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Abstract

Species distribution models (SDMs) are increasingly popular tools for profiling disease risk in 

ecology, particularly for infectious diseases of public health importance that include an obligate 

non-human host in their transmission cycle. SDMs can create high-resolution maps of host 

distribution across geographical scales, reflecting baseline risk of disease. However, as SDM 

computational methods have rapidly expanded, there are many outstanding methodological 

questions. Here we address key questions about SDM application, using schistosomiasis risk in 

Brazil as a case study. Schistosomiasis—a debilitating parasitic disease of poverty affecting over 

200 million people across Africa, Asia, and South America—is transmitted to humans through 

contact with the free-living infectious stage of Schistosoma spp. parasites released from 

freshwater snails, the parasite’s obligate intermediate hosts. In this study, we compared snail 

SDM performance across machine learning (ML) approaches (MaxEnt, Random Forest, and 

Boosted Regression Trees), geographic extents (national, regional, and state), types of presence 

data (expert-collected and publicly-available), and snail species (Biomphalaria glabrata, B. 

tenagophila and B. straminea). We used high-resolution (1km) climate, hydrology, land-

use/land-cover (LULC), and soil property data to describe the snails’ ecological niche and 

evaluated models on multiple criteria. Although all ML approaches produced comparable 

spatially cross-validated performance metrics, their suitability maps showed major qualitative 

differences that required validation based on local expert knowledge. Additionally, our findings 

revealed varying importance of LULC and bioclimatic variables for different snail species at 

different spatial scales. Finally, we found that models using publicly-available data predicted 

snail distribution with comparable AUC values to models using expert-collected data. This work 

serves as an instructional guide to SDM methods that can be applied to a range of vector-borne 
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and zoonotic diseases. In addition, it advances our understanding of the relevant environment 

and bioclimatic determinants of schistosomiasis risk in Brazil. 

Introduction

Species distribution models (SDMs) have become increasingly popular tools in the field of 

disease ecology to profile transmission risk for vector-borne and zoonotic diseases, i.e., diseases 

whose transmission involves a non-human host or vector species, such mosquitoes (malaria, 

dengue, Zika), flies (leishmaniasis, sleeping sickness), ticks (Lyme disease), triatomine bugs 

(Chagas disease), and snails (schistosomiasis, fascioliasis). By using presence data of non-human 

hosts and remotely-sensed data of potential environmental covariates, SDMs are correlative 

models that can predict species habitat suitability across areas not sampled by field collection 

programs (1–3). These models are typically used to create high-resolution maps of inferred 

species distribution across a geographic area of interest, which can reflect areas where disease 

transmission may be possible. In combination with other processes that influence transmission, 

such as reservoir host distributions or other disease exposure variables, these predictions can 

directly inform the understanding of the pathogenic landscape of environmentally-mediated 

diseases (4).

SDMs are a powerful tool applied in a number of fields, including disease ecology (5,6), 

epidemiology (7), and conservation (8,9), among many others. Species distribution modeling 

works by using presence/absence species data to identify covariates that are predictive of a 

species presence. Because true absence data are not typically available, SDMs often use 

“background” or “pseudo-absence” data to simulate locations where an organism could have 

been sampled but was not (10,11). SDMs use various machine learning methods to identify a 
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suite of covariates that can accurately predict the presence or absence of the organism in 

geographic space, using flexible functional relationships between predictors and responses that 

can include nonlinearities and interactions (2,3). Model inputs can vary in spatial and temporal 

resolution and extent. Many algorithms are available for model training and testing, and they 

differ in how they handle covariate-outcome relationships (12). SDMs are cross-validated by 

leaving out part of the data in model training in order to assess model performance on out-of-

sample data, often performed in a spatially-structured way (13). The outputs of interest include 

geographic maps of species presence suitability, lists of variables selected as important 

predictors, and the functional forms of relationships between predictors and presence. A glossary 

of terms and concepts central to the SDM literature are summarized for reference in Table 1.

Increased access to large-scale, remotely-sensed environmental data (14,15) and species presence 

databases (16), such as the Global Biodiversity Information Facility (17), has spurred rapid 

expansion of these methods. Further, recent decades have brought rapid development of 

statistical models and machine learning algorithms that can be applied to species distribution 

models, such as regularized regression (18), decision tree (19), Bayesian (20), neural network 

(21), and ensemble methods (22), among many others. Although many machine learning 

methods have grown in popularity due to their flexibility, ability to model covariate interactions, 

and increasing accessibility in common programming languages like R, no single method has 

fully eclipsed its counterparts (12,23). There has been additional SDM methodological 

development, including optimization of sampling techniques for “background” or “pseudo-

absence” points (11,24), increased rigor for input variable selection (25,26), investigation on 

resolution size (27), defense of spatial cross-validation techniques (13), integration of ecological 
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theory (28,29), development of gold-standard model evaluation measures (30), and updated 

guidelines for method-specific reproducibility standards (31,32). 

Table 1: Glossary of terms and concepts central to SDM methodology.

Term/concept Summary Citation

Presence records Observed presence of a species, usually with latitude, 
longitude, and date.

(33)

True absence records Observed absence of a species, also with latitude, 
longitude, and date. Often difficult to obtain with 
certainty.

(34) 

Pseudo-absence / 
background records

Locations drawn from the landscape of interest where an 
organism could have been sampled but was not. Could 
by chance include presence areas.

(10)

Thinning Reducing a set of records (presence, absence, 
background) so only one record is retained for each grid 
cell. 

(35)

Environmental 
covariates

Variables hypothesized to impact species presence, such 
as temperature, precipitation, or land-use type. Often 
remotely-sensed raster images.

(33)

Multicollinearity When predictor variables are correlated to one another. 
Can potentially result in misidentification of relevant 
predictors, their importance, or their relationship with the 
outcome.

(36)

Resolution size Size of the grid cells at which probabilities are predicted. 
All predictor variables need to be input into the model 
with the same resolution.

(27)

Geographic extent The geographic area of interest for which probabilities 
are estimated.

(33)

Model type Choice of statistical or machine learning algorithm. (12) 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


6

Cross-validation / 
spatial cross-
validation

Validation technique that repeatedly leaves out parts (i.e, 
“folds”) of the data in model training in order to assess 
performance on out-of-sample data. Spatial cross-
validation separates the folds by spatial clusters.

(13)

Discrimination The ability for models to distinguish between presence 
records and absence/background records. Often 
estimated by AUC values.

(37)

Sensitivity The proportion of presences correctly identified as 
presences. Models with high sensitivity tend to build 
prediction maps that look more full.

(37)

Specificity The proportion of absences/backgrounds correctly 
identified as absences/backgrounds. Models with high 
specificity tend to build prediction maps that look more 
sparse.

(37)

ROC-AUC A measure of discrimination that weights the false 
positive rate (i.e., 1 - specificity) versus sensitivity across 
all possible thresholds. A value of 1 indicates perfect 
discrimination and 0.5 or less indicates performance is 
no better than random.

(37)

TSS Sensitivity + specificity - 1 (i.e., values of zero or less 
indicate the performance is no better than random). A 
measure of discrimination designed to be less sensitive to 
species prevalence values than ROC-AUC.

(30)

Calibration The degree to which the observed proportion of 
presences in a grid cell equates to the model estimated 
probability. Often evaluated with a calibration graph.

(38)

Variable importance Measurement to estimate how much each covariate 
contributes to model performance. SHapley Additive 
exPlanations (SHAP) are a particularly useful method 
because they are model agnostic.

(39)

Partial dependence 
plots

Line plots that depict the marginal effect each predictor 
has on suitability probabilities.

(40)
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However, many of these new methods have not been recently documented, especially not in a 

cohesive, accessible manner for scientists new to SDMs or those interested in adopting new 

methods (41). To our knowledge, there has not been an analysis comparing machine learning 

algorithms, data sources, and geographic extents in combination and assessing the consequences 

for presence probabilities and covariate relationships. We hypothesize that algorithm 

performance will vary across geographic scales given differences in model structure, such as 

ability to handle covariate interactions and potential to overfit (12). Additionally, there are very 

few analyses that directly compare the effects of using GBIF presence records versus records 

from expert-executed field collection programs. Given the known spatial bias in GBIF data, we 

ask how well GBIF data can approximate predictions created from expert-collected data sources 

(42,43). Finally, although there has been discussion on the effect of resolution size (27), there 

has been limited discussion on how SDM performance varies across areas of differing 

geographic extent when resolution size is held constant.

In an effort to answer these methodological questions in a biologically and epidemiologically 

relevant study system, we will use the intermediate hosts of Schistosoma mansoni Sambon, 

1907—Biomphalaria (Preston, 1910) snails—as a case study. Simultaneously, we will make 

substantial contributions to knowledge on predicting schistosomiasis risk in Brazil. 

Schistosomiasis is a debilitating parasitic disease caused, in Brazil, by S. mansoni, a parasite that 

relies on both freshwater Biomphalaria snails and human beings to complete its life cycle (44). 

