
Leveraging Generative AI to Prioritize Drug Repurposing Candidates: 
Validating Identified Candidates for Alzheimer's Disease in Real-World 

Clinical Datasets 

 

 
Authors: 
Chao Yan1, Monika E. Grabowska1, Alyson L. Dickson2, Bingshan Li3,4, Zhexing Wen5,6, 
Dan M. Roden2, C. Michael Stein2, Peter J. Embí1,2, Josh F. Peterson1,2, QiPing Feng2, 
Bradley A. Malin1,7,8, Wei-Qi Wei1,7 
 
Affiliations: 
1Department of Biomedical Informatics, Vanderbilt University Medical Center, 
Nashville, TN 
2Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 
3Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, 
TN 
4Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 
5Department of Psychiatry and Behavioral Sciences, Emory University School of 
Medicine, Atlanta, GA  
6Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 
7Department of Computer Science, Vanderbilt University, Nashville, TN 
8Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 
 
These authors contributed equally to this research: Chao Yan and Monika E. Grabowska 
These authors are the senior authors of this research: Wei-Qi Wei and Bradley A. Malin 
 
Corresponding author: 
Wei-Qi Wei, MD, PhD 
Associate Professor 
Department of Biomedical Informatics 
Vanderbilt University Medical Center 
Email: wei-qi.wei@vumc.org 
Address: Suite 1500, 2525 West End Ave, Nashville, TN, USA, 37203 
 
 
Word Count: 2,065  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 8, 2023. ; https://doi.org/10.1101/2023.07.07.23292388doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.07.07.23292388


Abstract 
 
Drug repurposing represents an attractive alternative to the costly and time-consuming process of 
new drug development, particularly for serious, widespread conditions with limited effective 
treatments, such as Alzheimer’s disease (AD). Emerging generative artificial intelligence (GAI) 
technologies like ChatGPT offer the promise of expediting the review and summary of scientific 
knowledge. To examine the feasibility of using GAI for identifying drug repurposing candidates, 
we iteratively tasked ChatGPT with proposing the twenty most promising drugs for repurposing 
in AD, and tested the top ten for risk of incident AD in exposed and unexposed individuals over 
age 65 in two large clinical datasets: 1) Vanderbilt University Medical Center and 2) the All of 
Us Research Program. Among the candidates suggested by ChatGPT, metformin, simvastatin, 
and losartan were associated with lower AD risk in meta-analysis. These findings suggest GAI 
technologies can assimilate scientific insights from an extensive Internet-based search space, 
helping to prioritize drug repurposing candidates and facilitate the treatment of diseases. 
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Main 
 
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that raises major concerns 
in healthcare due to its irreversibility and high prevalence among older adults1. Despite decades 
of research, treatment options for AD remain limited, leaving patients and families with little 
hope. Drug repurposing to identify novel therapeutic applications for existing drugs is an 
attractive additional approach to discovering treatment options compared to the costly and time-
consuming process of new drug development alone, particularly for serious, widespread 
conditions that continue to have few effective treatments, such as AD2. In addition to accelerated 
timelines and lower costs throughout the discovery-to-market process, the approach offers well-
established drug safety profiles and expedited clinical translation with enhanced patient 
accessibility. Nevertheless, the success of drug repurposing hinges on the prompt and accurate 
identification of promising candidates among a large collection of drugs. 
 
The search for drug repurposing candidates typically relies on a comprehensive review of the 
scientific literature, focusing on studies that offer evidence of efficacy for certain drugs or their 
constituent ingredients. Mechanistic insights, preclinical experiments, clinical reports, large-scale 
observational studies, and drug repurposing databases collectively form the space within which 
searches are conducted. However, this review process is labor- and time-intensive, requiring 
researchers to incorporate interdisciplinary expertise in disease mechanisms, molecular biology, 
pharmacology, clinical research, and bioinformatics. As such, approaches that streamline this 
process offer an advantage in repurposing efforts.  
 
Recent advancements in generative artificial intelligence (GAI), exemplified by OpenAI’s 
ChatGPT3, have showcased the remarkable capability of AI to understand and respond to diverse 
inquiries. The comprehension and response capabilities of GAI derive from extensive exposure 
to a vast corpus from the Internet, nuanced encoding of knowledge, and subsequent optimization 
of responses that display reasoning processes4,5. Beyond answering general questions, GAI has 
demonstrated effectiveness in specialized medical contexts6, including U.S. Medical Licensing 
Examination queries7, clinical decision-making consultations8,9, and medical research 
assessments10,11. Notably, ChatGPT is already being leveraged by biotechnology companies to 
suggest novel pathways for drug targets12. However, given its nascent stage and concerns 
regarding fabrication of information13,14, responsible deployment of this tool in the medical 
setting necessitates comprehensive verification of its functional utility and reliability with 
clinical data in the real world. 
 
