
Title: Atrial fibrillation is associated with decreased claudin-5 in cardiomyocyte  1 

Authors: Baihe Chen1#, Haiqiong Liu2#, Miao Wang3#, Xianbao Wang4, Yuanzhou Wu5, 2 

Masafumi Kitakaze6, Jin Kyung Kim7, Yiyang Wang3＊, Tao Luo1,2,8＊   3 

1Department of Functional Laboratory, Zhuhai Campus of Zunyi Medical University, Zhuhai, 4 

China 5 

2 Department of Health Management, Zhujiang Hospital, Southern Medical University, 6 

Guangzhou, China  
7 

3Department of Pathophysiology, Jinan University, Guangzhou, China  8 

4Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China 9 

5Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, 10 

Guangzhou, China  11 

6Hanwa Memorial Hospital, Osaka, Japan 12 

7Division of Cardiology, Department of Medicine, School of Medicine, University of California 13 

Irvine, United States of America 14 

8Department of Pathophysiology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China 15 

#Authors contributed equally to this work 16 

＊Corresponding Author: Yiyang Wang 17 

Corresponding address: Department of Pathophysiology, Jinan University, Guangzhou, 510632, 18 

China 19 

Email: wangyiyang@jnu.edu.cn 20 

Phone: 0086-020-85220253 21 

＊Corresponding Author: Tao Luo 22 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.11.23292531doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.07.11.23292531


Corresponding address: Department of Pathophysiology, Zhuhai Campus of Zunyi Medical 23 

University, Zhuhai, 519041, China  24 

Email: luotao36126619@icloud.com 25 

Phone: 0086-0756-7623202 26 

Short title: Atrial fibrillation and claudin-5 27 

Clinical Perspective 28 

What Is New? 29 

1. This is the first study to find the decreased expression of claudin-5 (Cldn5) with prominent 30 

muscle atrophy in the left atrial appendage of atrial fibrillation (AF) patients. 31 

2. Knockdown of Cldn5 in the left ventricle via shRNA adeno-associated virus (AAV) infection 32 

caused myocardial atrophy and arrhythmia including ST elevation, replacement of P-waves 33 

with f-waves, and absence of P-waves prior to QRS. 34 

3. The protein levels of CACNA2D2, CACNB2, MYL2 and MAP6 were significantly 35 

downregulated after Cldn5 deficiency.  36 

What Are the Clinical Implications? 37 

The present findings may improve our understanding of the role of Cldn5 in the 38 

pathophysiology of AF and provide a new therapeutic target for preventing AF. 39 

Nonstandard Abbreviations and Acronyms 40 

AF: atrial fibrillation; Cldn5: claudin-5; TEM: transmission electron microscope; AAV: adeno-41 

associated virus; LVAWd: LV anterior wall diameter at diastole; CACNA2D2: calcium channel, 42 

voltage-dependent, alpha 2/delta subunit 2; CACNB2: calcium channel, voltage-dependent, beta 43 

2 subunit; MYL2: Myosin light chain 2; MAP6: Microtubule-associated protein 6; MMP: 44 

mitochondrial membrane potential; TJP1: tight junction protein 1; CAR: coxsackievirus-45 

adenovirus receptor; TMT: tandem mass tagging 46 

  47 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.11.23292531doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.11.23292531


Background: Although it is critically important to understand the underlying molecular and 48 

electrophysiological changes that predispose to the induction and maintenance of 49 

atrial fibrillation (AF), the underlying mechanism of AF is still poorly defined. AF is 50 

characterized as the electrophysiological and membrane integrity abnormality of the atrial 51 

cells, and claudin-5 (Cldn5), a tight junction protein, may be involved in the pathophysiology of 52 

AF, however, the role of Cldn5 in AF is unknown. 53 

Methods: Left atrial appendages from the enlarged left atrium were obtained from AF patients 54 

undergoing modified radiofrequency ablation maze procedure and normal left atrial appendages 55 

were obtained from non-AF donors. Western blot, immunofluorescence, transmission electron 56 

microscope (TEM), and proteomics analysis were performed to screen the specific protein 57 

expression and signal pathway changes in AF heart tissue vs. non-AF heart tissue. In addition, 58 

Cldn5 shRNA or siRNA adeno-associated virus (AAV) were then injected into the mouse left 59 

ventricle or added into HL1 cells respectively to knockdown claudin-5 in cardiomyocytes to 60 

observe whether the change of Cldn5 influences electrophysiology and affects those protein 61 

expressions stem from the proteomic analysis. Mitochondrial density and membrane potential 62 

were also measured by Mito tracker staining and JC-1 staining under the confocal microscope in 63 

vitro. 64 

Results: The protein level of claudin-5 was significantly decreased in cardiomyocytes from the 65 

left atrium of AF patients compared to non-AF donors. Proteomics analysis showed that 83 66 

proteins were downregulated and 102 proteins were upregulated in the left atrial appendage of 67 

