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Abstract

Heterogeneity in human diseases presents challenges in diagnosis and treatments due to the broad range of

manifestations and symptoms. With the rapid development of labelled multi-omic data, integrative machine

learning methods have achieved breakthroughs in treatments by redefining these diseases at a more granular

level. These approaches often have limitations in scalability, oversimplification, and handling of missing

data. In this study, we introduce Multi-Omic Graph Diagnosis (MOGDx), a flexible command line tool for

the integration of multi-omic data to perform classification tasks for heterogeneous diseases. MOGDx is a

network integrative method that combines patient similarity networks with a reduced vector representation

of genomic data. The reduced vector is derived from the shared latent embedding of a multi-modal encoder

and the combined network is fed into a graph convolutional network for classification. The multi-modal

encoder and graph convolutional network are trained simultaneously making a fully supervised pipeline.

MOGDx was evaluated on three datasets from the cancer genome atlas for breast invasive carcinoma,

kidney cancer, and low grade glioma. MOGDx demonstrated state-of-the-art performance and an ability

to identify relevant multi-omic markers in each task. It did so while integrating more genomic measures

with greater patient coverage compared to other network integrative methods. MOGDx is available to

download from https://github.com/biomedicalinformaticsgroup/MOGDx. Overall, MOGDx is a promising

tool for integrating multi-omic data, classifying heterogeneous diseases, and interpreting genomic markers.
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Introduction

Heterogeneity in human diseases is a pertinent yet difficult issue

that can confound the analysis of clinical trials, genetic association

testing, drug responses, and intervention strategies. Heterogeneous

diseases encompass any single disease with a broad range of

manifestations or symptoms. Redefining such diseases through

sub-type classification, symptomatic grading or similar has the

potential to uncover new treatments, re-purpose old treatments

or identify intervention strategies. This approach has already

been shown to improve patient outcomes in a number of diseases

(Brodlie et al., 2015; Sosman et al., 2012). Performing classification

tasks with heterogeneous diseases is a complex problem often

requiring analysis of multiple types of data of varying scale and

complexity, as such it needs analytic frameworks that are flexible

and scalable. The use of Artificial Intelligence (AI) has emerged as

a popular method to solve this problem and has been facilitated by

the development of high-throughput sequencing technologies. Such

technologies have made various types of biological data, coined

’omic’ data, available. This increased availability of omics has

led to many novel bioinformatic analytical tools for individual

omics. This individual omic focus has yielded positive outcomes,

however information from different omics are rarely compared.

Identifying which is the most informative omic measure, and if the

information captured in different omics overlap or are orthogonal,

is largely unknown. We hypothesise that while an individual

omic can provide a single biological measure, the integration

of multiple informative omics could capture multiple biological

measures and increase classification accuracy in heterogenous

diseases. Therefore, an analytical tool which can integrate multiple
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omic measures and perform heterogeneous disease classifications

could significantly improve patient outcomes in this area.

There is an increasing number of methods which integrate

multi-omic data in both the supervised and unsupervised

classification space. There exists two main taxonomies for

data integration, which can be broadly categorised as input

data-fusion and output data-fusion, although no gold standard

method exists. Input data-fusion methods combine data sources

into a single dataset prior to analysis, while output data-

fusion methods analyse each dataset separately and combine

the results. Input data-fusion methods estimate an embedding

which projects datasets into a shared latent space which

minimizes variance between datasets while maximising individual

variability within each data set (Gliozzo et al., 2022).

For example, Lock et al. (2013) achieved state-of-the-art

performance on characterization of tumour types from the Breast

Invasive Carcinoma (BRCA) dataset in The Cancer Genome

Atlas (TCGA)(https://www.cancer.gov/tcga). Their analysis was

able to effectively uncover both individual and joint data

structures, resulting in better interpretation while also improving

unsupervised classification results on the BRCA dataset. In its

simplest form, output data-fusion resembles ensemble methods,

whereby an independent analysis of each dataset is performed,

and the results combined using an aggregation technique. An

example of this is presented by Phan et al. (2016) who use a

stacked-generalisation model on an ovarian dataset in TCGA.

These methods show that classification performance is

increased when multiple modalities are considered, however they

often scale poorly, are overly simplistic or do not take into account

the cross correlation between modalities (Gliozzo et al., 2022;

Wang et al., 2021). The use of a network taxonomy for multi-omic

data integration has risen in popularity recently. The advantage

of networks is that they are easily integrated and can readily

handle missing data. Gliozzo et al. (2020) and Li et al. (2015) show

that representing data as a Patient Similarity Network (PSN) can

retain information and have superior or competitive performance

compared to standard Euclidean methods for a single modality.

netDx, developed by Pai et al. (2019), uses ridge regression and

label propagation algorithms to integrate and perform ranked

classifications on PSN’s. Wang et al. (2021) define each modality as

a single PSN, perform classification using a Graph Convolutional

Network (GCN) and concatenate predictions into a cross-omic

correlation tensor before making final label predictions. Li et al.