We hypothesized that ChatGPT can function as an AI-driven screening tool to generate drug 
repurposing candidates for AD. To assess this hypothesis, we provided ChatGPT (model GPT-4) 
with two sequential prompts. First, we prompted ChatGPT to provide the twenty most promising 
drug repurposing candidates for AD. Next, we prompted ChatGPT to confirm its previous output 
and return a final list of drugs (Fig. 1a). To account for the probabilistic nature of ChatGPT’s 
responses, we repeated this process ten times, resulting in a total of 59 unique drug candidates 
(Supplementary Table 1). We confirmed that each candidate appeared in at least one 
publication discussing their potential use in AD. We then identified the ten most frequently 
appearing drugs for subsequent testing with clinical data (minimum frequency N=7, maximum 
frequency N=10). 
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Fig. 1: An illustration of the study design. a, Employing iterative queries of ChatGPT to recommend 
twenty drugs for AD repurposing. b, Evaluating the potential efficacy of the ten most frequently 
suggested drugs using electronic health records (EHR) data from two large clinical databases.  
 
 
For each generated candidate, we composed two cohorts using de-identified electronic health 
record (EHR) data from large clinical datasets: 1) Vanderbilt University Medical Center 
(VUMC), and 2) the National Institutes of Health (NIH) All of Us Research Program15 (Fig. 1b). 
We employed Cox proportional hazards regression to compare the risk of developing AD 
between individuals with prior drug exposure and individuals never exposed to the drug. We 
used age 65 as time zero; prior drug exposure was defined by medication use ≤65 years of age. 
Each drug-exposed cohort was matched to an unexposed group based on propensity score (PS), 
using sex, race, EHR length after age 65, and drug-specific comorbidities at age 65 (i.e., at the 
time of cohort entry) as covariates. Drug-specific comorbidities were selected based on primary 
clinical indication. Given that the cohort size for a particular drug might not be sufficiently large 
in the independent datasets, we also performed a meta-analysis to derive a statistically robust 
estimate of each drug’s hazard ratio. 
 
We observed that three of the top ten ChatGPT recommendations were associated with a 
significantly reduced risk of AD after ten years of follow-up using VUMC data: the antidiabetic 
medication metformin (hazard ratio (HR)=0.67, 95% confidence interval (CI): 0.54-0.82, 
p<1.5✕10-4), the antihypertensive agent losartan (HR=0.73, 95% CI: 0.57-0.92, p=0.009), and 
the antibiotic minocycline (HR=0.34, 95% CI: 0.13-0.89, p=0.028) (Fig. 2). Though our studies 
with All of Us were limited by smaller sample sizes, metformin showed treatment effects in the 
expected direction (i.e., HR<1). While not statistically significant at p<0.05, the lipid-lowering 
medication simvastatin and the antidiabetic medication pioglitazone also exhibited beneficial 
treatment effects in both the VUMC and All of Us data.  
 
In the meta-analysis, we confirmed the protective effect of metformin (HR=0.67, 95% CI: 0.55-
0.81, p=6.4✕10-5). The meta-analysis also revealed a statistically significant protective treatment 
effect for simvastatin (HR=0.84, 95% CI: 0.73-0.98, p=0.024) that had not been identified in 
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either the VUMC or All of Us data in isolation. Losartan was found to have a significant 
protective treatment effect in meta-analysis as well (HR=0.76, 95% CI: 0.60-0.95, p=0.017); 
however, the effect estimates from VUMC and All of Us were opposing in their directionality.  
 
Inadequate AD case counts (N<5) prevented the evaluation of bexarotene and nilotinib in both 
VUMC and All of Us. The effects of minocycline, candesartan, rapamycin, and lithium could not 
be tested in All of Us for the same reason.  
 

 
Fig. 2: Associations between exposure to ChatGPT-suggested drug repurposing candidates and AD 
risk. Hazard ratios (HR) and 95% confidence intervals (CI) are shown for VUMC (blue squares), the NIH 
All of Us Research Program (red squares), and the combined meta-analysis (gray squares). ** indicates 
drugs associated with significantly reduced AD risk using VUMC data (p<0.05); * indicates drugs 
associated with significantly reduced AD risk in the meta-analysis (p<0.05). To ensure adequate statistical 
power, we did not report drugs with fewer than five AD cases in the study cohort (i.e., bexarotene and 
nilotinib in both VUMC and All of Us; minocycline, candesartan, rapamycin, and lithium in All of Us).  
 