AF patients. Among them, CACNA2D2, CACNB2, MYL2 and MAP6 were dramatically 68 

downregulated. KEGG pathway analysis showed these changes would lead to hypertrophic 69 

and/or dilated cardiomyopathy. Cldn5 shRNA AAV infection induced-Cldn5 deficiency caused 70 

severe cardiac atrophy and arrhythmias in mice. The decreases in both mitochondrial numbers 71 

and mitochondrial membrane potential (MMP) were also observed in vitro after Cldn5 72 

knockdown by siRNA. Finally, western blot analysis confirmed the protein level of CACNA2D2, 73 

CACNB2, MYL2 and MAP6 were downregulated after Cldn5 knockdown in vivo and in vitro.  74 

Conclusions: We demonstrated for the first time the deficiency of Cldn5 in cardiomyocytes in 75 

the left atrium of AF patients. The mechanism of AF might be associated with Cldn5 deficiency-76 

associated downregulation of CACNA2D2, CACNB2, MYL2 and MAP6, and mitochondrial 77 

dysfunction in cardiomyocytes.  78 
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Key Words: Atrial fibrillation; Claudin-5; Cardiac atrophy; Proteomics analysis; Mitochondrial 79 

dysfunction 80 

Introduction  81 

Atrial fibrillation (AF) is the most common arrhythmia encountered in clinics.1 82 

Disorganization of electrical impulses in the heart causes a rapid and irregular heart rhythm and 83 

thus AF, which leads to substantial morbidity, mortality, and socioeconomic burden worldwide.2, 
84 

3 Pathogenic mutations of numerous genes have been causally linked to AF, of which the 85 

majority encode ion channels, cardiac structural proteins, and gap junction channels.4, 5 Gap and 86 

tight junctions are the major intercellular junctions that play important roles in cellular 87 

communication and structural integrity. In the heart, gap junctions comprised of connexins (Cxs) 88 

form intercellular conduits responsible for electrical coupling and rapid coordinated action 89 

potential propagation between adjacent cardiomyocytes. Despite accumulating clinical evidence 90 

showing that gap junction protein Cx40 and Cx43 abnormalities are associated with AF,6-9 there 91 

are few investigations for the effects of another cell-cell contact, tight junctions, on 92 

electrophysiological properties in human and murine hearts.  93 

Claudin-5 (Cldn5) is a transmembrane tight junction protein that controls endothelial and 94 

epithelial permeabilities.10 Numerous investigations about the role of Cldn5 have been focused 95 

on the blood-brain barrier in the last decades. Interestingly, clinical studies indicate that the level 96 

of Cldn5 is reduced in human failing hearts.11, 12 Our previous study demonstrated that Cldn5 97 

was expressed in human and murine cardiomyocytes and regulated mitochondrial dynamics by 98 

promoting mitochondrial fusion and inhibiting mitochondrial fission, which exerted its protective 99 

effect against ischemia insult.13 However, the contribution of Cldn5 to cardiac electrophysiology 100 

remains poorly defined.  101 

In the current study, we clinically investigated the association of Cldn5 expression with 102 

myocardial electrophysiological, morphological, and molecular characteristics in the left atrial 103 

appendages of AF patients. Using the Cldn5 shRNA AAV approach, the relationship between 104 

Cldn5 deficiency and cardiac electro-structural remodeling was evaluated in mouse heart. The 105 

proteomic study was used to assess the protein profile in human left atrial appendages, and 106 

western blot was used to confirm the changes of candidate proteins involved in myocardial 107 
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dilation and atrophy signaling pathways in AF patients’ myocardium and in Cldn5 deficient 108 

murine hearts. Finally, cell culture was used to assess Cldn5 knockdown on the mitochondrial 109 

density and mitochondrial membrane potential by using Cldn5 siRNA in HL-1 cells. We show 110 

that Cldn5 is critical for maintaining normal cardiac morphology and electrophysiology, and 111 

downregulation of Cldn5 contributes to cardio-electric disturbance and myocyte atrophy as well 112 

as myocardial dilation, which may underly the pathogenesis of AF and lead to novel ways to 113 

treat arrhythmias in patients. 114 

Methods 115 

All procedures were performed in accordance with our institutional guidelines for animal 116 

research that conforms to the Guide for the Care and Use of Laboratory Animals, and this study 117 

was approved by the Ethical Committee of Zunyi Medical University, Zhuhai Campus. Mice 118 

were kept in standard housing conditions with a light/dark cycle of 12 h and free access to food 119 

and water.  120 

Human heart sample isolation 121 

With the approval from a local human research ethics review, left atrial appendages were 122 

obtained from patients with severe AF accompanied by rheumatic mitral valve diseases 123 

undergoing modified radiofrequency ablation maze procedure or normal control from organ 124 

donors that were not used for heart transplantation but had no history of AF and major 125 

cardiovascular diseases. Then the tissues were used for western blot, immunofluorescence, and 126 

proteomic analysis.  127 

Echocardiography and Electrocardiography 128 

The AF patients were diagnosed by electrocardiography, and echocardiography was adopted 129 

to observe the heart morphology. Cardiac function was evaluated in mice after 4 weeks of Cldn5 130 

shRNA AAV intramyocardial injection by echocardiography and electrocardiography. For 131 