(2022) perform classifications using a GCN on integrated PSN’s.

These methods are novel strategies for the integration of network

data at the input and output space, however, they don’t leverage

the full advantages of representing data as a network. Current

network methods cannot handle patients missing one or more

omic measures, and methods can only handle a fixed number of

modalities.

Hence, we introduce Multi-Omic Graph Diagnosis (MOGDx),

a flexible tool for the integration of multi-omic data to perform

classification tasks for heterogeneous diseases. The MOGDx

pipeline integrates omic data into a single PSN before performing

classification using an Graph Neural Network (GNN) algorithm.

Each omic measure undergoes pre-processing steps to extract the

most informative features. These features are used to inform

the PSN for each individual omic measure. Similarity Network

Fusion (SNF)(Wang et al., 2014) is performed to integrate the

PSN’s into a single network. This network, along with the omic

measures, are passed into the Graph Convolutional Network with

Mulit-Modal Encoder (GCN-MME) model. Each unprocessed

omic measure is passed through the Mulit-Modal Encoder (MME)

for supervised dimensionality reduction. The MME consists of

a two layer encoder which compresses each modality into a

reduced latent space. This latent space is then decoded into

a fixed shared vector, such that each modality is encouraged

to learn the same reduced representation. Each vector has a

corresponding patient node in the fused PSN and the two are

combined into a single GNN model, namely GCN in this instance.

Backpropagation is performed through both the GCN and MME

for a fully supervised training pipeline. The performance of

MOGDx is benchmarked on the BRCA, Low-Grade Glioma (LGG)

and Pan Kidney Cohort (KIPAN) datasets, with state-of-the-art

performance demonstrated. MOGDx is the first tool of its kind

which can handle missing patient data as well as any number

of data modalities or omic measures. We show the benefit of

integrating multiple modalities and the importance of representing

data as a PSN. We demonstrate that MOGDx can identify

informative omic measures as well as important omic markers

relating to the targeted biomedical problem.

Results

Pipeline of MOGDx

We present MOGDx, a pipeline for the supervised classifications

of patients with heterogenous diseases (Figure 1). MOGDx

takes as input any number of omic measures such as genomic,

transcriptomic and proteomic datasets. The raw data is processed

into omic measure matrices, with each row corresponding to

a patient and each column a feature of that measure. First,

depending on the omic dataset (see Methods), either differential

expression or penalised logistic regression is performed to identify

important features of that dataset. These features are used to

inform a weighted similarity matrix calculated using Pearson

correlation. A PSN is then constructed using the K-Nearest

Neighbours (KNN) algorithm. SNF is performed to fuse the PSN’s

into a single network.

From here, the fused PSN and the omic datasets are input into

the GCN-MME, the architecture of which is shown in Figure S1.

Each omic measure is encoded using a two layer encoder. The first

layer of the encoder is of fixed length, with the second layer being

tuned to each modality by performing a hyperparameter search.

The compressed encoded layer of each modality is then decoded

to a shared latent space using mean pooling. The goal of this

step is to encourage each modality to learn the same latent space.

The shared latent space is the node feature matrix, required for

training the GCN, with each row forming a node feature vector.

This node feature vector corresponds to a single node in the PSN.

The node feature matrix and fused PSN are combined and input

into a GNN. The dimension of the shared latent space was tuned

through hyperparameter searching. The optimal hyperparameter

values for the best performing modalities in each dataset are given

in Table S1.

A GCN architecture was implemented using the Deep Graph

Library (version 1.1) in Python with a PyTorch backend. The

GCN implemented consisted of two layers with intermediate relu

activation and batch normalisation. The input dimension to the

GCN is the same dimension as the node feature vector. The

output dimension of the second layer aligns with the number

of classes for that classification task. The weights of both the
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Fig. 1: Pipeline of MOGDx — MOGDx takes any number of omic measures as input. Feature extraction is performed to maximise

similarities between patients. Each patient similarity matrix is converted to a network and these patient similarity networks are fused using SNF.

The fused PSN and the unprocessed omic measures are input into the GCN-MME model for training. The MME provides a shared reduced node

feature vector for each patient node in the network. Training is performed by back propagating through the entire GCN-MME model for a fully

supervised pipeline

GCN and MME are learned jointly by performing backpropagation

through the entire GCN-MME. This methodology integrates

the predictive power of PSN’s with a reduced representation

of classical omic characteristics. MOGDx obtains state-of-the-

art predictive performance on the integration of network and

vector characteristics, exhibiting the benefit of including both.