We found that ChatGPT’s utility as a drug repurposing tool resides in its ability to follow 
instructions pertaining to drug repurposing and rapidly synthesize information from relevant 
literature. ChatGPT did not propose any FDA-approved drugs for AD, suggesting that it 
accurately interprets the premise of drug repurposing. In this study, the drugs suggested with the 
highest frequency by ChatGPT were not novel repurposing candidates for AD, but rather drugs 
frequently mentioned together with AD in the literature. Antidiabetic drugs such as metformin 
and pioglitazone have received considerable attention as potential therapeutic candidates for AD, 
driven by increasing evidence implicating insulin resistance in the pathogenesis of AD16-18. 
Similarly, reported associations between AD and cardiovascular disease have sparked numerous 
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investigations into the repurposing of cardiovascular drugs for AD, including statins and 
antihypertensive agents such as losartan and candesartan19-21. Rapamycin, nilotinib, lithium, and 
bexarotene have also been heavily explored in AD drug repurposing studies22-24.  
  
We observed protective effects against AD for three of the ten drugs most frequently suggested 
by ChatGPT–metformin, simvastatin, and losartan–in meta-analysis combining data from two 
large-scale EHRs. Use of metformin, which produced the strongest signal in our meta-analysis, 
was associated with a 33% decreased risk of incident AD after age 65. Simvastatin and losartan 
produced more modest effects. In meta-analysis, simvastatin was associated with a 16% 
decreased risk of AD, while losartan was associated with a 24% decreased risk of AD. Whereas 
metformin and simvastatin were found to have consistent treatment effects (HR<1) in both 
VUMC and All of Us, losartan had conflicting treatment effects (statistically significant HR<1 
using VUMC data, non-significant HR>1 using All of Us data). This suggests that losartan's 
protective treatment effect in meta-analysis may have been driven by the larger sample size from 
VUMC. Despite supporting findings for these three drugs in previous studies, much remains 
unknown about the mechanisms by which these drugs affect AD pathophysiology and pathology, 
and population-based studies have not provided conclusive results25-27. Further investigation in 
preclinical and clinical studies will be needed to ascertain the viability of these drugs in 
decreasing risk of AD. 
 
Our findings suggest that ChatGPT can generate quality hypotheses for drug repurposing.  
ChatGPT expedites the process of extensive literature review, which has become infeasible for 
humans to perform alone. With minimal costs, ChatGPT has the capacity and scalability to 
substantially accelerate the review process, allowing researchers to focus on testing and 
validating the hypotheses. Moreover, the anticipated regular updates of ChatGPT (which provide 
access to new Internet content) and its search engine plugins allow for consistently up-to-date 
and uninterrupted drug repurposing research. Furthermore, combining ChatGPT-powered 
hypotheses with robust verification using real-world clinical datasets provides a cost-effective 
pipeline to investigate preliminary signals before allocating additional resources to extensive 
research and clinical trials. This validation process serves as a critical balancing force to disprove 
invalid hypotheses, assuaging concerns about adverse consequences of AI hallucinations–a 
major criticism of ChatGPT use. Despite these advantages, any pipelines incorporating ChatGPT 
must account for the possibility of overlooked, but promising, repurposing candidates, which can 
transpire when candidates exhibit low occurrence in the literature or necessitate complex 
reasoning ability based on indirect evidence that surpasses ChatGPT's capabilities. 
 
Our study has several limitations of note. First, we relied upon frequency to prioritize drug 
candidates; however, the number of times a repurposing candidate appears in ChatGPT queries 
may not be directly related to its promise in treating disease. Second, EHRs can contain missing 
or incomplete data28, and discontinuities in medication adherence may not be reported with 
perfect fidelity, creating possibilities for misclassification of outcome or exposure. Third, despite 
the use of two large EHRs, we still did not have adequate statistical power for hypothesis testing 
of less common drugs (e.g., nilotinib). Fourth, while our study evaluated drug exposure broadly 
as any-time, any-dose exposure ≤65 years of age, there exist many opportunities for deeper 
phenotyping in characterizing drug exposure. Fifth, we sought to control for a single primary 
indication for each drug using MEDI; however, we were unable to establish a clear primary 
indication for several drugs (i.e., nilotinib, bexarotene, minocycline, and rapamycin). 
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Furthermore, a fully balanced covariate distribution was not achieved for metformin and 
simvastatin (standardized mean difference >0.1 for EHR length after 65 and drug-specific 
comorbidities), suggesting there may be some residual confounding (although likely to bias 
towards the null). Sixth, this study cannot establish causal effects or mechanisms as might be the 
case in a clinical trial. Lastly, although ChatGPT exhibits exceptional response quality for 
general queries, further research is required to benchmark a range of GAI models and their fine-
tuned variants for greatest effectiveness and reliability in supporting biomedical tasks, 
particularly drug repurposing. 
 