echocardiography, using a Vivo-3300 ultrasonic system (VisualSonics, Toronto, ON, Canada) 132 

equipped with a 30 MHz high-resolution probe. Mice were anesthetized with inhalational 133 

isoflurane at a concentration of 1.5% and two-dimensional parasternal long-axis images of the 134 

left ventricle (LV) were obtained at the level of the papillary muscles. The LV anterior wall 135 
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diameter at diastole (LVAWd) was measured. For electrocardiography, mouse 136 

electrocardiography of Techman signal collection and analysis system (BL-420I) were used to 137 

track arrhythmias and ventricular premature beat (VPB). 138 

Adeno-associated virus (AAV)-mediated Cldn5 knockout 139 

C57BL/6 male mice (aged 8–12 weeks, weighing 20–25 g) were anesthetized with a mixture 140 

of xylazine (5 mg/kg, intraperitoneal) and ketamine (100 mg/kg, intraperitoneal). Cldn5 shRNA 141 

adeno-associated virus (AAV) was injected to the left ventricle by 3-5 points. All mice were 142 

under investigation for 4 weeks after Cldn5 shRNA injection to make sure the Cldn5 gene in the 143 

myocardium have been successfully knockdown. 144 

Tandem mass tagging proteomics analysis 145 

The primary experimental procedures for tandem mass tagging (TMT) proteomics analysis 146 

include whole-proteome preparation, trypsin digestion, TMT labeling, high-performance 147 

pressure liquid chromatography fractionation, LC- MS/MS analysis and data analysis. Raw data 148 

were analyzed using GO Annotation (http://www.ebi.ac.uk/GOA/), Domain Annotation 149 

(InterProScan) and KEGG Pathway Annotation (KEGG online service tools KAAS mapper). 150 

The protein-protein interaction networks stemming from a computational prediction were 151 

analyzed in STRING (https://string-db.org/). 152 

The resulting MS/MS data were processed using Proteome Discoverer search engine 153 

(V2.4.1.15) against Homo_Sapiens_9606_PR_20210721.fasta (78,120 sequences) concatenated 154 

with reverse decoy database. The parameters were set as follows: (1) trypsin (full) was specified 155 

as the cleavage enzyme; (2) two missed cleavages were allowed; (3) the minimum peptide length 156 

was six amino acids; (4) the maximum number of modifications per peptide was 3; (5) the mass 157 

tolerance for precursor ions was 10 ppm in the first search; (6) fragment ion mass tolerance was 158 

0.02 Da; (7) Carbamidomethylation on cysteine was fixed modification; (8) oxidation on 159 

methionine and N-terminal acetylation were variable modification; and (9) false discovery rate 160 

was adjusted to 1%. Student’s t-test was used to evaluate the significant differences. The proteins 161 

with a fold change of ≥1.50 or ≤1/1.5 and p-value < 0.05 were considered differentially 162 

expressed proteins (DEPs).  163 
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Immunofluorescence and Wheat Germ Agglutinin (WGA) staining 164 

Cldn5 was localized by double-label immunofluorescence confocal microscopy, and their 165 

overlap was quantified. Briefly, the human and mice heart tissues were fixed in 4% 166 

paraformaldehyde, embedded in paraffin, and sections (3–5μm thickness) were stained with 167 

primary antibodies for Cldn5-Alexa Fluor 488 (Invitrogen, Catalog#352588), CD31 (Proteintech, 168 

Catalog#11265-1-AP) or Tomm20 (Abcam, ab186734) for 1h at room temperature. Then 169 

Fluorescein donkey anti-rabbit IgG Alexa Fluor 594 was incubated for 30 min in the dark before 170 

confocal microscopic observation. In addition, the cross-sectional areas of the cardiomyocytes in 171 

human and mouse myocardium were observed by fluorescein-conjugated wheat germ agglutinin 172 

(WGA; 5 µg/mL, 25530, AAT Bioquest, USA) staining and evaluated by calculating the single 173 

myocyte cross-sectional areas measured by ImageJ software (National Institutes of Health, USA). 174 

Cell culture, mitochondrial number and mitochondrial membrane potential (Δψm) analysis  175 

Mouse Cldn5 siRNA (RiboBio, siG2302130920115720) was transfected by lipo 2000 to 176 

knock down the expression of Cldn5 in HL-1 cells. Then the mitochondria were imaged by 177 

Mitotracker Green FM (Invitrogen, M7514) and the mitochondrial membrane potential was 178 

examined by a JC-1 staining kit (Beyotime, C2006). The intensity of the fluorescence was 179 

measured by Image J.  180 

Western Blot Analysis 181 

Proteins were obtained from whole hearts or HL-1 cells. Samples containing equal amounts of 182 

protein (10 µg) were separated by 10% SDS-PAGE and transferred onto PVDF membranes. The 183 

membranes were blocked with 5% skimmed milk at room temperature for 2 h and then incubated 184 

overnight at 4°C with the primary antibody. The following antibodies were used for the Western 185 

blotting analysis: Cldn5 (Abcam, ab172968), CACNA2D2 (Abcam, ab173293), CACNB2 186 