MOGDx is a command line tool for the supervised classification

of heterogeneous diseases, which can be used for a wide range of

biomedical applications.

Datasets

The performance of MOGDx is benchmarked on three different

TCGA datasets, BRCA PAM50 sub-type classification, grade

classification in LGG and KIPAN for kidney type classification.

Data was downloaded using the TCGABiolinks(Colaprico et al.,

2023) Bioconductor package (version 2.28.3). All modalities

available in the TCGA database were included, resulting in 5 types

of omics data used for classification. The omic data types available

are mRNA expression (mRNA) data, micro RNA expression

(miRNA) data, DNA methylation (DNAm) data, Reverse Phase

Protein Array (RPPA) data and Copy Number Variation (CNV)

data. All patient samples were utilised irrespective if they were
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Table 1. Summary of TCGA Datasets

Dataset Subtype Modalities Feature Counts

Raw Processed Extracted

BRCA

HER2 82 mRNA 60666 29995 2484

Basal 190 miRNA 1881 1601 502

Luminal A 562 DNAm 485577 200000 179

Luminal B 209 RPPA 488 464 124

Normal-like 40 CNV 60623 60265 474

LGG

Grade 2 216 mRNA 60660 22185 1000

Grade 3 241 miRNA 1881 1515 200

DNAm 485577 321999 318

RPPA 487 457 65

CNV 60623 60274 181

KIPAN

KICH 66 mRNA 60660 28212 1290

KIRP 290 miRNA 1881 1552 352

KIRC 532 DNAm 485577 310045 167

RPPA 487 469 48

CNV 60623 60274 157

available in only one or all datasets, with specific details reported

in Table 1. Raw feature count is the total number of features

available per modality. Processing was performed to remove

features which were mostly missing or had a standard deviation of

0. The processed features were directly inputted into the GCN-

MME. Further processing was performed to extract the most

predictive features, which were used to construct the PSN’s.

BRCA PAM50 is a 50-gene signature used to sub-type breast

cancer into 5 classifications; Normal-like, Basal-like, HER2-

enriched, Luminal A and Luminal B(Parker et al., 2009; Kensler

et al., 2019). Patients included in this dataset have a mutation to

their BRCA gene and therefore have a larger risk of developing

breast cancer. Sub-typing by gene expression separates the

carcinomas by varying biological properties and prognoses. For

example, Luminal A has the best prognosis, while HER2 and Basal

are considered more aggressive forms of cancer(Kensler et al.,

2019). The KIPAN dataset consists of three categories separated

by chromosomal differences (Tabibu et al., 2019). Clear Renal Cell

Carcinoma (KIRC) is characterised by loss of chromosome 3p,

Papillary Renal Cell Carcinoma (KIRP) is characterised by loss of

chromosome 9p and Chromophobe Renal Cell Carcinoma (KICH)

is characterised by loss of multiple other chromosomes. The LGG

dataset consists of grade 2 and grade 3 which are characterised

by the World Health Organisation based on their histopathologic

characteristics (Forst et al., 2014). All of these datasets categorise

a heterogeneous disease by a genetic association, making them

suitable tasks for classification. They were chosen to demonstrate

the generalisability of MOGDx to different diseases, as well as to

benchmark the performance of MOGDx against other integrative

methods (Wang et al., 2021; Li et al., 2022; Zhang et al., 2022).

Performance & Evaluation

The performance of MOGDx was compared to existing

network integrative methods that perform heterogeneous disease

classification. Ablation experiments were also performed to

understand the importance of different components of MOGDx.

The performance metrics used to compare the classification

performance of MOGDx were accuracy and F1-score (F1). The F1

score was calculated by the mean F1 score of each class, weighted

by the size of that class. The F1 score was also weighted by the

percentage of samples included in that analysis. The percentage

of samples was calculated by the dividing the number of patients

included in that analysis divided by the total number of patients

available in that dataset. k-fold cross validation was performed

with 5 randomly generated splits to obtain the mean and standard

deviation metrics reported. Within each split, the training set was

randomly split into training and validation sets to produce an

overall train/validation/test split of 68%/12%/20% respectively.

MOGDx achieves superior performance when

integrating a variable number of modalities while

including a larger number of samples

The classification performance of MOGDx was compared to

similar PSN multi-omic integrative methods as well as benchmark

classification algorithms namely; Support Vector Machine (SVM),

L1 regularized linear regression (Lasso) and gradient tree boosting

(XGBoost). Table 2 shows MOGDx outperforms all benchmark

classification algorithms. This demonstrates the predictive power

of integrating multiple omic measures in these tasks.