Still, this proof-of-concept study showcases the feasibility of employing ChatGPT as an AI-
driven hypothesis generator for drug repurposing, enabling the prompt generation of a promising 
list of drugs for subsequent testing in EHRs, using AD as a case study. Our findings suggest that 
ChatGPT is able to encode valuable insights concerning novel potential therapeutic utilities for 
existing drugs by comprehensively synthesizing literature, and can subsequently decode this 
knowledge when responding to queries. Pipelines that leverage the capabilities of ChatGPT offer 
a streamlined new framework for drug repurposing that can be applied to numerous diseases. 
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Methods 
 

Usage of All of Us data was approved by the NIH All of Us Research Program. All EHR data 
from VUMC was de-identified, such that this study was deemed to be exempt by the Institutional 
Review Board.  
 
Interactions with ChatGPT 
In this study, we interacted with OpenAI’s ChatGPT (GPT-4) to generate promising drug 
repurposing candidates for AD. These interactions were conducted in May 2023, at which time 
the technology had access to information accumulated until September 2021. Ten independent 
queries were performed, ensuring that each query did not serve as the context for another. Each 
query consisted of two prompts. The first prompt described the instructions for generating drug 
repurposing candidates, whereas the second prompt asked ChatGPT to self-correct its output 
from the previous prompt.  
● Prompt 1: Please provide a list of the 20 most promising drugs for repurposing in the 

treatment of Alzheimer’s disease based on their potential efficacy, and indicate the diseases 
they were originally developed to treat. Please rank them in descending order of potential 
effectiveness and use the JSON format to include the “Drug” and “Disease” keys. 

● Prompt 2: Please check if the generated list meets the requirement: 1) exclude the drugs that 
were originally designed for Alzheimer’s disease, 2) 20 distinct drugs, 3) in JSON format, 4) 
rank in descending order according to the potential effectiveness. If not, please regenerate the 
list that meets the requirement. 

 
In our queries, we intentionally emphasized drugs’ original purposes to encourage ChatGPT to 
distinguish between the drugs originally intended to treat AD and those used in treating other 
diseases. This helped to limit the possibility that candidates with original use in AD were 
returned in the final list of each query. We also imposed a specific format for the drugs returned 
in the queries to facilitate subsequent processing. We also asked ChatGPT to rank drugs 
according to their potential effectiveness. While ChatGPT claimed that it “cannot rank the 
generated drugs with respect to their potential effectiveness since the data is not definitive and is 
constantly evolving” in multiple responses, we sought to emphasize the notion of effectiveness 
during the drug generation process. It is important to note that we did not use the order of drugs 
in the generated lists for subsequent drug selection. 
 
Data source 
We performed our clinical validation studies using de-identified EHR data from 1) Vanderbilt 
University Medical Center (VUMC), a major academic medical center in Nashville, Tennessee, 
and 2) the All of Us Research Program run by the National Institutes of Health (NIH), a U.S. 
nation-wide clinical database. VUMC’s de-identified EHR database contains longitudinal 
clinical data including diagnosis codes, lab values, and medications for over three million patient 
records29. The NIH All of Us Research Program database contained de-identified EHR data for 
over 235,000 participants at the time of this study15. The EHR data in both resources is 
standardized according to the Observational Medical Outcomes Partnership (OMOP) Common 
Data Model30, allowing for reproducible cohort formation and characterization of drug exposures 
in the two databases. 
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Study cohort 
For each candidate drug, we conducted a retrospective cohort study using age 65 as time 0. Each 
study was limited to individuals aged 65 or older with no prior diagnosis of AD. We excluded 
individuals with a diagnosis of non-Alzheimer's dementia (vascular dementia, diffuse Lewy body 
disease, frontotemporal dementia, mixed dementia, and dementia associated with Parkinson's 
disease), individuals without EHR follow-up after age 65, and individuals with missing 
demographic characteristics. 
 