(Abcam, ab253193), MYL2 (Affinity, DF7911), MAP6 (Santa Cruz, sc-137036). After being 187 

incubated with goat anti-rabbit or goat anti-mouse secondary antibody for 1 h at room 188 

temperature, the blots were detected and quantified by densitometry using the Image J Analysis 189 

software. 190 

Transmission Electron Microscopy 191 
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Human and mouse heart samples were fixed in 2% glutaraldehyde, phosphate-buffered to pH 192 

7.4 and post-fixed with 1% OsO4. After dehydration, the samples were incubated in propylene 193 

oxide followed by embedding in a mixture of Epon 812 and Araldite. Ultrathin sections obtained 194 

by an Em UC7 Ultramicrotome (Leica) were collected on TEM nickel grids and analyzed using a 195 

TEM (JEM-1400 Plus, JEOL) at 100 kV.   196 

Statistical analysis 197 

    All experiments were expressed as the mean ± SEM and p < 0.05 was considered to indicate 198 

statistical significance. The paired t-test was used for comparisons between the two groups. One-199 

way ANOVA with post hoc analysis by the Fisher exact probability test was employed for 200 

multiple comparisons. All analyses were performed using SPSS 13.0 software (SPSS Inc., 201 

Chicago, IL).  202 

Results  203 

Claudin-5 is downregulated in cardiomyocytes from Af patients’ left atrial appendages 204 

Diagnosis of AF is confirmed by a 12-lead electrocardiogram (ECG) and an 205 

echocardiographic observation in an apical four-chamber view. The representative images of 206 

ECG and echocardiography were presented in Figure 1A in an AF patient. A significantly 207 

enlarged left atrium (LA) was observed (red dashed box in Figure 1A). To mitigate the risk of 208 

stroke, we adopted a modified radiofrequency ablation maze procedure to ablate AF triggers and 209 

modify AF substrates (Figure 1B, right panel), which is proven more efficient than the catheter-210 

based introduction of lesions (Figure 1B, left panel). The excised LA appendages were then used 211 

for western blot and immunofluorescence (IF) to observe the Cldn5 expression and 212 

cardiomyocyte morphology. The protein level of Cldn5 was significantly decreased in the AF 213 

group (Figure 1C). The IF images further showed the localization of Cldn5 on mitochondria and 214 

confirmed the decreased expression of Cldn5 in cardiomyocytes (Figures 1D and 1E). Left atrial 215 

appendage sections stained with FITC-WGA also showed the decreased cross-section of 216 

cardiomyocytes in the AF group when compared with non-AF. 217 

Claudin-5 knockdown causes cardiac atrophy and disrupts cardiac rhythm in mice 218 
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In-vivo studies in C57BL6 mice were performed to evaluate the influence of cardiac Cldn5 on 219 

cardiac morphology and electrophysiology. Cldn5 shRNA AAV was injected in the murine left 220 

ventricular myocardium for 4 weeks to knock down the Cldn5 as shown in Figure 2A. Western 221 

blot showed AAV infection caused a 69.5% reduction of Cldn5 in the LV (Figures 2B and 2C). 222 

The thickness of the LV anterior wall was also reduced by 45% in the shRNA AAV infection 223 

group (Figures 2D and 2E). Cardiac conduction was assessed by II-lead ECG specialized for 224 

murine, which detected the arrhythmia including ST elevation, replacement of P-waves with F-225 

waves and absence of P-waves prior to QRS (Figure 2F). Additionally, LV sections stained with 226 

FITC-WGA showed a decreased cross-section of cardiomyocytes in the shRNA infection group 227 

compared to the control (Figures 2G and 2H). 228 

Overview of tandem mass tag-based proteomic data 229 

Cardiac tissues from AF and non-AF patients’ left atrial appendages were undertaken 230 

proteomic analysis. By strict quality control, we obtained a total of 6,36,881 spectrums (3,05,015 231 

matched), and 50,211 peptides (45,784 unique peptides) were detected among them. Finally, 232 

5,648 proteins were identified, 5,365 of which were quantified (Figure 3A). Biological replicates 233 

were validated by the relative standard deviation distribution, which displayed the precision and 234 

reproducibility of our proteomic datasets (Figure 3B). Following statistical analysis, 185 proteins 235 

with fold-change≥1.50 or ≤ 1/1.5 and p-value < 0.05 were considered the DEPs. Among them, a 236 

total of 102 up-regulated and 83 down-regulated DEPs were identified when comparing AF with 237 

non-AF patients’ heart samples (Figure 3C). These data were clustered on a heatmap to reveal 238 

hierarchical commonality in protein abundance for samples within each cardiac tissue type, yet 239 

differences in protein abundance when comparing AF and non-AF heart tissues (Figure 3D). 240 

Further analysis showed that the sizes of most proteins were distributed in the range of 10 to 241 