MOGDx outperforms comparative integrative methods,

MOGONET (Wang et al., 2021) and MoGCN (Li et al., 2022). On

the BRCA dataset, MOGDx identified a combination of mRNA,

DNAm, CNV and RPPA as the optimal integration of modalities.

It performs better in both accuracy and F1 metrics compared to

MOGONET. It achieves comparable performance to MoGCn when

trained on four classes, and crucially retains double the number

of samples. In supplementary figure S5, it can be seen that the

Normal-like class is a difficult sub-type to classify. This is due to

the small number of samples and the likelihood of these samples

to go on to develop into one of the other sub-types. MoGCN

does not include this sub-type in their classification, simplifying

the task, resulting in higher accuracy. Interestingly, MOGDx

strongly associates some of the Normal-like samples with other

sub-types. This could suggest predictive power of this method

to identify early signatures of BRCA. MOGDx identified a single

omic measure, DNAm, which achieved optimal performance on

the LGG dataset. All labelled samples were available in this

single omic measure. While MOGDx did significantly outperform

MOGONET on this dataset, there is a relatively large difference in

number of samples. MOGONET obtained their data from Broad

GDAC Firehose which stores TCGA data version from 2016 which

could explain this discrepancy. Finally, MOGDx achieves slightly

lower metrics on the KIPAN dataset compared to MOGONET

and MoGCN. It identified miRNA, CNV, DNAm and RPPA as the

optimal combination of modalities for integration. Once again, the

number of samples differ due to differences between methods and

differences in data collection. The lower performance of MOGDx

in this dataset could be due to the imputation methods applied to

account for missing samples in one or more data modality.

MOGDx can incorporate greater number of samples and

modalities in its methodology. MOGONET and MoGCN are

limited to the intersection of samples, which reduce the number

of samples included in their analysis when more modalities are

included. This is evident as both Lasso and XGBoost have

greater number of samples available when trained on mRNA only.

Conversely, MOGDx can incorporate all available samples due to

imputation methods employed without a significant degradation in

performance. Moreover, MOGONET and MoGCN are fixed to the

integration of three modalities. The flexibility of MOGDx allows

any number of modalities to be included, resulting in significantly

improved performance on the LGG dataset as per Table 2. This

flexibility also provides insight into the information content of

each modality. MOGDx, facilitates the analysis of individual as
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Table 2. Summary of Results

Method Dataset Number of Modalities Number of Samples Number of Classes Accuracy F1

BRCA 4 1083 5 0.893± 0.014 0.874± 0.012

BRCA 4 1043 4 0.904± 0.014 0.887± 0.016

LGG 1 457 2 0.899± 0.016 0.881± 0.019
MOGDx

KIPAN 4 888 3 0.958± 0.003 0.948± 0.004

BRCA 3 875 5 0.829± 0.018 0.825± 0.016

LGG 3 510 2 0.816± 0.016 0.814± 0.014MOGONET

KIPAN 3 658 3 0.999± 0.002 0.999± 0.002

BRCA 3 511 4 0.898± 0.025 0.902± 0.024
MoGCN

KIPAN 3 698 3 0.977± 0.017 0.977± 0.017

SVM BRCA 1 869 5 0.782± 0.033 0.721± 0.030

Lasso BRCA 1 1047 5 0.829± 0.014 0.771± 0.012

XGBoost BRCA 1 1047 5 0.762± 0.036 0.692± 0.033

The optimal MOGDx performance is shown for each dataset. 4 of 5 available modalities were used for both BRCA and KIPAN. Only DNAm

was used on the LGG dataset as it achieved the best accuracy while still including maximum number of samples. The performance reported

by MOGONET(Wang et al., 2021) was achieved using mRNA, miRNA and DNAm. The performance reported by MoGCN(Li et al., 2022)

was achieved using CNV, mRNA and RPPA. The performances reported on SVM, Lasso and XGBoost methods were achieved using the

omic measure which gave the highest accuracy.

well as combined omics. This can be utilised to identify the best

combination of modalities and the added information content of

including additional modalities.

The performance of MOGDx varies under different omic data

types for different classification tasks

Figure 2.A shows the performance of MOGDx varies significantly

when different numbers of omic measures are integrated. There

exists a trade-off between modality integration and performance.

