discounting

Whilst in the main text we used a discount rate of 3.5% on monetary costs and QALY losses, here
we performed similar health economic analyses with no discounting applied (i.e. a discounting rate of
0%).

Overall, when applying no discounting, we found quantitatively similar findings (as in the main
manuscript) for the relative threshold unit intervention costs for each combination of disease pa-
rameterisation and action of intervention (Figs. S14 and S15).
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(a) (b) (c)

(d) (e) (f)

Figure S14: The threshold unit intervention costs for the three interventions and three
disease parameterisations with no discounting applied. Analogous to Fig. 7 in the main
manuscript, but using a discount rate of 0% (whereas in the main text we used a discount rate of
3.5%). In all panels, we normalised threshold unit intervention costs by the highest absolute threshold
unit intervention cost attained across the range of tested intervention uptake values. The three groups
of bars correspond to three interventions: a symptom attenuating vaccine(SA), an infection blocking
vaccine (IB) and an infection blocking vaccine that only admits mild breakthrough infections (IB MB).
The two bars in each group correspond to symptom propagation strengths of α = 0.2 (left bar, hatched
lines) and α = 0.8 (right bar, solid fill). The two rows correspond to two vaccine uptake levels:
(a-c) 50%; (d-f) 90%. Columns correspond to differing disease parameterisations: (a,d) seasonal
influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. Vaccine efficacies were fixed at 70% and all
other parameters were as given in Table 1, with ν chosen to fix the proportion of cases that were
severe equal to 0.8. The results shown here are qualitatively similar to those obtained when using
3.5% discounting.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S15: Variation of the threshold unit intervention cost with intervention uptake,
with no discounting being applied. Analogous to Fig. 8 in the main manuscript, but using
a discount rate of 0% (whereas in the main text we used a discount rate of 3.5%). We normalised
threshold unit intervention costs for each disease parameterisation; the normalisation constant was the
highest absolute threshold unit intervention cost attained for the respective disease parameterisation
across the range of tested intervention uptake values. The three rows correspond to different disease
parameterisations: (a-c) seasonal influenza; (d-f) pandemic influenza; (g-i) SARS-CoV-2. The three
columns correspond to three interventions: (a,d,g) a symptom-attenuating vaccine (SA), (b,e,h)
an infection-blocking vaccine (IB) and (c,f,i) an infection-blocking vaccine that only admits mild
breakthrough infections (IB MB). The two lines correspond to two symptom propagation strengths;
the dashed, light purple line corresponds to α = 0.2 and the solid, dark purple line corresponds to
α = 0.8. We fixed vaccine efficacies at 70% and all other parameters values were as given in Table 1,
with ν chosen to fix the proportion of cases that were severe equal to 0.8.
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S7 Sensitivity to intervention efficacy

In the main text we considered vaccination interventions with an efficacy of 70%. Here we performed
the same analysis with two alternative vaccine efficacy values: 50% and 90%.

Overall, we found qualitatively similar results for all three vaccine efficacy values. As expected,
generally fewer infections were prevented when the efficacy was 50% (Fig. S16) and more infections
were prevented when the efficacy was 90% (Fig. S20). However, the patterns between intervention
types and the two α values were consistent across the three levels of vaccine efficacy.

We did reveal that the relative effectiveness of a symptom attenuating and infection blocking interven-
tion varied with the efficacy value. At 50% efficacy, a symptom-attenuating vaccine was more effective
for a larger proportion of the parameter space, as indicated by the increase in areas shaded in red
(Fig. S17). At 90% efficacy, an infection-blocking vaccine was more effective for a larger proportion of
the parameter space, as indicated by the increase in areas shaded in blue (Fig. S21).

Patterns in threshold unit intervention cost were similar across the three efficacy levels, although
the relative cost between the three intervention types varied. At 50% efficacy, the infection blocking
vaccine was generally much less cost-effective than the other two types (Figs. S18 and S19), whereas
at 90% efficacy the threshold unit intervention cost was more consistent across intervention types
(Figs. S22 and S23).
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S7.1 50% efficacy

(a) (b) (c)

(d) (e) (f)