200kDa, which meant reliable results (Figure 3E).  242 

The cardiac hypertrophy signaling pathway is negatively regulated in AF patients’ left 243 

atrium  244 

To confirm the KEGG enrichment analysis, we found the role of DEPs on several signaling 245 

pathways especially cardiovascular disease signaling (Figure 4A). We extracted the information 246 

solely about cardiovascular disease signaling and found 6 specific cardiovascular signaling 247 
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pathways, including cardiac hypertrophy signaling (Enhanced), the role of NFAT in cardiac 248 

hypertrophy, endothelin-1 signaling, thrombin signaling, HIF1α signaling and Cardiac 249 

hypertrophy signaling were negatively regulated by the changed proteins (Figure 4B). Among 250 

them, CACNA2D2, CACNB2 and MYL2 were get involved (Figure 4C). 251 

Hypertrophic and dilated cardiomyopathy KEGG pathways were identified in the AF 252 

patients’ cardiomyocyte 253 

To predict the possible roles of DEPs, the INGENUITY pathway analysis was conducted. As 254 

shown in Figure 5A, 21 types of cardiovascular diseases were linked to DEPs when compared 255 

AF with non-AF atrial tissues. The predictive p-value was far away less than 0.05. Among them, 256 

abnormal morphology of the heart was associated with 20 changed proteins, abnormality of the 257 

heart ventricle was connected with 13 changed proteins and hypertrophic cardiomyopathy was 258 

related to 7 changed proteins. The enlarged left atrium was the outcome of mitral stenosis or 259 

mitral regurgitation from concentric hypertrophy to eccentric hypertrophy in the development of 260 

cardiac remodeling of rheumatic valvular heart disease (Figure 5B). A volcano plot showed the 261 

decreased CACNA2D2, CACNB2, MYL2 and MAP6 are highly involved in the development of 262 

these three morphological changes of the heart (Figure 5C). Further, KEGG enrichment analysis 263 

indicated that these four down-regulated proteins were mainly enriched in the following two 264 

pathways: calcium transport and myofibril assembly in cardiomyocytes (Figures 5D and 5E).  265 

Impact of Cldn5 knockdown on dilated cardiomyopathy pathway in vivo  266 

The decreased expression of the targeted four DEPs mentioned above in AF patients’ 267 

cardiomyocytes was further confirmed by western blot (Figure 6A). Immuno-electron 268 

microscopy for Cldn5 showed the morphology of mitochondria collapsed with decreased 269 

immunogold-Cldn5 on them (Figure 6B). Similar results were verified in an in-vitro study where 270 

Cldn5 was knocked down by shRNA AAV infection for 4 weeks in murine LV. Western blot 271 

showed down-regulated protein levels of CACNA2D2, CACNB2, MYL2 and MAP6 after the 272 

expression of Cldn5 was disturbed (Figure 6C). The disruption of mitochondrial morphology and 273 

distribution as well as depletion of mitochondria were also observed in Cldn5 shRNA AAV-274 

infected myocardium (Figure 6D).  275 
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Cldn5 knockdown decreases the mitochondrial density and mitochondrial membrane 276 

potential in vitro 277 

    In vitro studies were conducted in HL-1 cells to assess the influence of Cldn5 on the protein 278 

levels of CACNA2D2, CACNB2, MYL2 and MAP6 and observe the role of Cldn5 on 279 

mitochondrial membrane potential. The four targeted proteins were all down-regulated by si-280 

Cldn5 transfection for 48 hours in the culture medium (Figures 7A and 7B). Decreased number 281 

of mitochondria was also observed by Mitotracker staining under confocal microscopy (Figures 282 

7C and 7D). We further detected significantly enhanced fluorescence of JC-1 monomers (green 283 

color) after Cldn5 knockdown, which indicated mitochondrial membrane potential was 284 

decreased (Figures 7E and 7F). 285 

Discussion 286 

Major findings. 287 

Our study firstly demonstrates that reduced expression of Cldn5 in cardiac tissue along with 288 

decreased CACNA2D2, CACNB2, MYL2 and MAP6 might induce disturbance of myofibrils 289 

and microtubules as well as dysfunction of calcium transport, which leads to myocardial 290 

excitation-contraction coupling disorder followed by atrial atrophy, dilation and AF. These 291 

findings summarized in Fig. 8 broaden our comprehension of the effect of cell-cell adhesion on 292 

arrhythmia.  293 

Connexins and AF 294 

The pathogenesis of AF is linked to gap junction remodeling of atrial tissue. Gap junctions are 295 

communication structures while tight junctions serve the major functional purpose of providing a 296 

“barrier” within the endothelial and epithelial membrane.14 Normal cardiac conduction requires 297 

gap junction proteins like Cx30, Cx40, Cx43 and Cx45. Since they provide the syncytial 298 

properties of the atrium and ventricle, changes in their expression and distribution may lead to 299 

arrhythmias. For instance, Cx30 deficient mice had a faster mean daily heart rate than control 300 

mice.15 Cx30.2 deficient mice also had shorter PQ intervals, elevated AV-nodal conduction 301 

velocity and faster ventricular response rates compared to WT littermates.16 Cx40 and Cx43 302 

downregulation in the atrium and ventricle of the rabbit’s hearts, respectively, have been thought 303 
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to enhance the susceptibility to atrial and ventricular tachycardia or fibrillation,17, 18 and the 304 

heavy ion beam is reportedly promising in the treatment of arrhythmia by increasing the 305 