In Brazil, approximately 6 million people are infected and 25 million live in areas where they are 

at risk of infection (45). The disease predominantly impacts poor communities dependent on 

open water sources for occupational activities or other components of daily life (46,47). More 

recently, schistosomiasis transmission has also been recorded in urban and peri-urban areas, 
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impacting people who are either without access to basic sanitation services or whose sewage 

systems overflow in times of heavy rainfall (48,49).

Because Biomphalaria freshwater snails are obligate intermediate hosts of S. mansoni parasites, 

SDMs of the non-human hosts of schistosomiasis allow us to predict areas of suitable snail 

habitat where transmission may be possible. There are three competent Biomphalaria snail hosts 

in Brazil: Biomphalaria glabrata (Say, 1818), Biomphalaria tenagophila (D'Orbigny, 1835) and 

Biomphalaria straminea (Dunker, 1848). We restrict our main analyses to B. glabrata and B. 

tenagophila for ease of interpretation and include B. straminea findings in the supplement. Of 

the three, B. glabrata is the species most susceptible to the parasite and therefore of high public 

health importance, and B. tenagophila was the only species that had sufficient GBIF data to 

compare to expert-collected data. Because snails are ectotherms (i.e., their body temperature is 

dependent on their environment), their reproduction, survival, and dispersal are strongly affected 

by their surrounding temperature (50). The snails live in slow-moving freshwater, including 

permanent and temporary sources, which are both influenced strongly by precipitation and 

drainage patterns (51). Land-use and land-cover (LULC) characteristics affect snail presence 

through multiple pathways, including affecting temperatures through changes in tree canopy and 

vegetation cover and influencing water patterns through deforestation and agriculture (52). 

Finally, chemical factors and soil properties—such as pH and soil water content—are known to 

impact the survival of Biomphalaria snails, due to their impact on freshwater quality (53). 

SDMs capture the snails’ biological relationships to these environmental factors and build 

predictive risk maps that can help to target disease intervention efforts such as mass drug 

administration (54). There have been multiple studies using SDMs to predict suitable snail 

habitat across multiple geographical scales in Brazil, from national (55–57) to sub-national 
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analyses, including those specific to areas within Pernambuco (58), São Paulo (59), and Minas 

Gerais (60,61). However, all of these analyses test only MaxEnt models, with the exception of  

Guimarães et al., 2009 who used an indicator kriging procedure (60). Moreover, with the 

exception of Palasio et al., 2021, the quality and quantity of accessible, remotely-sensed 

environmental data has grown substantially since time of publication (59). Finally, our group has 

collected a large dataset of presence records throughout Brazil that reflect best expert knowledge 

of the constraints on snail habitat, presenting an alternative to publicly available GBIF presence 

data. Therefore, Biomphalaria snails in Brazil provide a ripe opportunity to compare and contrast 

current methods on SDMs, providing a rare comparative case study to guide SDM approaches 

for disease ecology and contributing updated risk models that can guide Brazil’s schistosomiasis 

elimination efforts (62). 

We compare multiple combinations of SDM methods—three machine learning algorithms, two 

data sources, and three geographic extents—and assess the consequences for suitability 

probabilities and covariate relationships of two snail species. We address the questions: How do 

statistical/machine learning models compare depending on research question or application of 

interest? How do model accuracy, variable importance, and geographic predictions vary across 

spatial scales? How does model performance compare using expert-collected data versus 

publicly-available data?

Methods

Species data and background sampling

We acquired B. glabrata and B. tenagophila presence data from two main sources (1) an 

ongoing, Brazil-wide field program supported by multiple government-funded groups across 
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Brazil, including the Coleção de Malacologia Médica, Fundação Oswaldo Cruz (CMM-Fiocruz) 

and the Coordination for Disease Control of the State Health Secretariat of São Paulo (CCD-SP) 

(63–70) and (2) the Global Biodiversity Information Facility (GBIF), a database of publicly 

available presence records commonly used to build SDMs (16). 

The Brazil-wide field collection program, hereafter referred to as the expert-collected dataset, 

consisted of 11,299 total snail records that spanned 1992–2019 and included 25 species. As part 

of national efforts to control schistosomiasis, the Brazilian Ministry of Health has approved 

routine collection and monitoring of Biomphalaria snail species. Geographical coordinates of 

each collection site were acquired with a Garmin eTrex GPS device and species identification 

was done using morphological and molecular tools. Prior to model input, all records were 

spatially filtered such that only one presence record was retained for each 1km grid cell (i.e. 

“thinned to 1km”) to minimize pseudo-replication and oversampling bias (35). After each 

species was separately thinned to 1km, the dataset was reduced to 576 records of our snail hosts 

of interest: 305 B. glabrata and 271 B. tenagophila presence points (Fig 1, Table 2). B. 

straminea data quantity and distribution information can be found in Supplementary Table 1 

and Supplementary Fig S2.

Fig 1: Biomphalaria presence points by species (color) and source (shape), thinned to 1 km. A) 

National, B) Minas Gerais, C) São Paulo

Table 2: Biomphalaria presence point quantity by species, scale, and source, thinned to 1 km. 
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Species Scale Source Presence point 
quantity

Proportion of 
national data

National Expert+GBIF 327 1

Sudeste Expert+GBIF 244 0.74

B. glabrata

Minas Gerais Expert+GBIF 200 0.61

National Expert+GBIF 358 1

Sudeste Expert+GBIF 318 0.89

São Paulo Expert+GBIF 234 0.65

São Paulo Expert* 134 NA

B. tenagophila

São Paulo GBIF* 115 NA

*Source comparisons only made for B. tenagophila in São Paulo (the only scale where data 

quantities were comparable and sufficient).

To compare model performance between expert-collected and publicly available GBIF data and 

to create a background dataset (more below), we constructed a GBIF dataset by searching Brazil 

for all species included in the expert-collected dataset and records of all freshwater animals 

found in South America, as defined by the International Union for Conservation of Nature (71). 

This resulted in a total of 74,960 records that spanned 1985–2020, included over 2,000 species, 

and reduced to 165 records of our snail hosts of interest—29 B. glabrata and 136 B. 

tenagophila—post thinning. Our inclusion criteria for GBIF records were (i) year was between 

1985–2020, (ii) latitude and longitude each included at least three decimal places and (iii) basis 

of record excluded “fossil specimen” and “machine observation” to ensure that the record was 

field-collected at the latitude and longitude reported and was identified by a human. For our snail 
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hosts of interest we also required a complete species taxonomic identification. We limited our 

comparison of expert-collected versus GBIF data to B. tenagophila in São Paulo due to lack of 

sufficient data availability in other areas.

Given a lack of true absence data, we constructed a background dataset of freshwater animals 

across Brazil as our comparison group, thereby representing the freshwater landscape in which 

snails could plausibly be sampled. Species distribution models are often constructed using 

presence data only, without data on true absences of the species. To do so, models calculate the 

probability of species presence relative to the presence of a set of comparable species, assuming 

that the two have similar probabilities of being sampled given that they occur. In this way, 

“pseudo-absence” or “background” points aim to control for sampling effort to capture the 

relationships with environmental covariates that distinguish the presence of the species of 

interest from that of others (10). The extent of the background dataset should be chosen to 

represent the environmental variation of the study area (10). Our background dataset was a 

combination of (1) the remaining expert-collected data after excluding our three species of 

interest (4.8%) and (2) the publicly-available GBIF data described above (95.2%), which 

included a total of 2,091 freshwater animal species and 77,785 presence records. Each 

background dataset was built by sampling two times the number of presence data points for each 

model (i.e., a model with 100 presence points was given 200 background points): this ratio was 

selected to balance the sample between groups (72), while providing sufficient data to represent 

all environments and promote model convergence (11,73). Background points were sampled 

without replacement across a probability distribution that maintained the frequency of 

background points per 1km grid cell. Therefore, we retained a maximum of one record per grid 

cell, generating a “background mask” that helped address sampling bias concerns (10,74). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


13

Environmental data and multicollinearity analysis 

We used high-resolution (1km) climate, hydrology, soil property, and land-use/land-cover 

(LULC) data to describe the environmental conditions associated with each species presence 

record and background sample. We limited the number of covariates to variables previously 

found to impact snail presence for ease of interpretation and comparison between model design 

choices (36). Climate data were obtained from CHELSA (version 2.1), a high resolution (1km2) 

global downscaled climate data set (75). Four climatology variables, averaged over thirty years 

(1981-2010), were included in the analysis: temperature seasonality (bio4), mean temperature of 

coldest quarter (bio11), mean precipitation of wettest quarter (bio16), and mean precipitation of 

driest quarter (bio17). Hydrology data (height above nearest drainage—HND—and soil water 

percentage) were obtained from the Merit Hydro data (76) and OpenLandMap Soil Water 

Content (77), respectively, and soil property data (pH and clay) was obtained from 

OpenLandMap Soil pH in H2O (78) and OpenLandMap Clay Content (79), respectively. Because 

hydrology and soil variables were measured at finer spatial resolution than the climate data, we 

scaled them up to the maximum value (HND) or mean value (water content, pH, clay content) 

for each 1km2 grid cell. Finally, our two LULC covariates—distance to high population density 

and proportion of temporary crop cover during the year of sampling—were constructed from 

WorldPop (80) and MapBiomas (81), respectively. High population density was defined as a 

1km grid cell with a density of at least 1500 inhabitants per km2, per the World Bank definition 

(82). Proportion of temporary crop cover was defined—in natural areas—as farming areas where 

it was not possible to distinguish between pasture and agriculture and—in urban areas—as areas 

of urban vegetation, including cultivated vegetation, natural forest, and non-forest vegetation 

(81). We selected these two LULC variables based on our team’s on-the-ground knowledge of 
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snail presence (83). In total, we provided our models with 12 environmental covariates 

(Supplementary Fig S1), none of which had pairwise Pearson correlation coefficients above 0.7 

with any of the other covariates (36). Although our studied models can handle multicollinearity 

when calculating probabilities, collinear variables obscure the variable importance and partial 

dependence plot interpretation (36).   

