Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Quantifying the impact of hospital catchment area definitions on hospital admissions forecasts: COVID-19 in England, September 2020 - April 2021

View ORCID ProfileSophie Meakin, View ORCID ProfileSebastian Funk
doi: https://doi.org/10.1101/2023.07.12.23292451
Sophie Meakin
1Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sophie Meakin
  • For correspondence: sophiemeakin{at}outlook.com
Sebastian Funk
1Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London, WC1E 7HT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sebastian Funk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Defining healthcare facility catchment areas is a key step in predicting future healthcare demand in epidemic settings. Forecasts of hospitalisations can be informed by leading indicators measured at the community level. However, this relies on the definition of so-called catchment areas, or the geographies whose populations make up the patients admitted to a given hospital, and which are often not well-defined. Little work has been done to quantify the impact of hospital catchment area definitions on healthcare demand forecasting.

Methods We made forecasts of Trust-level hospital admissions using a scaled convolution of local cases (as defined by the hospital catchment area) and a delay distribution. Hospital catchment area definitions were derived from either simple heuristics (in which people are admitted to their nearest hospital or any nearby hospital) or historical admissions data (all emergency or elective admissions in 2019, or COVID-19 admissions), plus a marginal baseline definition based on the distribution of all hospital admissions. We evaluated predictive performance using each hospital catchment area definition using the Weighted Interval Score (WIS) and considered how this changed by the length of the predictive horizon, the date on which the forecast was made, and by location. We also considered the change, if any, on the relative performance of each definition in retrospective vs. real-time settings, or at different spatial scales.

Results The choice of hospital catchment area definition affected the accuracy of hospital admission forecasts. The definition based on COVID-19 admissions data resulted in the most accurate forecasts at both a 7- and 14-day horizon, and was one of the top two best-performing definitions across forecast dates and locations. The “nearby” heuristic also performed well, but less consistently than the COVID-19 data definition. The marginal distribution baseline, which did not include any spatial information, was the lowest-ranked definition. The relative performance of the definitions was larger when using case forecasts compared to future observed cases. All results were consistent across spatial scales of the catchment area definitions.

Conclusions Using catchment area definitions derived from context-specific data can improve local-level hospital admissions forecasts. Where context-specific data is not available, using catchment areas defined by carefully-chosen heuristics are a sufficiently-good substitute. There is clear value in understanding what drives local admissions patterns, and further research is needed to understand the impact of different catchment area definitions on forecast performance where case trends are more heterogeneous.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The following funding sources are acknowledged as providing funding for the named authors. Wellcome Trust (grant 210758/Z/18/Z: SM, SFunk).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

Fully reproducible code is available at https://github.com/epiforecasts/hospitalcatchment-forecast and https://github.com/epiforecasts/hospitalcatchment.utils.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted July 13, 2023.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quantifying the impact of hospital catchment area definitions on hospital admissions forecasts: COVID-19 in England, September 2020 - April 2021
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantifying the impact of hospital catchment area definitions on hospital admissions forecasts: COVID-19 in England, September 2020 - April 2021
Sophie Meakin, Sebastian Funk
medRxiv 2023.07.12.23292451; doi: https://doi.org/10.1101/2023.07.12.23292451
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Quantifying the impact of hospital catchment area definitions on hospital admissions forecasts: COVID-19 in England, September 2020 - April 2021
Sophie Meakin, Sebastian Funk
medRxiv 2023.07.12.23292451; doi: https://doi.org/10.1101/2023.07.12.23292451

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (434)
  • Allergy and Immunology (760)
  • Anesthesia (222)
  • Cardiovascular Medicine (3316)
  • Dentistry and Oral Medicine (366)
  • Dermatology (282)
  • Emergency Medicine (480)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1175)
  • Epidemiology (13403)
  • Forensic Medicine (19)
  • Gastroenterology (900)
  • Genetic and Genomic Medicine (5181)
  • Geriatric Medicine (483)
  • Health Economics (786)
  • Health Informatics (3286)
  • Health Policy (1146)
  • Health Systems and Quality Improvement (1199)
  • Hematology (432)
  • HIV/AIDS (1024)
  • Infectious Diseases (except HIV/AIDS) (14657)
  • Intensive Care and Critical Care Medicine (917)
  • Medical Education (478)
  • Medical Ethics (128)
  • Nephrology (526)
  • Neurology (4957)
  • Nursing (263)
  • Nutrition (735)
  • Obstetrics and Gynecology (889)
  • Occupational and Environmental Health (797)
  • Oncology (2531)
  • Ophthalmology (730)
  • Orthopedics (284)
  • Otolaryngology (348)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (547)
  • Pediatrics (1308)
  • Pharmacology and Therapeutics (552)
  • Primary Care Research (559)
  • Psychiatry and Clinical Psychology (4225)
  • Public and Global Health (7526)
  • Radiology and Imaging (1717)
  • Rehabilitation Medicine and Physical Therapy (1022)
  • Respiratory Medicine (982)
  • Rheumatology (480)
  • Sexual and Reproductive Health (500)
  • Sports Medicine (425)
  • Surgery (551)
  • Toxicology (73)
  • Transplantation (237)
  • Urology (206)