expression of Cx40/43 in animal models.19 Additionally, clinical studies also confirmed severely 306 

decreased Cx40 levels and reduced overlap with Cx43 in AF patients’ atria.7 These lines of 307 

evidence have demonstrated the critical role of Cxs in controlling the cardiac rhythm and cardiac 308 

conduction, however, the function of the tight junction channel in the pathogenesis of AF is still 309 

largely undefined. 310 

Mechanisms of the causes of Cldn5 deficiency and AF 311 

Cardiomyocyte’s rod-shaped cell morphology is stabilized through specific and direct 312 

interaction via the intercalated disk localized at the bipolar ends of the cardiomyocyte, while the 313 

lateral cell surface is believed to interact with the extracellular matrix through receptors on the 314 

costamere without physical contacts between proximate cardiomyocytes. Cldn5 is found 315 

localized in the lateral membranes of cardiomyocytes and is decreased in a mouse model of 316 

muscular dystrophy with cardiomyopathy.20 Our previous study further found Cldn5 was 317 

localized in both sarcolemma and mitochondria of cardiomyocytes and acted as a mitochondrial 318 

dynamic regulator preventing mitochondrial fission and preventing the heart from ischemic 319 

insult.13 However, the electrophysiological role of Cldn5 was still not fully investigated though 320 

there was evidence linking tight junction protein to disturbed cardiac rhythm. It has been 321 

reported that tight junction protein 1 (TJP1) cardiac-specific deletion transgenic mice developed 322 

AV block along with decreased Cx40 expression and intercalated disc localization.21 Another 323 

study showed that tight junction protein, coxsackievirus-adenovirus receptor (CAR), and heart-324 

specific inducible knockout impaired electrical conduction between the atrium and ventricle in 325 

mice.22 In the present study, we hypothesized the decreased protein level of Cldn5 in AF patients 326 

left atrium was linked to AF, therefore we used Cldn5 shRNA AAV infection to knockdown 327 

cardiac Cldn5, and we found ST elevation, ventricular premature beat and AF in Cldn5 ventricle 328 

knockdown mice. We also found the expression of Cx40/43 was not changed in western blot 329 

after Cldn5 knock down (unpublished data). The implication of these novel findings is that 330 

myocardial tight junction protein, Cldn5, maybe also crucial in maintaining normal 331 

electrophysiology.  332 
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The mechanism underlying the pathogenesis of AF and the other cardiac rhythm disturbance 333 

in mice after Cldn5 knockdown in the left ventricle might be different from that of reduced 334 

Cldn5 in AF patients’ left atrium though, we captured the common changes of molecules from 335 

western blot analysis which showed the protein levels of CACNA2D2, CACNB2, MAP6 and 336 

MYL2 were significantly downregulated. Actually, CACNA2D2 serves in vivo as a component 337 

of a P/Q-type calcium channel, a functional auxiliary subunit of voltage-gated Ca2+ channels, and 338 

is indispensable for central nervous system function.23 Evidence showed that inhibition or 339 

knockdown of CACNA2D2 could induce arrhythmias in rat ischemic hearts.24 Moreover, a loss-340 

of-function mutation in another L-type calcium channel subunit gene CACNB2 also has been 341 

reported to cause a short QT syndrome subtype.25 A missense variant in CACNB2 is also 342 

associated with ventricular fibrillation.26 Therefore, the downregulated expression of 343 

CACNA2D2 and CACNB2 in AF patients’ cardiomyocytes and in Cldn5 knockdown murine 344 

cardiomyocytes in the present study suggest a novel role of Cldn5 in modulating calcium 345 

transport via voltage-gated Ca2+ channels. 346 

The reduction of protein level of Cldn5 is observed in human heart samples from end-stage 347 

cardiomyopathy,11 and Cldn5 mRNA and protein levels are also specifically reduced in the heart 348 

from a mouse model of muscular dystrophy with cardiomyopathy induced by 349 

utrophin/dystrophin double knockout.20 On the contrary,  the over-expression of Cldn5 via 350 

adeno-associated virus (AAV) in these double-knockout mice could prevent the development of 351 

cardiomyopathy and improve cardiac damage.27 Although the connection between Cldn5 and 352 

dystrophy in cardiomyopathy or muscular dystrophy is inconclusive, the relation between 353 

decreased Cldn5 and cardiomyopathy is apparent. Here we show that significant cardiac myocyte 354 

atrophy is common in cardiomyocytes from AF patients’ left atrial appendage and from mouse 355 

left ventricle after Cldn5 knockdown. These observations are consistent with the data above 356 

suggesting the role of Cldn5 in maintaining the cellular morphology of cardiomyocytes. The 357 

mechanism underlying this phenomenon might be associated with decreased MAP6 and MYL2 358 

predicted by proteomic analysis and confirmed by western blot. Since the evidence showed that 359 

deletion of the MAP6 resulted in skeletal muscle atrophy and weakness in mice,28 and mutation 360 

in MYL2 gene was identified in hypertrophic cardiomyopathy (HCM),29, 30 we believe that the 361 

deficiency of these two proteins after Cldn5 depletion is associated with cardiac myocyte atrophy 362 

in the current study. 363 
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Furthermore, in our cellular study knockdown Cldn5 in HL-1 cells, we also observed similar 364 

results from the in vivo study. Mitochondrial dysfunction might be the key process underlying 365 