Geographic extent

To investigate model performance across varying geographic extent, we created models spanning 

national, regional (Sudeste, composed of four states: Espírito Santo, Minas Gerais, Rio de 

Janeiro and São Paulo), and state (Minas Gerais and São Paulo) extents in Brazil. The region and 

states of interest were chosen based on the quantity of data available to input into the models. 

Past studies have shown that model performance substantially declines with fewer than 30-50 

presence records (84,85). We selected only states with greater than 100 presence records for a 

species of interest: Minas Gerais for B. glabrata and São Paulo for B. tenagophila (Table 2). 

Statistical model type

To compare between machine learning modeling methods, we built three model types: 

Maximum Entropy (MaxEnt), Random Forest (RF), and Boosted Regression Tree (BRT). We 

chose these three model types due to both their popularity in the literature and their consistently 

high performance (12). MaxEnt has long been a well-established method for presence-only 

applications (86), while model types such as RF and BRT have gained more recent popularity 

(41). All models were built using the R program (version 4.2.2). 

MaxEnt uses a maximum-entropy approach to estimate a species’ relative probability 

distribution in response to environmental covariates (18). MaxEnt models create smooth fitted 
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curves, which can facilitate straightforward ecological interpretation (10). The degree to which 

this “smoothness” is enforced can be controlled through choice of regularization settings and by 

which feature types are provided, where options include linear, quadratic, hinge, threshold, and 

product features (10). Product features are equivalent to interaction terms in regression, and they 

allow for limited interactions between covariates (10). We allow MaxEnt all five of these options 

and use the trainMaxNet function from the enmSdmX package, which includes an L1 

regularization feature (87). 

On the other hand, RF, BRT, and other tree-based methods provide enhanced flexibility that 

allow for automatic fitting of precise interactions between the environmental covariates (88). RF 

models take bootstrap samples from the training data and fit a decision tree to each sample (73). 

These individual trees can have high variance (i.e., depend heavily on the training data), but have 

strong generalizability when averaged together to make a prediction over all fitted trees (88). RF 

models use random subsets of the available predictor variables (parameter mtry) on each decision 

tree split, which results in decorrelated trees and subsequently improves model performance 

(73,89). Due to its relative ease of implementation and conceptual simplicity, RF has become a 

common SDM approach (12). However, RF models have the potential to overfit, especially when 

provided data with high class imbalance (73). We use the trainRF function from the enmSdmX 

package (87), which is a wrapper of the randomForest function from the randomForest package 

(90).

BRT is similar in structure to RF, but the decision trees are recursively updated as the algorithm 

learns. During each step of the learning process, BRT fits new trees to the residuals for the 

previously fitted trees, which allows the algorithm to improve on the observations that are not yet 

predicted correctly (19). We use the trainBRT function from the enmSdmX package (87), which 
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is a wrapper of the gbm.step function from the dismo package (91). Similar to RF, BRT also has 

the potential to overfit to training data but can better handle class imbalance and missing data 

due to its additional hyperparameters (19). While these hyperparameters make BRT the most 

flexible model of the three included in our analysis, they require an additional tuning step that 

can be computationally expensive (19). As of now, no one model type has fully eclipsed the 

others as the SDM standard, but tree-based methods have been shown to improve performance in 

multiple settings (12). 

Model evaluation

Our goals in model evaluation were first to assess the accuracy of each model in classifying 

presence versus background (how well does each model classify snail distribution?), second to 

compare model accuracy among methods (which machine learning approach represents the data 

best?), third to assess the importance of different environmental covariates and the shapes of 

their relationships with presence (what environmental characteristics are positively or negatively 

associated with the observed snail distribution?), and fourth to compare this variable importance 

and functional form among model methods (are the relationships between predictors and snail 

presence consistent among models?). Before quantifying accuracy, we first assessed model 

biological realism qualitatively by using expert opinion to visually compare maps produced by 

giving models the full set of records available for each species at the scale of interest. Our group 

of experts consisted of scientists from CMM-Fiocruz and CCD-SP who have studied and 

organized field collection of Biomphalaria snails in Brazil for over three decades. Second, we 

assessed accuracy using four out-of-sample model performance metrics, as described below, 

calculated through ten-fold spatial cross-validation (a process where folds are divided in space 

instead of through random sampling, which can inflate SDM performance measures due to 
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spatial autocorrelation of environmental covariates (13)). We determined the ten spatial folds 

using a k-means clustering algorithm where the size of folds was allowed to vary to prioritize the 

degree of spatial separation. Each fold was required to have at least one presence and one 

background point. 

To determine each model’s discrimination ability, we calculated sensitivity, specificity, the area 

under the receiver operator characteristic curve (ROC-AUC), and true skill statistic (TSS). 

Sensitivity is the proportion of presences correctly identified as presences, and specificity is the 

number of background points correctly identified as background records. ROC-AUC measures 

the false positive rate (i.e., 1 - specificity) versus sensitivity across all possible thresholds (37). 

An AUC value of 1 indicates perfect discrimination and 0.5 or less indicates the performance is 

no better than random). We allowed AUC threshold values to vary across each fold for each 

model (92). TSS is defined as sensitivity + specificity - 1 (i.e., values of zero or less indicate the 

performance is no better than random) and is designed to be less sensitive to species prevalence 

values (30). Given our interest in comparing each of our models’ ability to distinguish relative 

suitability of sites, output suitability probabilities were scaled such that all distributions ranged 

from 0 to 1 (38,85). Calibration is the degree to which the observed proportion of presence 

records in a grid cell equates to the model estimated probability (i.e., 60% of grid cells predicted 

with a probability of 0.6 contain a presence record (38)). The main calibration evaluation 

technique is a calibration graph, which plots model probability estimates against the observed 

proportion of presences, and is predominantly used in studies with true absence data (38). 

Although not applicable for this analysis, there are other situations where the calibration of the 

model is an additional aspect that should be tested, such as when evaluating estimates of true 

prevalence (38). 
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Finally, partial dependence plots and variable importance measures were calculated across the 

ten folds for each model to investigate each covariate’s contribution to model accuracy and 

functional relationship with presence probability. Partial dependence plots (PDP) were drawn 

using the pdp R package and show the marginal effect of each predictor on model probabilities 

(93). Partial dependence plots allow for comparison of inferred relationships between covariates 

and occurrence probability with a priori knowledge of factors that drive snail ecological niche 

suitability. Variable importance measures were calculated using the vi_shap function from the 

vip package (94), which calculates SHapley Additive exPlanations (SHAP) variable importance 

values (a method of calculating how much covariates contribute to model predictions) (39,95). 

Notably, SHAP values are model agnostic and can estimate comparable values of variable 

contribution for both regression-based and tree-based methods (39). 

Results

Model types produce remarkably different national prediction maps for all species despite using 

the same presence and background records and environmental data (Fig 2; Supplementary Fig 

S3). Although probability prediction varies widely (Fig 2), spatially cross-validated AUC (Fig 3) 

and TSS (Supplementary Fig S4) values of national models do not substantially differ across 

model types. RF models tended to have somewhat higher sensitivity—they were more likely to 

accurately predict presence points—than MaxEnt and BRT across species (Table 3; 

Supplementary Fig S4). BRT models had higher specificity—they were more likely to 

accurately predict background points—than MaxEnt and RF for B. glabrata (Table 3) and B. 

straminea models (Supplementary Fig S4). When comparing de-identified national prediction 

maps, expert opinion selected BRT maps for both B. glabrata and B. tenagophila as best 

matching a priori knowledge of current suitable snail habitat. 
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Fig 2: Large variation in snail suitability probabilities at a national scale. National prediction 

maps of B. glabrata (A–C) and B. tenagophila (D–F) suitability probabilities by model type 

(MaxEnt: A, D; Random Forest: B, E; Boosted Regression Tree: C, F) when models were 

provided the full set of species presence records available. 