Figure S16: The proportion of the population in each disease state at the end of the
outbreak for the four intervention scenarios (with an intervention efficacy of 50%) and
three disease parameterisations. The four groups of bars correspond to four intervention scenarios:
no intervention (No), a symptom attenuating vaccine (SA), an infection blocking vaccine (IB) and an
infection blocking vaccine which only admits mild breakthrough infections (IB MB). The two bars
in each group correspond to symptom propagation strengths of α = 0.2 (left bar, hatched lines) and
α = 0.8 (right bar, solid fill). Bar shading corresponds to disease status: red - recovered from severe
infection (RS); yellow - recovered from mild infection (RM ); blue - susceptible and vaccinated (V );
white - susceptible and not vaccinated (S). The two rows correspond to two vaccine uptake levels:
(a-c) 50%; (d-f) 90%. Columns correspond to differing disease parameterisations: (a,d) seasonal
influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. We fixed vaccination efficacies at 50% and
all other parameters were as given in Table 1, with ν chosen to fix the proportion of cases that were
severe equal to 0.8.
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(d) (e) (f)

Figure S17: The relative effectiveness of a symptom attenuating and infection blocking
vaccine with a fixed efficacy (50%) varies with α and ν. Each row corresponds to one of the two
uptake levels: (a-c) 50%; (d-f) 90%. Each column corresponds to a different disease parameterisation:
(a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. Cell shading denotes (for that
combination of α-ν value) the difference in the proportion of the population severely infected between
when a symptom-attenuating intervention was used and when an infection-blocking intervention was
used. The blue shaded cells shows parameter combinations where the infection blocking intervention
was more effective at preventing infections, whilst the red shaded cells shows parameter combinations
where symptom attenuation was more effective.
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(d) (e) (f)

Figure S18: The threshold unit intervention cost for the three vaccine interventions and
each disease parameterisation with a vaccine efficacy of 50%. In all panels, we normalised
threshold unit intervention cost by the highest absolute threshold unit intervention cost attained
across the range of tested intervention uptake values. The three groups of bars correspond to three
interventions: a symptom attenuating vaccine (SA), an infection blocking vaccine (IB) and an infection
blocking vaccine that only admits mild breakthrough infections (IB MB). The two bars in each group
correspond to symptom propagation strengths of α = 0.2 (left bar, hatched lines) and α = 0.8 (right
bar, solid fill). The two rows correspond to two vaccine uptake levels: (a-c) 50%; (d-f) 90%. Columns
correspond to differing disease parameterisations: (a,d) seasonal influenza; (b,e) pandemic influenza;
(c,f) SARS-CoV-2. Vaccine efficacies were fixed at 50% and all other parameters were as given in
Table 1 with ν chosen to fix the proportion of cases that were severe equal to 0.8.
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Figure S19: The threshold unit intervention cost varies with vaccine uptake for a vac-
cine efficacy of 50%. We normalised threshold unit intervention costs for each disease parame-
terisation; the normalisation constant was the highest absolute threshold unit intervention cost at-
tained for the respective disease parameterisation across the range of tested uptake values. The three
rows correspond to the three different disease parameterisations: (a-c) seasonal influenza; (d-f) pan-
demic influenza; (g-i) SARS-CoV-2. The three columns correspond to three interventions: (a,d,g) a
symptom-attenuating vaccine (SA), (b,e,h) an infection-blocking vaccine (IB) and (c,f,i) an infection-
blocking vaccine that only admits mild breakthrough infections (IB MB). The two lines correspond
to two symptom propagation strengths; the dashed, light purple line corresponds to α = 0.2 and the
solid, dark purple line corresponds to α = 0.8. We fixed the vaccine efficacies at 50% and all other
parameters values were as given in Table 1, with ν chosen to fix the proportion of cases that were
severe equal to 0.8.
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S7.2 90% efficacy

(a) (b) (c)

(d) (e) (f)

Figure S20: The proportion of the population in each disease state at the end of the
outbreak for the four intervention scenarios (with vaccine efficacies of 90%) and three
disease parameterisations. The four groups of bars correspond to four intervention scenarios: no
intervention (No), a symptom attenuating vaccine (SA), an infection blocking vaccine (IB) and an
infection blocking vaccine that only admits mild breakthrough infections (IB MB). The two bars in
each group correspond to symptom propagation strengths of α = 0.2 (left bar, hatched lines) and
α = 0.8 (right bar, solid fill). Bar shading corresponds to disease status: red - recovered from severe
infection (RS); yellow - recovered from mild infection (RM ); blue - susceptible and vaccinated (V );
white - susceptible and not vaccinated (S). The two rows correspond to two vaccine uptake levels:
(a-c) 50%; (d-f) 90%. Columns correspond to differing disease parameterisations: (a,d) seasonal
influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. We fixed the vaccine efficacies at 90% and
all other parameters were as given in Table 1, with ν chosen to fix the proportion of cases that were
severe equal to 0.8.
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(a) (b) (c)