As can be seen in supplementary figure S4, typically three to four

modalities are required to ensure full sample coverage. Figure S2

shows that some omic measures are significantly more predictive

than others. We can see that BRCA and KIPAN benefit from

an integrated approach, while LGG is most easily predicted using

only DNAm. Furthermore, we can see that for KIPAN that mRNA

is not included in the least predictive nor, the most predictive.

In fact, some omics, which are less predictive individually, are

more predictive than mRNA when integrated. This suggests these

omics are capturing different sources of variation, highlighting

the importance of a multi-omic approach. Overall, omic measures

should be included if they improve performance or contribute a

significant number of samples not contained in other measures.

In order to test this, all combinations of modalities were trained

using MOGDx. The modality or combination of modalities which

achieved the best classification performance and including all

samples were reported in Table 2, with the performance of all

other combinations reported in supplementary tables S2-S4. In the

BRCA and KIPAN datasets, integration of 4 modalities resulted in

optimal performance. mRNA, DNAm, CNV and RPPA were most

predictive for BRCA. miRNA, DNAm, CNV and DNAm were

most predictive for KIPAN. Although including more modalities

does not always produce the optimal accuracy, it does reduce the

standard deviation of accuracy estimates from cross-validation,

as per Figure 2. Conversely, training MOGDx on only DNAm

resulted in the best performance on the LGG dataset. The DNAm

dataset had all samples present, as per Figure S2, meaning there

was full sample coverage. In this case, it is clear from Figure 2

that DNAm was the only informative modality for tumour grade

in the LGG dataset, and including more modalities increased

the standard deviation of accuracy estimates without increasing

overall accuracy or samples. This demonstrates that flexibility

to train on any number and/or combination of modalities is an

important requirement for integrative network approaches.

Optimal performance is achieved when MOGDx is

trained on fused PSN and node features

Figure 2.B demonstrates the combined predictive power of the

MME and the PSN. Tables S5-S7 show the accuracy and F1 results

of the different component models for each cross validation fold.

For both the BRCA and LGG datasets, the best mean F1 accuracy

is achieved when using the combined MME and PSN architecture.

The MME achieves the highest mean F1 accuracy in KIPAN,

however it achieves significantly poorer performance in LGG and

has higher variation in its train/test splits. The predictive power

from learning relationships between patient samples is strong and

consistent, but is susceptible to a larger amount of variation due

to train/test splits compared to the combined components in the

BRCA and KIPAN datasets. Integrating the PSN with the MME

reduces the variation in accuracy of the GCN to splits in the data.

It is known that GNN’s are sensitive to train/test and validation

splits. Shchur et al. (2019) showed that classification metrics are

susceptible to inflated results when models are trained on the

same splits. To overcome this limitation of GNN’s MOGDx was

trained on shuffled splits of the data. Embedding a joint reduced

representation of all modalities as node features allows the GNN

to learn from more than just the network structure, reducing

this variability furthermore, as can be seen in Figure 2.B. In this

manner, MOGDx achieves a balanced trade-off between accuracy

and robustness by integrating the MME with the PSN.

MOGDx can identify relevant biological markers of

heterogeneous diseases

Ablation experiments were performed to determine which omic

measures were most predictive of each classification task, with

the results shown in Tables S2-S4. It was determined that mRNA

and DNAm are highly predictive of BRCA and KIPAN, while

only DNAm was predictive of LGG. mRNA and DNAm have

established enrichment pipelines facilitating this analysis, thus

these modalities were analysed for relevant biological markers in

all datasets. Enrichment analysis was performed on the extracted

features from the differential expression analysis on mRNA and

penalised regression analysis on DNAm modalities in all datasets.
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Fig. 2: A Modality Importance — F1 accuracy per number of integrated modalities across the three datasets. The distribution of the violin

plots were generated using the F1 accuracy across all folds for the optimal hyperparameters of each modality’s model. B PSN Importance

— Performance of MOGDx on the best model when trained on MME only, PSN only and when trained on MME + PSN (MOGDx). The MME

model has been trained on the MME only by removing all edges from the PSN. Similarly, the PSN model was trained by one hot encoding each

node feature, thus only allowing the GCN to learn from the structure of the PSN. MOGDx learns from both MME node features and PSN.

Table 3 shows the functional processes associated with mRNA

and DNAm respectively for; BRCA PAM50 sub-type classification,

KIPAN sub-type classification and LGG grade classification. Two

gene sets were analysed, KEGG and MSigDB, for functional

and biological enrichment processes and the full results of the

enrichment analyses are given in tables S8 and S9.