Fig 3: Scale and species drive SDM performance metrics more than model type. Plots of ten-fold 

spatially cross-validated, out-of-sample AUC values across species (A, B), scales (panels), and 

model types (colors). Plots display mean (point) and +/- standard error (error bars).

Table 3: Model performance of national Biomphalaria snail models across machine learning 

model types. 

Species Model Type AUC Sensitivity Specificity TSS

MaxEnt 0.78 
(0.75–0.82)

0.65
(0.55–0.75)

0.73
(0.66–0.79)

0.38
(0.22–0.53)

B. glabrata

RF 0.73
(0.69–0.77)

0.70
(0.55–0.79)

0.57
(0.50–0.64)

0.24
(0.06–0.41)

BRT 0.72
(0.69–0.76)

0.60
(0.49–0.75)

0.63
(0.55–0.71)

0.23
(0.07–0.39)

MaxEnt 0.67
(0.64–0.71)

0.53
(0.39–0.67)

0.48
(0.37–0.59)

0.01
(-0.21–0.22)

B. 
tenagophila

RF 0.67
(0.65–0.70)

0.54
(0.39–0.70)

0.51
(0.43–0.60)

0.05
(-0.13–0.24)

BRT 0.68
(0.66–0.71)

0.47
(0.35–0.60)

0.58
(0.45–0.70)

0.05
(-0.15–0.25)

Mean and standard errors of spatially cross-validated out-of-sample AUC, sensitivity, and 

specificity values and true skill statistic (TSS) for national models of both species across 

machine learning model type. B. straminea values can be found in Supplementary Table S2, 
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and the corresponding table for in-sample estimates for all species can be found in 

Supplementary Table S3.

Compared to these national models, model accuracy remained consistent at smaller geographic 

scales for B. glabrata and increased at smaller geographic scales for B. tenagophila (Fig 3; 

Supplementary Fig S4), as measured by spatially cross-validated out-of-sample AUC, TSS, 

sensitivity, and specificity. However, when testing models fit to national-scale data at predicting 

state-level occurrences, all models for both species produced lower in-sample AUC values than 

state models (Supplementary Table S4). State models also generally produced higher in-sample 

sensitivity and specificity values but the nationally-fit models occasionally produced higher 

sensitivity values (i.e., sometimes the nationally-fit models were able to correctly identify 

presence points that the state-specific models missed). Differences in predictive accuracy 

between models trained on state versus national data when tested on state data occurs due to 

differences in predicted suitability maps, which are visually apparent (Fig 4, Supplementary 

Figs S5 and S6). 

Fig 4: State and national models produce substantially different state-level prediction maps. 

Minas Gerais prediction maps of B. glabrata suitability probabilities by model type (rows) and 

model geographic extent (columns) when models were provided the full set of species presence 

records available at a given scale. Parallel prediction maps of B. tenagophila in São Paulo and B. 

straminea in Minas Gerais can be found in Supplementary Figs S5 and S6. Compared to 

national models (Fig 2), at smaller geographic scales it becomes more obvious that suitability 

probabilities can be highly localized, producing points of high suitability surrounded by areas 

with low suitability.
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Despite similar overall accuracy across machine learning model types within geographic extents 

(i.e., MaxEnt national compared to RF national (Fig 3), the models infer strikingly different 

relationships between covariates and suitability probability, which imply distinct biological 

relationships. We use three specific examples to illustrate how responses differ across model 

types, spatial extents, and focal species, by comparing plots in each column of Fig 5. First, 

model types produce different curve shapes: MaxEnt often fits smoother or linear forms in 

comparison to the flexible, nonlinear shapes produced by RF and BRT, as illustrated by distance 

to high population density (Fig 5A). Second, functional forms vary across scales: both B. 

glabrata and B. tenagophila responses to soil clay percentage are directionally opposite at 

national versus state scales for all model types (Fig 5B). It is important to note that the range of 

environmental covariates may differ remarkably across geographic extents. Third, species differ 

in the functional forms: B. glabrata and B. tenagophila suitability both respond nonlinearly to 

temperature in the coldest quarter, but with different functional responses that vary between 

scales (Fig 5C). By contrast, other functional forms remain relatively consistent across species 

and scale, such as the response to distance to high population density (Fig 5A). These differences 

in inferred biological relationships highlight the potential pitfalls of using SDMs to extrapolate 

environmental suitability beyond the scope of the data, and of assuming generality from a single 

modeling approach.

Fig 5: Examples of marginal effects of covariates on suitability probabilities that vary across 

model type (A), geographic scale (B), and species (C). Partial dependence plots for three 

covariates (columns) across model types (color), species (top two rows vs. bottom two rows), 

and scale (first row vs. second and third row vs. fourth).
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Given the importance of understanding how Biomphalaria snails are responding to land use and 

land cover (LULC) change, we investigated how the relative importance of LULC variables 

changes with scale. We hypothesized that LULC variables would become increasingly important 

compared to climatic gradients at relatively smaller scales. Evidence for this prediction was 

mixed. Supporting this prediction, the relative importance of LULC variables increased 

consistently from national to regional to state scales for B. tenagophila models (Fig 6B). 

However, LULC variable importance for B. glabrata models (Fig 6A) remained more constant 

across scales and decreased at the state scale when using a MaxEnt model. Similar to B. 

glabrata, LULC variable importance for B. straminea models (Supplementary Fig S7) dipped 

in regional models and was equivalently high in national and state models.

Fig 6: Variable importance of land use/land cover (LULC) variables can increase at smaller 

scales. Proportion of total variable importance averaged across all training folds attributable to 

distance to high population density and proportion of temporary crop cover. Displayed for all 

species (A vs. B) and model types (color).

To investigate impacts of using presence data from an expert-executed field collection program 

versus from a publicly-available species presence database, we constructed models using two 

distinct datasets: expert-collected and GBIF. As anticipated, each dataset produced distinct 

predictions of presence probability. Limiting these analyses to B. tenagophila in São Paulo, 

model accuracy was similar across both datasets (expert-collected mean AUC = 0.83, 10th/90th 

percentiles: [0.71, 0.95], publicly-available GBIF mean AUC = 0.79, [0.66, 0.93]), yet the 

prediction maps show substantial variation regardless of model type (Fig 7). Despite somewhat 

lower AUC values when the two datasets were combined (0.70, [0.57, 0.92]), experts judged the 

suitability maps as preferable when data from both sources is included, across all model types 
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(Fig 7C, 7F, and 7I). Notably, the two data sets have different data quantities, with the expert-

collected dataset (n = 169) containing more presence points than the GBIF dataset (n = 115). The 

same maps and AUC comparisons for models with data quantity held constant (n = 115) can be 

found in the Supplementary Materials (Supplementary Fig S8), with slightly more variation 

between model suitability maps but generally small changes to above results.

Fig 7: Expert collected and public GBIF data produce visually different suitability maps for B. 

tenagophila in São Paulo across model type. Predicted suitability maps with varying input data 

(columns) supplied to all model types (rows). Compared to national models (Fig 2), at smaller 

geographic scales it becomes more obvious that suitability probabilities can be highly localized, 

producing points of high suitability surrounded by areas with low suitability.

Discussion

SDMs are increasingly used in disease ecology to understand environmental drivers of reservoir 

host or vector species distributions and to project how they might change with anthropogenic 

modification. We showed, by systematically comparing SDM approaches that employed 

different modeling techniques, spatial extents, data types, and species, that both the spatial 

predictions and the inferred relationships with environmental features can vary substantially 

across methods, even when performance measures (i.e., sensitivity, specificity, AUC, and TSS) 

are very similar. 

A first important result is that even when given the same occurrence, background, and covariate 

data, the three model types produce remarkably different suitability maps despite similar 

accuracy. Although differences in spatially-cross validated mean AUC values were minimal 
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when compared within geographic extents (i.e., MaxEnt national compared to RF national), we 

found that RF models tended to have higher sensitivity, producing more ‘dense’ maps of 

predicted suitable habitat, than MaxEnt or BRT across species and scales (Table 3; 

Supplementary Fig S4). On the other hand, BRT models tended to have higher specificity, 

producing more ‘sparse’ predictions, as compared to MaxEnt and RF across scales for B. 

tenagophila and B. straminea models (Table 3; Supplementary Fig S4). 

Our analysis demonstrates the importance of individually investigating sensitivity and specificity 

(separate from AUC), especially if models are intended to inform disease control policy (96,97). 

If total elimination is of high priority, high sensitivity—the ability for models to accurately 

identify all presence locations—might be emphasized to safely capture all presence areas, with 

less concern for mistakenly implementing control interventions in places that actually contained 

only background records, which in this case would generally suggest using RF models for most 

species and scales (Table 3; Supplementary Fig S4). Alternatively, with more limited 

resources, policymakers might prioritize models with high specificity (i.e., the ability to 

accurately identify locations where the species is not expected), such as the BRT models at all 

scales for B. tenagophila and B. straminea (Table 3; Supplementary Fig S4). These models 

would minimize potential efficiency losses that could result from control programs deploying 

available resources in places that do not actually contain the species of interest. Finally, our 

experts consistently selected de-identified BRT models as producing maps that best aligned with 

their a priori knowledge of suitable snail habitat across multiple geographic contexts (national 

and São Paulo scales): these models tended to have higher specificity and lower sensitivity, 

making their occurrence predictions relatively more sparse. Overall, our findings align with 

previous comparisons of statistical model types in the SDM literature: MaxEnt, RF, and BRT can 
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all produce high model performance measures, although which is the best can vary across 

species types (12,33). Therefore, we encourage modelers to use the suite of SDM resources 

(dismo, enmSdmX, etc.) to draft multiple models for their application and explicitly test which 

model type is best suited for their question, as detailed further below.  