(d) (e) (f)

Figure S21: The relative effectiveness of a symptom attenuating and infection blocking
intervention with a fixed efficacy (90%) varies with α and ν. Each row corresponds to one
of the two uptake levels: (a-c) 50%; (d-f) 90%. Each column corresponds to a different disease pa-
rameterisation: (a,d) seasonal influenza; (b,e) pandemic influenza; (c,f) SARS-CoV-2. Cell shading
denotes (for that combination of α-ν value) the difference in the proportion of the population severely
infected between when a symptom-attenuating intervention was used and when an infection-blocking
intervention was used. The blue shaded cells shows parameter combinations where the infection
blocking intervention was more effective at preventing infections, whilst the red shaded cells shows
parameter combinations where symptom attenuation was more effective.
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(a) (b) (c)

(d) (e) (f)

Figure S22: The threshold unit intervention cost for the three vaccine interventions and
each disease parameterisation with vaccine efficacies of 90%. In all panels, we normalised
threshold unit intervention cost by the highest absolute threshold unit intervention cost attained
across the range of tested intervention uptake values. The three groups of bars correspond to three
interventions: a symptom attenuating vaccine (SA), an infection blocking vaccine (IB) and an infection
blocking vaccine which only admits mild breakthrough infections (IB MB). The two bars in each group
correspond to symptom propagation strengths of α = 0.2 (left bar, hatched lines) and α = 0.8 (right
bar, solid fill). The two rows correspond to two vaccine uptake levels: (a-c) 50%; (d-f) 90%. Columns
correspond to differing disease parameterisations: (a,d) seasonal influenza; (b,e) pandemic influenza;
(c,f) SARS-CoV-2. Vaccine efficacies were fixed at 90% and all other parameters were as given in
Table 1 with ν chosen to fix the proportion of cases that were severe equal to 0.8.
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Figure S23: Variation in the threshold unit intervention cost with vaccine uptake for
vaccine efficacies of 90%. We normalised threshold unit intervention costs for each disease pa-
rameterisation; the normalisation constant was the highest absolute threshold unit intervention cost
attained for the respective disease parameterisation across the range of tested vaccine uptake values.
The three rows correspond to the three different disease parameterisations: (a-c) seasonal influenza;
(d-f) pandemic influenza; (g-i) SARS-CoV-2. The three columns correspond to three interventions:
(a,d,g) a symptom-attenuating vaccine (SA), (b,e,h) an infection-blocking vaccine (IB) and (c,f,i) an
infection-blocking vaccine that only admits mild breakthrough infections (IB MB). The two lines cor-
respond to two symptom propagation strengths; the dashed, light purple line corresponds to α = 0.2
and the solid, dark purple line corresponds to α = 0.8. We fixed the vaccine efficacies at 90% and all
other parameters values were as given in Table 1, with ν chosen to fix the proportion of cases that
were severe equal to 0.8.
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S8 Sensitivity in α− ν space

S8.1 Relative threshold unit intervention cost

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S24: Variation in the threshold unit intervention cost with α, ν and the efficacy
for three intervention types, seasonal influenza-like parameters and a fixed intervention
uptake (50%). Cell shading denotes the relative threshold unit intervention cost (normalised by
the highest threshold unit intervention cost value). Darker shading corresponds to larger values. The
assessed interventions had the following action: (a-c) symptom attenuating; (d-f) infection blocking;
(g-i) infection blocking that only admits mild breakthrough infections. We performed evaluations for
three efficacies per intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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Figure S25: Variation in the threshold unit intervention cost with α, ν and the efficacy for
three intervention types, pandemic influenza-like parameters and a fixed uptake (50%).
Cell shading denotes the relative threshold unit intervention cost (normalised by the highest threshold
unit intervention cost value). Darker shading corresponds to larger values. The assessed interventions
had the following action: (a-c) symptom attenuating; (d-f) infection blocking; (g-i) infection blocking
intervention that only admits mild breakthrough infections. We performed evaluations for three
efficacies per intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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Figure S26: Variation in the threshold unit intervention cost with α, ν and the efficacy
for three intervention types, SARS-CoV-2-like parameters and a fixed uptake (50%). Cell
shading denotes the relative threshold unit intervention cost (normalised by the highest threshold unit
intervention cost value). Darker shading corresponds to larger values. The assessed interventions had
the following action: (a-c) symptom attenuating; (d-f) infection blocking; (g-i) infection blocking
that only admits mild breakthrough infections. We performed evaluations for three efficacies per
intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.