The functional processes found to be enriched in the BRCA

mRNA dataset in both gene sets are related to the life cycle

of a cell, with good concordance between the two gene sets

and corroborated with established research (Yarden et al., 2002;

Deng, 2006). Again, the DNAm enriched functional processes

show good concordance between KEGG and MSigDB gene sets

in BRCA. These enriched processes have established involvement

with the development and growth of cancer tumours (Tzanakakis

et al., 2020). The enriched DNAm processes in BRCA overlap

significantly with LGG and KIPAN. This finding is unsurprising

considering we have assessed three cancer tumour datasets. It does,

however, highlight the ability of MOGDx to consistently identify

relevant pathways, as well as motivating the use of DNAm to

differentiate between different cancers and cancer subtypes. The

concordance between enriched pathways in mRNA and DNAm

differs more in BRCA than it does in LGG and KIPAN. This

suggests that the enriched features of mRNA and DNAm are more

orthogonal in BRCA, which could explain the inclusion of both

of these modalities in the best performing model for this dataset.

Conversely, in the LGG and KIPAN datasets, we see more overlap,

with Epithelial Mesenchymal Transition enriched in both mRNA

and DNAm. This indicates that similar information is captured

in both these omics and thus, justifies the exclusion of one of

them from the optimal modality combination. Given, mRNA was

less predictive in both LGG and KIPAN, shown in Tables S2 and

S3, and the apparent overlap in information, it is less surprising

that this modality was excluded from the optimal combination of

modalities in these datasets.

Discussion

Disease heterogeneity has moved medical research from a

population-based perspective towards a personalised approach

where diagnosis, prognosis and treatments are selected based

on biomedical characteristics. Driving this movement is the

development of large, diverse omic technologies and studies which
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Table 3. Summary of Enriched mRNA and DNAm Pathways in TCGA Dataset

Dataset Modality Gene Set

KEGG 2021 Human MSigDB Hallmark 2020

BRCA

mRNA

Pentose and glucuronate interconversions G2-M Checkpoint

Cell cycle Androgen Response

Homologous recombination Myc Targets V1

DNAm

Axon guidance Estrogen Response Early

Proteoglycans in cancer Epithelial Mesenchymal Transition

Pathways in cancer Myogenesis

LGG

mRNA

Nicotine addiction G2-M Checkpoint

Systemic lupus erythematosus E2F Targets

Type I diabetes mellitus Epithelial Mesenchymal Transition

DNAm

Axon guidance Epithelial Mesenchymal Transition

Proteoglycans in cancer Estrogen Response Early

Focal adhesion Apical Junction

KIPAN

mRNA

Oxidative phosphorylation Oxidative Phosphorylation

Pentose and glucuronate interconversions Allograft Rejection

Intestinal immune network for IgA production Epithelial Mesenchymal Transition

DNAm

Axon guidance Estrogen Response Early

Human papillomavirus infection Myogenesis

Proteoglycans in cancer Epithelial Mesenchymal Transition

provide labelled biomedical data at unprecedented levels. The

integration of these omic measures offer the opportunity to

build quantitative models, which can aid the understanding of

heterogeneous disease architectures and inform clinical guidance.

Therefore, a tool which can flexibly incorporate omic measures and

identify specific biomedical characteristics based on these labels

has the ability to redefine heterogeneous diseases.

We propose MOGDx, a network integrative architecture for the

classification of heterogeneous diseases. What separates MOGDx

from its competitors is the flexibility in its integration of omic

measures, its inclusion of all available patient samples and its

leverage of the predictive power of PSN’s. MOGDx includes

omic measures, which either improves predictive performance

or include patients who may only have samples in one omic

measure. This allows users to fine tune to the most predictive

modalities while incorporating the maximum number of patient

samples in an analysis. In this analysis, we maximised data usage

while maintaining competitive or state-of-the-art performance on

a variety of classification tasks. Fundamental to the predictive

performance of MOGDx is the integration of PSN’s. In this

analysis, we have shown that patient similarity is a very effective

determinant of heterogeneous disease sub-typing and grading.

The use of PSN’s is analogous to clinical diagnosis, where a

diagnostician will compare a new patient to a database of similar

cases. Similarly, MOGDx captures the variability in similarity and

uses this to perform accurate sub-type classification and grading.

The application of MOGDx has been benchmarked on three

cancer datasets from the TCGA, namely; BRCA, LGG and

KIPAN. Cancer is widely regarded as a highly heterogeneous

disease however, MOGDx was able to accurately classify breast

cancer sub-types, kidney cancer sub-types and brain tumour

grades from integrated omic data. MOGDx identified the

optimal combination of modalities which resulted in greater

patient coverage while maintaining a state-of-the-art classification

performance compared to its competitors, as per Table 2.