 When prediction maps are used to inform intervention and/or funding decisions, significant  

differences in the suitability maps could warrant radically differing deployment of control 

strategies (54,96,97). Therefore, in addition to evaluating multiple model performance measures 

(AUC, sensitivity, specificity, TSS, etc.), it is crucial to leverage local ecological knowledge to 

assess the biological realism of each model’s predicted suitability map, as well as of the 

estimated ecological relationships derived from partial dependence plots (83). Other analyses 

have leveraged expert assessment of model outputs when AUC was unable to clearly rank 

models by performance (42). This aligns with the well-known but underemployed guideline that 

remotely-sensed, big data models need to be integrated with local, on-the-ground knowledge to 

create the best understanding of the system of interest (83). 

Subtle differences in performance across scales suggest that the most relevant geographic extent 

may depend on the application and the relative distribution of data at different geographical 

scales; yet we also found that model performance could be high from national down to state 

scales. Comparing across geographic scales, spatially cross-validated AUC values decreased at 

smaller geographic scales for B. glabrata and B. straminea, but increased at smaller geographic 

scales for B. tenagophila (Fig 3; Supplementary Fig S4). This phenomenon can likely be 

attributed to the varying proportion of presence data for each species within each state (Table 2; 

Supplementary Table S1). While 89% of national B. tenagophila data is from within the 

Sudeste region and 65% is within São Paulo state, only 74% of national B. glabrata data is from 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


26

the Sudeste region and 61% is from Minas Gerais. B. straminea had an even smaller proportion 

of total national data at the state level (Supplementary Table S1). Accordingly, we hypothesize 

that larger amounts of localized data for B. tenagophila Sudeste and São Paulo models improved 

model accuracy, while limiting the ability for national models to capture ecological 

heterogeneity across the entirety of Brazil. On the other hand, B. glabrata and B. straminea 

records are more widely distributed across the nation, allowing for improved national 

predictions, whereas the smaller data set from Minas Gerais limits the performance of state and 

regional models. When specifically aiming to create best predictions for small geographic 

regions, we demonstrate that locally-fit SDMs moderately increase model discrimination ability 

(Supplementary Table S4) and create maps with visually finer resolution predictions as 

compared to nationally-fit models (Fig 4; Supplementary Figs S5 and S6). However, when data 

are more uniformly distributed at the national scale, national scale models can be cropped to 

smaller scales relatively effectively, indicating that building national models can also be 

warranted when needed for large-scale applications or when investigating smaller geographic 

regions that have limited local data. A final key factor affecting choice of geographic extent is 

whether the aim is to identify covariate relationships specific to a geographic area of interest or 

to see generalized covariate relationships that span heterogeneous habitats and geographies, 

including ranges not yet observed in a given geographic region. This is particularly important 

when researchers aim to use SDMs to project species distributions under scenarios of future 

climate change, which include temperature and precipitation patterns not yet experienced in a 

given region. 

Covariate relationships not only varied depending on geographic extent, but also by species and 

machine learning model used. Even for two snail species in the same genus, their responses to 
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environmental covariates varied in both magnitude and direction (Fig 5), contributing to the 

large suitability map differences (Fig 2; Fig 7; Supplementary Fig S3). Compounding these true 

biological differences among species is the fact that different model structures produce 

differently shaped partial dependence plot curves, weighting interpretability versus flexibility 

and differentially favoring nonlinearity and interactions (10,86,88). For example, even when 

providing our MaxEnt models maximum flexibility in fitting the observed data, the resulting 

PDP curves still exhibit more limited shapes than RF or BRT. MaxEnt’s smooth curves offer 

simple, interpretable predictor relationships—potentially preferred for modelers whose primary 

interest is general mechanisms that underlie habitat suitability and/or ease of explanation for 

policymakers who need to make decisions with limited time (10). On the other hand, the hyper-

flexible curves produced by RF and BRT (and other tree-based methods) can produce improved 

model performance and variable interactions, especially when models include suites of variables 

known to interact in nonlinear ways, such as temperature and precipitation or sets of LULC 

variables (19,73,88). If model classification ability is held at the highest priority and modelers 

believe it is ecologically feasible for predictors to have flexible relationships, partial dependence 

plots and the other model evaluation methods discussed here can assist in retaining clear model 

interpretation (39,95). Finally, we note that SDMs are correlative analyses. Therefore, modeled 

covariate relationships may not be directly related to species presence but with other 

environmental variables not included in the model. SDMs should be followed by causal analyses 

if the goal is to understand true causes of species presence. 

LULC variables became proportionally more important for predicting B. tenagophila snail 

presence at smaller geographic scales as compared to bioclimatic variables. However, LULC 

variable importance remained relatively constant across scales for both B. glabrata and B. 
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straminea. Given remotely-sensed bioclimatic variables predominantly change at larger spatial 

scales (i.e., they are highly spatially-autocorrelated), we expected that models of smaller 

geographic extent would rely more heavily on LULC variables, which contribute more localized 

variation (Supplementary Fig S1). This hypothesized effect may have been mitigated for two of 

the three snail species due to the fact that we held spatial resolution (1km2) constant over the 

three geographic extents. Other analyses varying resolution size have shown that biotic 

interactions dominate at local scales, while abiotic factors dominate regionally (27). Holding 

resolution constant likely allowed even national scale models to leverage localized variation 

derived from LULC variables.

Given an adequate number of presence points, publicly-available GBIF data creates models with 

comparable snail distribution predictions and model performance measures as models given an 

expert-collected dataset. This is a very encouraging finding given that expert-executed field 

collection programs can be logistically infeasible and public species presence resources have 

grown in size and popularity (16). Moreover, even when expert field collection is feasible, it is 

often not possible to execute surveillance programs across large areas, such as the entirety of 

Brazil. GBIF cannot always guarantee the same level of species identification accuracy as the 

morphological and molecular tools often used in expert-executed field sampling, but the 

accessibility of large amounts of species data has dramatically increased the potential for species 

distribution analyses (16). Although only a singular case-study, our findings support the utility of 

GBIF data for producing accurate SDMs without targeted field collection programs. It is critical 

to employ methods to overcome spatial biases inherent in these publicly available data sources 

(42,43), such as through geographically stratified background sampling and careful inclusion 

criteria, but our findings support the growing use of these resources (26). Importantly, many of 
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these conclusions rest on our example where there was sufficient quantity of GBIF data, which 

was only true of one species in São Paulo state. Our findings demonstrate the value that GBIF 

data can offer to disease control and elimination efforts and we support ongoing initiatives 

working to increase access, precision, and quality of GBIF data across all species and 

geographies (98).

Although our analysis contributes substantially to describing and quantifying current best 

practices in the SDM literature, there are several limitations. First, the smallest geographic extent 

we investigated was at the state level, which is still a large area. Other modeling studies, 

including some of specific Biomphalaria species, have been conducted at the municipality or 

intra-municipality scale (58,59). Although infeasible due to data quantity constraints across 

species for this study, it is possible that our comparisons could have been augmented for local 

specificity if we had included models built for specific municipalities. Secondly, we included a 

limited number of predictors in this case study for ease of interpretation, especially given our 

plan to compare models across geographic extents, machine learning models, and data sources. 

However, some of our findings could be sensitive to the number, resolution, and/or spatial-

autocorrelation of predictors included (99). For example, a set of predictors dominated by LULC 

variables—rather than our models that included only two—could come to differing conclusions 

on changes in variable importance or partial dependence relationships. However, our set of 

predictors was chosen to be biologically relevant, sufficient to capture ecological relationships, 

and sufficiently general to be representative for other species distribution modeling studies. A 

combination of bioclimatic, LULC, and other variables is very common in the body of literature 

informing this analysis (33). Lastly, while this analysis does compare results across three species 

of snails, the species are very similar in that they are all from the same genus and are all 
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freshwater mollusks. Other species, even among those relevant to disease ecology, could vary in 

their response to our analyses across machine learning models, spatial extents, and data sources 

(12). However, our analysis shows that even species in the same genus may have significantly 

different ecological niches, indicating that modeling decisions need to be grounded in system-

specific ecological and biological knowledge.