32

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 24, 2024. ; https://doi.org/10.1101/2023.07.12.23292544doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.12.23292544
http://creativecommons.org/licenses/by/4.0/


S8.2 Most cost-effective intervention uptake

(a) (b) (c)
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Figure S27: Variation in the most cost-effective vaccine uptake with α, ν and the efficacy
for three intervention types and seasonal influenza-like parameters. Cell shading denotes
the uptake at which the intervention was most cost-effective, i.e. the uptake at which the threshold
unit intervention cost was at a maximum. Darker shading corresponds to larger values. The assessed
interventions had the following action: (a-c) symptom attenuating; (d-f) infection blocking; (g-i)
infection blocking that only admits mild breakthrough infections. We performed evaluations for three
efficacies per intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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Figure S28: Variation in the most cost-effective vaccine uptake with α, ν and the efficacy
for three intervention types and pandemic influenza-like parameters. Cell shading denotes
the uptake at which the intervention was most cost-effective, i.e. the uptake at which the threshold
unit intervention cost was at a maximum. Darker shading corresponds to larger values. The assessed
interventions had the following action: (a-c) symptom attenuating; (d-f) infection blocking; (g-i)
infection blocking that only admits mild breakthrough infections. We performed evaluations for three
efficacies per intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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Figure S29: Variation in the most cost-effective vaccine uptake with α, ν and the efficacy
for three intervention types and SARS-CoV-2-like parameters. Cell shading denotes the
uptake at which the intervention was most cost-effective, i.e. the uptake at which the threshold unit
intervention cost was at a maximum. Darker shading corresponds to larger values. The assessed
interventions had the following action: (a-c) symptom attenuating; (d-f) infection blocking; (g-i)
infection blocking that only admits mild breakthrough infections. We performed evaluations for three
efficacies per intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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S8.3 Implication on threshold unit intervention cost when accounting for symp-
tom propagation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S30: Comparing the threshold unit intervention costs at the most-effective up-
take when accounting for symptom propagation to the threshold unit intervention cost
at the most cost-effective uptake when there was no symptom propagation (α = 0) for
three intervention types and seasonal influenza-like parameters. In each panel, darker shad-
ing represents a greater disparity in the normalised threshold unit intervention costs between the
most cost-effective uptake and the uptake that was most cost-effective when α = 0. The assessed
interventions had the following action: (a-c) symptom-attenuating; (d-f) infection-blocking; (g-i)
infection-blocking that only admits mild breakthrough infections. We performed evaluations for three
efficacies per intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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Figure S31: Comparing the threshold unit intervention costs at the most-effective uptake
when accounting for symptom propagation to the threshold unit intervention cost at
the most cost-effective uptake when there was no symptom propagation (α = 0) for
three intervention types and pandemic influenza-like parameters. In each panel, darker
shading represents a greater disparity in the normalised threshold unit intervention costs between the
most cost-effective uptake and the uptake that was most cost-effective when α = 0. The assessed
interventions had the following action: (a-c) symptom-attenuating; (d-f) infection-blocking; (g-i)
infection-blocking that only admits mild breakthrough infections. We performed evaluations for three
efficacies per intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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Figure S32: Comparing the threshold unit intervention costs at the most-effective uptake
when accounting for symptom propagation to the threshold unit intervention cost at the
most cost-effective uptake when there was no symptom propagation (α = 0) for three
intervention types and SARS-CoV-2-like parameters. In each panel, darker shading represents
a greater disparity in the normalised threshold intervention costs between the most cost-effective
uptake and the uptake that was most cost-effective when α = 0. The assessed interventions had
the following action: (a-c) symptom-attenuating; (d-f) infection-blocking; (g-i) infection-blocking
that only admits mild breakthrough infections. We performed evaluations for three efficacies per
intervention: (a,d,g) 50%; (b,e,h) 70%; (c,f,i) 90%.
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