Interpretability is an important aspect to consider for

biomedical applications in order to transform research into novel

diagnoses, grades or treatments. We have demonstrated the

interpretability of MOGDx in several ways. Firstly, through leave

one out experiments we have identified the modalities which are

most predictive of the classification task, their most important

features, and some enriched functional pathways as summarised in

Table 3. Through enrichment analyses on the extracted features

in the mRNA and DNAm modalities we have identified the main

drivers of their variability and combining this with individual omic

prediction accuracy yields novel insights and makes MOGDx more

explainable.

The use of different omics modalities allows us to assay

different parts of the biological systems involved in disease

mechanism, their integration can help reduce biological noise

improving signal and allowing for the identification of previously

undetectable informative features. Understanding which omic

modalities are most predictive for a given disease can allow us

to design more efficient and informative experiments, minimising

impacts on patients and reducing costs. Further, because different

omics modalities capture different components of the genetic and

environmental contributions to disease their integration can help

us to gain a more complete picture of disease. We performed

enrichment analysis on mRNA and DNAm modalities in all

TCGA datasets. MOGDx was able to identify features enriched in

processes and genes relating to the pathology and prognosis of the

disease. These findings were supported by similar findings in the

literature demonstrating MOGDx’s ability to identify important

omic markers. We have demonstrated in this work that the
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MOGDx architecture can successfully produce interpretable and

reproducible insights into multiple heterogeneous diseases.

The main drawback of MOGDx is that the GNN algorithm

employed in this analysis, is a transductive algorithm.

Transductive algorithms require the entire network to be available

during training. In a clinical setting, this is not possible as it

will be required to perform predictions on unseen patients. Hence,

it will be required to extend MOGDx to an inductive algorithm

which will not require the entire network to be available during

training and can make predictions on unseen patients. In summary,

MOGDx is a flexible and accurate classification tool which can be

applied to a broad range of heterogeneous diseases.

Conclusion

In this paper, we present MOGDx, a command line tool

for the integration of omic datasets to perform classification

tasks for biomedical applications. We show state-of-the-art or

comparative performance on three cancer datasets. We highlight

the importance of flexibility when integrating omic data for

classification tasks and show the predictive power of representing

data as PSN’s. The advantages of MOGDx are that we can

maintain state-of-the-art classification accuracy while including

a significantly larger number of patients. It also offers layers

of interpretability. It can integrate any number of modalities,

providing insight into the informative content of modalities, such

as which is the most informative modality and if integrating

additional modalities increases the predictive power. Furthermore,

combining this with enrichment analysis has shown robust

performance of MOGDx, and possible explanatory behaviour

when selecting the optimal combination of modalities.

Methods

Framework of MOGDx

The framework for MOGDx can be summarised into three main

components; 1) Pre-processing and feature extraction, 2) Graph

generation and SNF, 3) Graph Convolutional Network with Mulit-

Modal Encoder (GCN-MME) training and classification. Before

integration, each modality is treated individually. An individual

modality will undergo processing steps where an expression matrix

and meta file for each modality is created. Feature extraction will

be performed on this expression matrix and a PSN generated on

the most important features. This PSN will then be used to create

a network based on the KNN algorithm. Integration is performed

using SNF on the networks and the fused network along with

each expression matrix are inputted into the GCN-MME. The

MME encodes each expression matrix and decodes the reduced

representation to a shared decoding space. The nodes of the fused

PSN are augmented with a vector representation from the shared

embedding space of the MME. The GNN is trained in combination

with the MME on the joined PSN augmented with MME shared

embeddings for heterogeneous disease classifications. MOGDx is a

command line tool which can integrate a variable number of omic

measures. Specific details of each component are described in the

following sections.

Pre-processing and Feature Extraction

Pre-processing is performed to remove unwanted noise and

variations in the data due to experimental or technical effects. For

mRNA expression (mRNA) and micro RNA expression (miRNA)

all genes which had either zero expression or zero variance in all

samples were removed. Next, any samples which were more than

2 standard deviations from the mean node connectivity distance

were removed. Differential expression was performed using a one-

vs-the-rest methodology, and the most significantly differentially

expressed genes were extracted.

The DNA methylation (DNAm) data downloaded from TCGA-

Biolinks used multiple generations of Illumina Infinium DNA

methylation arrays, however, they have been corrected and

standardised using the SeSAMe(Zhou et al., 2018) pipeline.

Further steps were taken to remove any CpG sites which contained

missing values. Important CpG sites were identified by performing

a penalised Logistic Regression algorithm and keeping any CpG

sites which had a non-zero weight.