There rightfully remains no single gold-standard of SDM methods suitable for all species, 

geographic locations, and applications because differing contexts and intended uses warrant 

differing modeling decisions. Making species distribution models that are useful and accurate for 

a given question of interest requires careful design and in-depth evaluation. This manuscript aims 

to serve as a resource and reference for current methods in species distribution modeling, with 

applications to disease ecology. Given the extent to which these models are used to inform 

fieldwork, policy, funding, and intervention strategies, continuous assessment and model 

evaluation are imperative. Species distribution models are powerful tools if used appropriately, 

and this work illustrates the importance of three key dimensions of variation—model type, 

spatial extent, and data source—highlighting that the former two can have large implications for 

model predictions and interpretation.

Acknowledgements

We would like to thank the Medical Malacology Collection of Fiocruz Minas for sharing 

Biomphalaria data used in this study. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


31

References

1. Guisan A, Zimmermann NE. Predictive habitat distribution models in ecology. Ecol Model. 

2000 Dec 5;135(2):147–86.

2. Jeschke JM, Strayer DL. Usefulness of Bioclimatic Models for Studying Climate Change 

and Invasive Species. Ann N Y Acad Sci. 2008;1134(1):1–24.

3. Elith J, Leathwick JR. Species Distribution Models: Ecological Explanation and Prediction 

Across Space and Time. Annu Rev Ecol Evol Syst. 2009;40(1):677–97.

4. Lambin EF, Tran A, Vanwambeke SO, Linard C, Soti V. Pathogenic landscapes: Interactions 

between land, people, disease vectors, and their animal hosts. Int J Health Geogr. 2010 Oct 

27;9(1):54.

5. Childs ML, Nova N, Colvin J, Mordecai EA. Mosquito and primate ecology predict human 

risk of yellow fever virus spillover in Brazil. Philos Trans R Soc B Biol Sci. 2019 Aug 

12;374(1782):20180335.

6. Martínez-Bello D, López-Quílez A, Prieto AT. Spatiotemporal modeling of relative risk of 

dengue disease in Colombia. Stoch Environ Res Risk Assess. 2018 Jun 1;32(6):1587–601.

7. Gosoniu L, Vounatsou P, Sogoba N, Smith T. Bayesian modelling of geostatistical malaria 

risk data. Geospatial Health. 2006 Nov 1;1(1):127–39.

8. Parviainen M, Luoto M, Ryttäri T, Heikkinen RK. Modelling the occurrence of threatened 

plant species in taiga landscapes: methodological and ecological perspectives. J Biogeogr. 

2008;35(10):1888–905.

9. Gotelli NJ, Anderson MJ, Arita HT, Chao A, Colwell RK, Connolly SR, et al. Patterns and 

causes of species richness: a general simulation model for macroecology. Ecol Lett. 

2009;12(9):873–86.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


32

10. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ. A statistical explanation of 

MaxEnt for ecologists. Divers Distrib. 2011;17(1):43–57.

11. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species 

distribution models: how, where and how many? Methods Ecol Evol. 2012;3(2):327–38.

12. Valavi R, Guillera-Arroita G, Lahoz-Monfort JJ, Elith J. Predictive performance of presence-

only species distribution models: a benchmark study with reproducible code. Ecol Monogr. 

2022;92(1):e01486.

13. Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. blockCV: An r package for 

generating spatially or environmentally separated folds for k-fold cross-validation of species 

distribution models. Methods Ecol Evol. 2019;10(2):225–32.

14. Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. Google Earth Engine: 

Planetary-scale geospatial analysis for everyone. Remote Sens Environ. 2017 Dec 1;202:18–

27.

15. Anderson CB. Biodiversity monitoring, earth observations and the ecology of scale. Ecol 

Lett. 2018;21(10):1572–85.

16. Lippi CA, Rund SSC, Ryan SJ. Characterizing the Vector Data Ecosystem. J Med Entomol. 

2023 Mar 1;60(2):247–54.

17. GBIF. GBIF. [cited 2023 Jul 5]. GBIF. Available from: https://www.gbif.org/

18. Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic 

distributions. Ecol Model. 2006 Jan 25;190(3):231–59.

19. Elith J, Leathwick JR, Hastie T. A working guide to boosted regression trees. J Anim Ecol. 

2008;77(4):802–13.

20. Golding N, Purse BV. Fast and flexible Bayesian species distribution modelling using 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


33

Gaussian processes. Methods Ecol Evol. 2016;7(5):598–608.

21. Park YS, Céréghino R, Compin A, Lek S. Applications of artificial neural networks for 

patterning and predicting aquatic insect species richness in running waters. Ecol Model. 2003 

Feb 15;160(3):265–80.

22. Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ. A review of evidence about use and 

performance of species distribution modelling ensembles like BIOMOD. Divers Distrib. 

2019;25(5):839–52.

23. Norberg A, Abrego N, Blanchet FG, Adler FR, Anderson BJ, Anttila J, et al. A 

comprehensive evaluation of predictive performance of 33 species distribution models at 

species and community levels. Ecol Monogr. 2019;89(3):e01370.

24. Fourcade Y, Engler JO, Rödder D, Secondi J. Mapping Species Distributions with 

MAXENT Using a Geographically Biased Sample of Presence Data: A Performance 

Assessment of Methods for Correcting Sampling Bias. PLOS ONE. 2014 May 

12;9(5):e97122.

25. Guisande C, García-Roselló E, Heine J, González-Dacosta J, Vilas LG, García Pérez BJ, et 

al. SPEDInstabR: An algorithm based on a fluctuation index for selecting predictors in 

species distribution modeling. Ecol Inform. 2017 Jan 1;37:18–23.

26. Smith AM, Capinha C, Kramer AM. Predicting species distributions with environmental 

time series data and deep learning [Internet]. bioRxiv; 2022 [cited 2023 Mar 24]. p. 

2022.10.26.513922. Available from: 

https://www.biorxiv.org/content/10.1101/2022.10.26.513922v1

27. Cohen JM, Civitello DJ, Brace AJ, Feichtinger EM, Ortega CN, Richardson JC, et al. Spatial 

scale modulates the strength of ecological processes driving disease distributions. Proc Natl 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


34

Acad Sci. 2016 Jun 14;113(24):E3359–64.

28. Bell DM, Schlaepfer DR. On the dangers of model complexity without ecological 

justification in species distribution modeling. Ecol Model. 2016 Jun 24;330:50–9.

29. Johnson EE, Escobar LE, Zambrana-Torrelio C. An Ecological Framework for Modeling the 

Geography of Disease Transmission. Trends Ecol Evol. 2019 Jul 1;34(7):655–68.

30. Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distribution models: 

prevalence, kappa and the true skill statistic (TSS). J Appl Ecol. 2006;43(6):1223–32.

31. Feng X, Park DS, Walker C, Peterson AT, Merow C, Papeş M. A checklist for maximizing 

reproducibility of ecological niche models. Nat Ecol Evol. 2019 Oct;3(10):1382–95.

32. Araújo MB, Anderson RP, Márcia Barbosa A, Beale CM, Dormann CF, Early R, et al. 

Standards for distribution models in biodiversity assessments. Sci Adv. 2019 Jan 

16;5(1):eaat4858.

33. Elith* J, H. Graham* C, P. Anderson R, Dudík M, Ferrier S, Guisan A, et al. Novel methods 

improve prediction of species’ distributions from occurrence data. Ecography. 

2006;29(2):129–51.

34. Jiménez-Valverde A, Lobo JM, Hortal J. Not as good as they seem: the importance of 

concepts in species distribution modelling. Divers Distrib. 2008;14(6):885–90.

35. Boria RA, Olson LE, Goodman SM, Anderson RP. Spatial filtering to reduce sampling bias 

can improve the performance of ecological niche models. Ecol Model. 2014 Mar 10;275:73–

7.

36. Brun P, Thuiller W, Chauvier Y, Pellissier L, Wüest RO, Wang Z, et al. Model complexity 

affects species distribution projections under climate change. J Biogeogr. 2020;47(1):130–

42.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


35

37. Fielding AH, Bell JF. A review of methods for the assessment of prediction errors in 

conservation presence/absence models. Environ Conserv. 1997 Mar;24(1):38–49.

38. Jiménez-Valverde A, Acevedo P, Barbosa AM, Lobo JM, Real R. Discrimination capacity in 

species distribution models depends on the representativeness of the environmental domain. 

Glob Ecol Biogeogr. 2013;22(4):508–16.

39. Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. In: Advances 

in Neural Information Processing Systems [Internet]. Curran Associates, Inc.; 2017 [cited 

2023 Mar 26]. Available from: 

https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b

67767-Abstract.html

40. Greenwell BM, Boehmke BC, McCarthy AJ. A Simple and Effective Model-Based Variable 

Importance Measure [Internet]. arXiv; 2018 [cited 2023 Mar 26]. Available from: 

http://arxiv.org/abs/1805.04755

41. Elith J, Graham CH. Do They? How Do They? Why Do They Differ? On Finding Reasons 

for Differing Performances of Species Distribution Models. Ecography. 2009;32(1):66–77.

42. Beck J, Böller M, Erhardt A, Schwanghart W. Spatial bias in the GBIF database and its 

effect on modeling species’ geographic distributions. Ecol Inform. 2014 Jan 1;19:10–5.