Cldn5 deficiency-induced arrhythmia since mitochondrial number and membrane potential were 366 

decreased after Cldn5 knockdown. These results were consistent with our previous observation 367 

that mitochondrial fission was enhanced in cardiomyocytes post hypoxia-reoxygenation when 368 

Cldn5 was knocked down by siRNA.13 Furthermore, Cldn5 overexpression attenuated 369 

myocardial oxidative stress and mitochondrial dysfunction in mice subjected to myocardial 370 

ischemia reperfusion injury.31 Together these findings suggest that mitochondrial dysfunction 371 

induced by the downregulation of Cldn5 along with the significant decrease of CACNA2D2, 372 

CACNB2, MAP6 and MYL2 contributed to calcium transport disturbance and myofibrils and 373 

microtubules disturbance, leading to myocardial excitation-contraction coupling disorder 374 

followed by cardiac myocyte atrophy and fibrillation (Figure 8). 375 

Study limitations 376 

Although the expression of Cldn5 was decreased in the left atrial appendages in patients with 377 

AF, Cldn5 shRNA AAV was injected into the myocardium of the anterior left ventricle rather  378 

than the left atrium in this study, suggesting the uncertainly of the areas of Cldn5 expression of 379 

the role of AF. Secondly, due to the embryo-lethal, this was a study performed without a Cldn5 380 

gene knockout mouse. An inducible cardiomyocyte-specific Cldn5 deletion mouse (Cldn5fl/fl; 381 

Myh6Cre/Esr1＊) will be used in future studies. Moreover, the mechanisms by which Cldn5 382 

knockdown leads to the downregulation of CACNA2D2, CACNB2, MYL2 and MAP6 are not 383 

investigated. The interactions between Cldn5 and these four proteins should be considered due to 384 

the fact that in failing heart, Cldn5 in cardiomyocytes is reduced and Ephrin-B1 localization is 385 

altered,12 which hinting that Cldn5 may be required for stabilizing the localization of the other 386 

receptors or proteins. 387 

Conclusions 388 

This is the first clinical study to show the role of Cldn5 on cardiac rhythm and cardiac 389 

hypertrophy. The enlargement of LA in Af patients is accompanied by cardiac atrophy and 390 

decreased Cldn5 meanwhile cardiac Cldn5 deficiency leads to disturbance of cardiac rhythm and 391 

myocyte atrophy. Cell culture findings show decreased mitochondrial numbers and membrane 392 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 13, 2023. ; https://doi.org/10.1101/2023.07.11.23292531doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.11.23292531


potential. Proteomic study and western blots results demonstrate the detrimental effect of Cldn5 393 

deficiency is associated with the downregulation of CACNA2D2, CACNB2, MYL2 and MAP6. 394 

These findings may be considered for the development of promising cardioprotective 395 

therapeutics based on claudin-5 to maintain healthy cardiac rhythm and morphology.  396 
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Figure legends 519 

Fig. 1 Myocardial dilation, myocyte atrophy and Cldn5 reduction in the left atrial 520 

appendages of AF patients (A) Exemplar images of electrocardiogram (ECG) and apical four-521 

chamber view of the heart in AF patient and control. Red box indicates left atrium (LA). (B) Left 522 

appendages of the LA was excised during the modified radiofrequency ablation maze procedure 523 

indicated in the right panel. Left panel indicates the traditional percutaneous radiofrequency 524 

ablation for AF.  (C) Representative western blot of Cldn5 in left appendages of AF patients. 525 

Human lung tissue is used as positive control. (D) Exemplar left atrial appendage section stained 526 

with anti-Cldn5, CD31 and TOMM20 antibodies. Anti-Cldn5 primary antibody is Alexa Fluor 527 

488 conjugated (Green) while CD31 and TOMM20 antibodies is visualized by Fluorescein 528 

donkey anti-rabbit IgG Alexa Fluor 594 (Red). DAPI is used to stain nucleus. Scale bar, 20 µm. 529 

(E) Quantification of immunofluorescent staining of Cldn5 in cardiomyocytes. (F) Exemplar left 530 

atrial appendage section stained with WGA for assessing cardiomyocyte’s cross section. Scale 531 

bar, 20 µm. (G) Quantification of cross-section of cardiomyocytes.  * P < 0.05 vs. Non-AF; n = 532 

5. 533 

Fig. 2 Reduced Cldn5 expression, cardiac atrophy and arrhythmia in mouse heart. (A) 534 

Cldn5 shRNA adeno-associated virus (AAV) was injected in three points in the myocardium of 535 

the left ventricle (LV). (B) Western blot of claudin-5 in injected area 4 weeks later. Murine lung 536 

tissue is used as a positive control. (C) Quantitative analysis of the protein level of claudin-5 in 537 