To overcome significant missingness in the Copy Number

Variation (CNV) and Reverse Phase Protein Array (RPPA)

datasets, sites which contained more than 50% missingness were

removed, and mean imputation was performed. The CNV data

was log transformed to give it a close to normal distribution, and

penalised Logistic Regression was applied to both. The CNV and

RPPA sites which had a non-zero weight were extracted.

Graph Generation and Similarity Network Fusion

The modalities were represented as graphs and Similarity Network

Fusion (SNF) was performed to integrate the modalities. A patient

similarity matrix was first created for each modality. The Pearson

correlation coefficient (Eq. 1) between the extracted features was

used as a measure of similarity.

r =

∑
(xi − x̄)(yi − ȳ)√

(xi − x̄)2(yi − ȳ)2
(1)

The K-Nearest Neighbours (KNN) algorithm was used to build

the graph with edges created between the 15 nearest neighbours.

SNF(Wang et al., 2014) was applied to fuse the graphs into a

single network representing the full spectrum of the underlying

data. SNF allows complimentary information to be shared between

modalities, and also is effective in identifying novel relationships

between patients. It also integrates missing patient samples

inherently by complimenting a missing edge in one modality with

the same relationship from others.

Graph Convolutional Network - Multi-Modal Encoder Training

and Classification

The architecture of the GCN-MME consists of two main parts; a

Mulit-Modal Encoder (MME) and a Graph Convolutional Network

(GCN), with the architecture shown in Figure S1. The MME

consists of two linear layers. First, each modality is encoded to

a reduced linear layer of dimension 500. Batch normalisation is

performed and the output of this linear layer is encoded further

to a second linear layer of arbitrary dimension. The motivation

for using two layers is to capture interactions between features,

as well as simply compressing the dimension of each modality.

The output dimension of the encoder is specific to each modality

and found by performing a hyperparameter search. Further batch

normalisation and median imputation of missing patient samples

on this encoded layer are performed. The encoded output of each

modality is decomposed into the shared embedding space through

mean pooling.
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Each node in the fused PSN is augmented with the

corresponding vector in the MME shared embedding space. The

weights of the linear layers are calculated by performing back

propagation through the GCN and MME to form a single fully

supervised pipeline.

GNN’s are a powerful architecture for the learning of graph

structure and information in a supervised setting. We implemented

a GCN model from the Deep Graph Library in Python with

a PyTorch backend. The differentiation between GCN and

neural network architectures is their ability to learn from the

local neighbourhood as opposed to handcrafted features. The

performance of GCN and other GNN architectures has been

demonstrated on a variety of benchmark tasks, hence extending

their application to a biomedical setting is an exciting avenue with

great potential.

GCN requires two inputs. A network, consisting of nodes and

edges, and a vector of features for each node. For MOGDx, the

network created was a PSN and the vector of features was a

reduced feature representation from the MME. Formulating the

GCN algorithm as a network represented by an adjacency matrix

A ∈ Rnxn and a feature matrix X ∈ Rnxd where n is the number

of patients and d is the latent dimension selected for the MME.

The GCN then consists of stacked convolutional layers defined by

Eq. 3(Kipf and Welling, 2017).

Hl+l = σ
(
LH(l)W (l)

)
(2)

Where L = D̃− 1

2 ÃD̃− 1

2 is the normalised graph Laplacian;

Ã = A + I is the adjacency matrix; D̃ is the degree matrix of Ã;

W is the weight matrix learned during training; σ is the non-linear

activation function, ELU activation in this case, H(l) is the input

to each layer and H(0) corresponds to X the node feature matrix.

Interpretability of MOGDx

Interpretability in biomedical applications is important to

understand how specific features contribute to prediction so

that therapeutic interventions or novel diagnoses can be well

understood. MOGDx shows interpretability in a number of ways.

Firstly, through ablation experiments, we can identify which

omic measures are most predictive of the targeted outcome.

Ablation experiments are widely adopted for feature importance

and ranking in neural networks(Setiono and Liu, 1997). Similarly,

we can treat entire modalities as features in MOGDx to identify

the most informative. Enrichment analysis is a well understood

methodology to map selected genes to their biological and

molecular pathways. Functional enrichment analysis was carried

out using the Gene Set Enrichment Analysis (GSEA) algorithm by

Shi and Walker (2007) in Python on the extracted features from

the mRNA datasets. Similarly, enrichment analysis was carried

out using the mCSEA(Martorell-Marugán et al., 2019) algorithm

in R on the extracted CpG sites from the DNAm datasets. Results

from these analyses were further compared to existing literature.

Receiver Operator Characteristic and Area Under Curve plots are

shown in Figures S5-S7. Through these visualisations, we can

assess which classes are most difficult to predict and obtain metrics

for the overall accuracy of the model.
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