43. Daru B, Rodriguez J. Specimens trump field observations in capturing biodiversity trends. 

Nat Ecol Evol. 2023 Jun;7(6):802–3.

44. Morgan J a. T, Dejong RJ, Snyder SD, Mkoji GM, Loker ES. Schistosoma mansoni and 

Biomphalaria: past history and future trends. Parasitology. 2001 Nov;123(7):211–28.

45. Mitchell C. Pan American Health Organization / World Health Organization. 2014 [cited 

2023 May 26]. PAHO/WHO | Schistosomiasis. Available from: 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


36

https://www3.paho.org/hq/index.php?option=com_content&view=article&id=9474:schistoso

miasis-factsheet&Itemid=0&lang=en#gsc.tab=0

46. Kloos H, Correa-Oliveira R, Oliveira Quites HF, Caetano Souza MC, Gazzinelli A. 

Socioeconomic studies of schistosomiasis in Brazil: A review. Acta Trop. 2008 Nov 

1;108(2):194–201.

47. Silva da Paz W, Duthie MS, Ribeiro de Jesus A, Machado de Araújo KCG, Dantas dos 

Santos A, Bezerra-Santos M. Population-based, spatiotemporal modeling of social risk 

factors and mortality from schistosomiasis in Brazil between 1999 and 2018. Acta Trop. 

2021 Jun 1;218:105897.

48. Santos IG de A, Bezerra LP, Cirilo TM, Silva LO, Machado JPV, Lima PD, et al. New 

epidemiological profile of schistosomiasis from an area of low prevalence in Brazil. Rev Soc 

Bras Med Trop. 2020 Oct 21;53:e20200335.

49. Klohe K, Koudou BG, Fenwick A, Fleming F, Garba A, Gouvras A, et al. A systematic 

literature review of schistosomiasis in urban and peri-urban settings. PLoS Negl Trop Dis. 

2021 Feb 25;15(2):e0008995.

50. McCreesh N, Booth M. The effect of simulating different intermediate host snail species on 

the link between water temperature and schistosomiasis risk. PloS One. 2014;9(7):e87892.

51. Kloos H, Souza C de, Gazzinelli A, Soares Filho BS, Temba P da C, Bethony J, et al. The 

distribution of Biomphalaria spp. in different habitats in relation to physical, biological, 

water contact and cognitive factors in a rural area in Minas Gerais, Brazil. Mem Inst 

Oswaldo Cruz. 2001 Sep;96:57–66.

52. Gomes E, Leal-Neto OB, Albuquerque J, Silva H da, Barbosa CS. Schistosomiasis 

transmission and environmental change: a spatio-temporal analysis in Porto de Galinhas, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


37

Pernambuco - Brazil. Int J Health Geogr. 2012 Nov 20;11(1):51.

53. Rowel C, Fred B, Betson M, Sousa-Figueiredo JC, Kabatereine NB, Stothard JR. 

Environmental epidemiology of intestinal schistosomiasis in Uganda: population dynamics 

of biomphalaria (gastropoda: planorbidae) in Lake Albert and Lake Victoria with 

observations on natural infections with digenetic trematodes. BioMed Res Int. 

2015;2015:717261.

54. Soares Magalhães RJ, Salamat MS, Leonardo L, Gray DJ, Carabin H, Halton K, et al. 

Geographical distribution of human Schistosoma japonicum infection in The Philippines: 

tools to support disease control and further elimination. Int J Parasitol. 2014 Nov 

1;44(13):977–84.

55. Scholte RGC, Carvalho OS, Malone JB, Utzinger J, Vounatsou P. Spatial distribution of 

Biomphalaria spp., the intermediate host snails of Schistosoma mansoni, in Brazil. 

Geospatial Health. 2012 Sep 1;6(3):S95–101.

56. Scholte RGC, Gosoniu L, Malone JB, Chammartin F, Utzinger J, Vounatsou P. Predictive 

risk mapping of schistosomiasis in Brazil using Bayesian geostatistical models. Acta Trop. 

2014 Apr 1;132:57–63.

57. Rumi A, Vogler RE, Beltramino AA. The South-American distribution and southernmost 

record of Biomphalaria peregrina—a potential intermediate host of schistosomiasis. PeerJ. 

2017 May 30;5:e3401.

58. Barbosa VS, Guimarães RJ de PS e, Loyo RM, Barbosa CS. Modelling of the distribution of 

Biomphalaria glabrata and Biomphalaria straminea in the metropolitan region of Recife, 

Pernambuco, Brazil. Geospatial Health [Internet]. 2016 Nov 25 [cited 2023 Mar 24];11(3). 

Available from: https://geospatialhealth.net/index.php/gh/article/view/490

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


38

59. Palasio RGS, de Azevedo TS, Tuan R, Chiaravalloti-Neto F. Modelling the present and 

future distribution of Biomphalaria species along the watershed of the Middle Paranapanema 

region, São Paulo, Brazil. Acta Trop. 2021 Feb 1;214:105764.

60. Guimarães RJPS, Freitas CC, Dutra LV, Felgueiras CA, Moura ACM, Amaral RS, et al. 

Spatial distribution of Biomphalaria mollusks at São Francisco River Basin, Minas Gerais, 

Brazil, using geostatistical procedures. Acta Trop. 2009 Mar 1;109(3):181–6.

61. Guimarães RJ de PS, Freitas CC, Dutra LV, Scholte RGC, Martins-Bedé FT, Fonseca FR, et 

al. A geoprocessing approach for studying and controlling schistosomiasis in the state of 

Minas Gerais, Brazil. Mem Inst Oswaldo Cruz. 2010 Jul;105:524–31.

62. Nascimento GL, Pegado HM, Domingues ALC, Ximenes RA de A, Itria A, Cruz LN, et al. 

The cost of a disease targeted for elimination in Brazil: the case of schistosomiasis mansoni. 

Mem Inst Oswaldo Cruz. 2019 Jan 14;114:e180347.

63. Tuan R, Pires F, Sanches Palasio RG, Dalla R, Almeida Guimaraes MCD. Pattern of Genetic 

Divergence of Mitochondrial DNA Sequences in Biomphalaria tenagophila Complex 

Species Based on Barcode and Morphological Analysis. In: Rokni MB, editor. 

Schistosomiasis [Internet]. InTech; 2012 [cited 2023 Apr 17]. Available from: 

http://www.intechopen.com/books/schistosomiasis/pattern-of-genetic-divergence-of-

mitochondrial-dna-sequences-in-biomphalaria-tenagophila-complex-spe

64. Oliveira-Júnior JF de, Correia Filho WLF, Monteiro L da S, Shah M, Hafeez A, Gois G de, 

et al. Urban rainfall in the Capitals of Brazil: Variability, trend, and wavelet analysis. 

Atmospheric Res. 2022 Apr 1;267:105984.

65. Ohlweiler FP, Eduardo JM, Takahashi FY, Holcman MM, Costa CBTL da. Gastrópodes 

dulciaquícolas e helmintos associados, em coleções hídricas de Santo André, São Paulo, 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


39

Brasil. Rev Biociências [Internet]. 2012 Nov 1 [cited 2023 Apr 17];18(1). Available from: 

http://revistas.unitau.br/ojs/index.php/biociencias/article/view/1497

66. Palasio RGS, Casotti MO, Rodrigues TC, Menezes RMT, Zanotti-Magalhaes EM, Tuan R. 

The current distribution pattern of Biomphalaria tenagophila and Biomphalaria straminea in 

the northern and southern regions of the coastal fluvial plain in the state of São Paulo. Biota 

Neotropica. 2015 Jul 31;15:e20140153.

67. Palasio RGS, Guimarães MC de A, Ohlweiler FP, Tuan R. Molecular and morphological 

identification of Biomphalaria species from the state of São Paulo, Brazil. ZooKeys. 2017 

Apr 12;(668):11–32.

68. Palasio RGS, Zanotti-Magalhães EM, Tuan R. Genetic diversity of the freshwater snail 

Biomphalaria tenagophila (d’Orbigny, 1835) (Gastropoda: Hygrophila: Planorbidae) across 

two coastal areas of southeast Brazil. Folia Malacol. 2018 Dec 4;26(4):221–9.

69. Palasio RGS, Xavier IG, Chiaravalotti-Neto F, Tuan R. Diversity of Biomphalaria spp. 

freshwater snails and associated mollusks in areas with schistosomiasis risk, using molecular 

and spatial analysis tools. Biota Neotropica. 2019 Aug 15;19:e20190746.

70. Palasio RGS, de Jesus Rossignoli T, Di Sessa RCS, Ohlweiler FP, Chiaravalloti-Neto F. 

Spatial analysis of areas at risk for schistosomiasis in the Alto Tietê Basin, São Paulo, Brazil. 

Acta Trop. 2021 Dec;224:106132.

71. IUCN. IUCN [Internet]. [cited 2023 Jul 5]. Available from: https://www.iucn.org/

72. He H, Garcia EA. Learning from Imbalanced Data. IEEE Trans Knowl Data Eng. 2009 

Sep;21(9):1263–84.