LV myocardium after AAV infection. AAV NC indicates control AAV. * P < 0.05 vs. AAC NC; 538 

n = 5. (D) Exemplar views of the long axis of LV under echocardiographic observation. A red 539 

box indicates the thickness of the LV anterior wall at diastole (LVAWd). (E) Quantitative 540 

analysis of the LVAWd. * P < 0.05 vs. AAC NC; n = 5. (F) Exemplar images of 541 

electrocardiogram (ECG) in mice after 4 weeks of Cldn5 AAV infection in LV myocardium. 30% 542 

of mice developed ST elevation; 40% of mice developed AF and 40% of mice developed 543 

absence of P-waves prior to QRS. N=10 in each group. (G) The cross-section of cardiomyocytes 544 

is stained with WGA after AAV infection for 4 weeks. Scale bar, 20 µm. (H) Quantification of 545 

the cross-section of cardiomyocytes. *P < 0.05 vs. AAV NC; n = 5.   546 

Fig. 3 Tandem mass tag (TMT)-based quantitative proteomic sequencing results. 547 

(A)Summary of tandem mass spectrometry database search analysis. (B) The relative standard 548 
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deviation (RSD) of the samples. (C) Statistical analysis of differentially expressed proteins 549 

(DEPs). (D) A heatmap with hierarchical clustering of DEPs. (E) The distribution of the 550 

molecular size of the identified proteins. 551 

Fig. 4 INGENUITY pathway analysis (IPA) results. (A) Bubble chart of metabolic pathway 552 

and signal pathway associated with differentially expressed proteins (DEPs). Cardiovascular 553 

signaling is marked by the red font. (B) Bubble chart of cardiovascular signaling. (C)Venn 554 

diagram demonstrating the number of quantified proteins from the cardiac hypertrophy signaling.  555 

Fig. 5 AF patients’ left atrial appendages proteomics exhibits a distinct profile for 556 

abnormal heart ventricles. (A) Cardiovascular disease analysis of DAPs.  (B) Diagram 557 

indicating the transition from hypertrophic cardiomyopathy to dilated cardiomyopathy. (C) 558 

Volcano plot of DEPs. Red dots indicate significantly up-regulated proteins, blue dots indicate 559 

significant down-regulated proteins and gray dots indicate proteins without differences. Among 560 

blue dots, CACNA2D2, CACNB2, MYL2 and MAP6 were highly associated with hypertrophic 561 

cardiomyopathy or dilated cardiomyopathy. (D and E) KEGG enrichment analysis of DEPs 562 

indicating CACNA2D2, CACNB2, MYL2 and MAP6 were functioned as calcium transport and 563 

myofibril assembly. And down-regulation of these proteins will lead to dilated cardiomyopathy.  564 

Fig. 6 Cldn5 knockdown on dilated cardiomyopathy pathway in vivo. (A and B) The western 565 

blot and quantitative analysis of the Cldn5, CACNA2D2, CACNB2, MYL2 and MAP6 in AF 566 

and non-AF left atrial appendages. (C) Representative immunogold-Cldn5 and mitochondrial 567 

morphology images were observed under transmission electron microscopy (TEM). Scale 568 

bar=1µm. (D) Quantitative analysis of immunogold-Cldn5. (E and F) The western blot and 569 

quantitative analysis of the Cldn5, CACNA2D2, CACNB2, MYL2 and MAP6 in the left 570 

ventricles of Cldn5 shRNA AAV and AAV NC injected mice. (G) Representative images of 571 

mitochondrial morphology under TEM. Scale bar=1µm. (H) Quantitative analysis of 572 

mitochondrial number in different groups. *P < 0.05 vs. AAV NC; n = 5 in each group.  573 

Fig. 7 Cldn5 knockdown on the mitochondrial number and membrane potential in vitro. (A 574 

and B) The western blot and quantitative analysis of the Cldn5, CACNA2D2, CACNB2, MYL2 575 

and MAP6 in HL-1 cells after si-Cldn5 transfection for 48 hours. Si-NC is used as the control 576 

siRNA. (C) Representative images of mitochondria in HL-1 cells stained with Mitotracker Green. 577 
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DAPI is used to stain the nucleus. (D) Quantitative analysis of Mitotracker fluorescence intensity. 578 

Scale bar=100 µm. (E) Mitochondrial membrane potential was analyzed by JC-1 staining. Scale 579 

bar=100 µm. (F) Quantitative analysis of the fluorescence intensity ratio between the red 580 

aggregates and green monomer fluorescence. *P < 0.05 vs. Si-NC; n = 5 in each group.  581 

Fig. 8 Diagram of claudin-5-mediated signaling. 582 

Cldn5 deficiency decreases the expression of CACNA2D2 and CACNB2, leading to calcium 583 

transport disturbance. Mitochondrial membrane and membrane potential were decreased after 584 

Cldn5 knockdown. Cldn5 deficiency also decreases the expression of MYL2 and MAP6 which 585 

are responsible for the disturbance of myofibril assembly and microtubule stabilization. All these 586 

effects lead to myocardial excitation-contraction coupling disorder followed by cardiac myocyte 587 

atrophy and atrial fibrillation. 588 

 589 
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