73. Valavi R, Elith J, Lahoz-Monfort JJ, Guillera-Arroita G. Modelling species presence-only 

data with random forests. Ecography. 2021;44(12):1731–42.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


40

74. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, et al. Sample selection 

bias and presence-only distribution models: implications for background and pseudo-absence 

data. Ecol Appl. 2009;19(1):181–97.

75. CHELSA. CHELSA [Internet]. Chelsa Climate. 2020 [cited 2023 May 26]. Available from: 

https://chelsa-climate.org/downloads/

76. Yamazaki D, Ikeshima D, Sosa J, Bates PD, Allen GH, Pavelsky TM. MERIT Hydro: A 

High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water 

Resour Res. 2019;55(6):5053–73.

77. Hengl T, Gupta S. Soil water content (volumetric %) for 33kPa and 1500kPa suctions 

predicted at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m resolution [Internet]. 

Zenodo; 2019 [cited 2023 Jul 5]. Available from: https://zenodo.org/record/2784001

78. Hengl T. Soil pH in H2O at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 250 m 

resolution [Internet]. Zenodo; 2018 [cited 2023 Jul 5]. Available from: 

https://zenodo.org/record/2525664

79. Hengl T. Clay content in % (kg / kg) at 6 standard depths (0, 10, 30, 60, 100 and 200 cm) at 

250 m resolution [Internet]. Zenodo; 2018 [cited 2023 Jul 5]. Available from: 

https://zenodo.org/record/2525663

80. Open Spatial Demographic Data and Research. WorldPop. [cited 2023 Jul 5]. WorldPop. 

Available from: https://www.worldpop.org/

81. Souza CM, Z. Shimbo J, Rosa MR, Parente LL, A. Alencar A, Rudorff BFT, et al. 

Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes 

with Landsat Archive and Earth Engine. Remote Sens. 2020 Jan;12(17):2735.

82. Dijkstra L, Florczyk AJ, Freire S, Kemper T, Melchiorri M, Pesaresi M, et al. Applying the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


41

Degree of Urbanisation to the globe: A new harmonised definition reveals a different picture 

of global urbanisation. J Urban Econ. 2021 Sep 1;125:103312.

83. Chaves LF, Gottdenker NL, Runk JV, Bergmann LR. Reifications in Disease Ecology 2: 

Towards a Decolonized Pedagogy Enabling Science by, and for, the People. Capital Nat 

Social. 2023 Jan 3;0(0):1–18.

84. Guisan A, Thuiller W, Zimmermann NE. Habitat Suitability and Distribution Models: With 

Applications in R [Internet]. Cambridge: Cambridge University Press; 2017 [cited 2023 Mar 

25]. (Ecology, Biodiversity and Conservation). Available from: 

https://www.cambridge.org/core/books/habitat-suitability-and-distribution-

models/A17F74A3418DBF9ADA191A04C35187F9

85. Steen VA, Tingley MW, Paton PWC, Elphick CS. Spatial thinning and class balancing: Key 

choices lead to variation in the performance of species distribution models with citizen 

science data. Methods Ecol Evol. 2021;12(2):216–26.

86. Merow C, Smith MJ, Silander Jr JA. A practical guide to MaxEnt for modeling species’ 

distributions: what it does, and why inputs and settings matter. Ecography. 

2013;36(10):1058–69.

87. Smith AB, Murphy SJ, Henderson D, Erickson KD. Including imprecisely georeferenced 

specimens improves accuracy of species distribution models and estimates of niche breadth. 

Glob Ecol Biogeogr. 2023;32(3):342–55.

88. Strobl C, Malley J, Tutz G. An introduction to recursive partitioning: rationale, application, 

and characteristics of classification and regression trees, bagging, and random forests. 

Psychol Methods. 2009 Dec;14(4):323–48.

89. Hastie T, Friedman J, Tibshirani R. The Elements of Statistical Learning [Internet]. New 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


42

York, NY: Springer; 2001 [cited 2023 Mar 27]. (Springer Series in Statistics). Available 

from: http://link.springer.com/10.1007/978-0-387-21606-5

90. Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2.

91. Hijmans R, Phillips S, Leathwick J, Elith J. Package “dismo.” Circles. 2017;1–68.

92. Jiménez-Valverde A, Lobo JM, Hortal J. The effect of prevalence and its interaction with 

sample size on the reliability of species distribution models. Community Ecol. 2009 Dec 

1;10(2):196–205.

93. Greenwell BM. pdp: An R package for constructing partial dependence plots. R J. 2017;

94. Greenwell B, Boehmke B, Gray B. Package “vip.” Var Importance Plots. 12(1):343–66.

95. Štrumbelj E, Kononenko I. Explaining prediction models and individual predictions with 

feature contributions. Knowl Inf Syst. 2014 Dec 1;41(3):647–65.

96. Rhodes CG, Loaiza JR, Romero LM, Gutiérrez Alvarado JM, Delgado G, Rojas Salas O, et 

al. Anopheles albimanus (Diptera: Culicidae) Ensemble Distribution Modeling: Applications 

for Malaria Elimination. Insects. 2022 Mar;13(3):221.

97. Ren Z, Wang D, Ma A, Hwang J, Bennett A, Sturrock HJW, et al. Predicting malaria vector 

distribution under climate change scenarios in China: Challenges for malaria elimination. Sci 

Rep. 2016 Feb 12;6(1):20604.

98. Anderson RP, Araújo M, Guisan A, Lobo JM, Martínez-Meyer E. Final Report of the Task 

Group of GBIF Data Fitness for Use in Distribution Modelling. 2016;

99. Merow C, Smith MJ, Edwards Jr TC, Guisan A, McMahon SM, Normand S, et al. What do 

we gain from simplicity versus complexity in species distribution models? Ecography. 

2014;37(12):1267–81.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 12, 2023. ; https://doi.org/10.1101/2023.07.10.23292488doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.10.23292488
http://creativecommons.org/licenses/by/4.0/


43

Supporting information captions

Supplementary Table S1: B. straminea presence data quantity by scale, thinned to 1 km. 

Supplementary Table S2: Mean spatially cross-validated out-of-sample AUC, sensitivity, and 
specificity values for national models across machine learning model type. The corresponding 
table for in-sample estimates can be found in Supplementary Table 3.

Supplementary Table S3: In-sample AUC, sensitivity, and specificity values for national models 
of all species across machine learning model types. 

Supplementary Table S4: In-sample AUC, sensitivity, specificity, and TSS measures calculated 
on state-level presence and background records for nationally-fit and state-specific models. B. 
glabrata and B. straminea were tested in Minas Gerais state, and B. tenagophila was tested in 
São Paulo state.

Supplementary Figure S1: Maps of environmental covariates across geographic scales (national, 
Minas Gerais, and São Paulo state). Bioclimatic variables (i.e. temperature and precipitation) are 
colored in orange, soil-related variables in blue, and land-use/land-cover variables in green. 

(A)Temperature seasonality (standard deviation of the monthly mean temperatures) 
(B) Mean daily temperature of the coldest quarter
(C) Mean monthly precipitation of the wettest quarter 
(D)Mean monthly precipitation amount of the driest quarter 
(E) Soil clay percentage
(F) Height above nearest drainage
(G)Soil pH
(H)Soil water percentage
(I) Proportion of temporary crop cover 
(J) Distance to high population density

Supplementary Figure S2: B. straminea presence points by source (shape), thinned to 1 km.          
A) National, B) Minas Gerais, C) São Paulo

Supplementary Figure S3: National prediction maps of B. straminea (A–C) suitability 
probabilities by model type when models were provided the full set of species presence records 
available. 

Supplementary Figure S4: Plots of ten-fold spatially cross-validated, out-of-sample AUC, TSS, 
sensitivity, and specificity values across all three species (A, B, C), scales (panels), and model 
types (colors). Plots display mean (point) and standard error (error bar). 
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Supplementary Figure S5: São Paulo prediction maps of B. tenagophila suitability probabilities 
by model type (rows) and model geographic extent (columns) when models were provided the 
full set of species presence records available.

Supplementary Figure S6: Minas Gerais prediction maps of B. straminea suitability probabilities 
by model type (rows) and model geographic extent (columns) when models were provided the 
full set of species presence records available.

Supplementary Figure S7: Proportion of total variable importance averaged across all training 
folds attributable to distance to high population density and proportion of temporary crop cover 
for B. straminea. 

Supplementary Figure S8: Same as Figure 6 except all models are provided the same number of 
data points (n = 115, i.e. the number of total GBIF points for B. tenagophila in São Paulo). Data 
quantity was reduced through random selection when necessary. Spatially cross-validated AUC 
values for B. tenagophila São Paulo models (all reduced to n = 115): expert-collected mean AUC 
= 0.77, 10th/90th percentiles: [0.66, 0.91], publicly-available GBIF mean AUC = 0.79, [0.66, 
0.93], and combined mean AUC = 0.75, [0.59, 0.96]. 
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