We defined a confirmed diagnosis of AD as patients with at least one AD diagnosis code in their 
EHR using ICD-9-CM code 331.0 and ICD-10-CM codes G30.1, G30.8, and G30.9. We have 
previously shown that using ICD codes to phenotype AD patients has a high PPV (94%) in 
VUMC's de-identified EHR database31.  
 
To capture all relevant drug exposures when creating the drug-exposed group, medications were 
mapped to their ingredients using RxNorm32. Individuals with at least one recorded exposure to 
the drug of interest occurring at ≤65 years of age were considered to be exposed. Individuals 
whose first record of drug exposure occurred after age 65 were excluded from the analysis. 
 
We gathered demographic characteristics (sex and race), remaining chart length, and 
comorbidities at age 65 to generate a propensity score (PS) for matching. The comorbidities were 
selected to mitigate potential confounding by indication. We used MEDI33, an ensemble 
medication indication resource, to identify the primary clinical indication for each drug 
repurposing candidate. MEDI contains over 63,000 medication-indication pairs with indication 
prevalence evaluated using EHR data. We queried MEDI for the highest prevalence indications 
for each drug and used these to define a single primary indication for the drug. If there was no 
consensus among the top indications, a primary indication for the drug was not defined. MEDI 
reports medication indications using only ICD-9-CM; as such, we mapped the ICD-9-CM 
code(s) comprising the primary indications to ICD-10-CM codes using the General Equivalence 
Mappings developed by the Centers for Medicare & Medicaid Services. Supplementary Table 
2 reports the set of ICD-9-CM and ICD-10-CM codes relied upon to define the comorbidities 
and the drugs they pertain to. A confirmed comorbidity status was defined as disease diagnosed 
at the start of follow-up (i.e., at ≤65 years of age). 
  
We applied 2:1 PS matching (nearest-neighbor algorithm, caliper = 0.1) with sex, race, length of 
EHR after age 65, and relevant drug-specific comorbidities as covariates to form comparable 
drug-exposed and unexposed cohorts for each suggested drug repurposing candidate.  PS 
matching was performed using the MatchIt R package34. The participant counts for each drug 
after matching (AD/exposed, no AD/exposed, AD/unexposed, and no AD/unexposed) are 
provided in Supplementary Table 3. The covariate balance between the drug-exposed and 
unexposed groups after matching is provided in Supplementary Table 4.  
 
Based on our study design, an individual with a history of exposure to multiple drug repurposing 
candidates could be included in more than one drug-exposed cohort. We did not consider 
potential compound effects resulting from multiple drug exposures.   
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Statistical analysis 
All survival analyses were performed using Cox proportional hazards regression models. Each 
model compared the risk of AD in individuals exposed to a drug repurposing candidate and PS-
matched individuals never exposed to the drug. Follow-up ended at the first of 1) AD diagnosis, 
2) last recorded EHR observation, or 3) ten years. We censored observations after ten years of 
EHR follow-up (i.e., at age 75) to minimize differential loss to follow-up. To ensure adequate 
statistical power, we did not report drugs with fewer than five AD cases included in the final 
study cohort. We used p<0.05 as our significance threshold given the small number of tests 
(N=10).  
 
Meta-analysis of hazard ratios was performed using NCSS statistical software35. Cochran's Q test 
was used to assess heterogeneity. Meta-analysis was performed under a fixed-effects model. 
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Data Availability 
 
The VUMC dataset used in this study is available upon request from the corresponding authors 
and subsequent institutional approval. The All of Us dataset can be accessed through the 
Researcher Workbench by following the detailed data application process outlined at 
https://www.researchallofus.org.  
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Code Availability 
 
The source code associated with this study is publicly available at:  
https://github.com/monikagrabowska/GPT4_AD_Drug_Repurposing. 
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Figure Legends 
 
Fig. 1: An illustration of the study design. a, Employing iterative queries of ChatGPT to 
recommend twenty drugs for AD repurposing. b, Evaluating the potential efficacy of the ten 
most frequently suggested drugs using electronic health records (EHR) data from two large 
clinical databases.  
 
Fig. 2: Associations between exposure to ChatGPT-suggested drug repurposing candidates 
and AD risk. Hazard ratios (HR) and 95% confidence intervals (CI) are shown for VUMC (blue 
squares), the NIH All of Us Research Program (red squares), and the combined meta-analysis 
(gray squares). ** indicates drugs associated with significantly reduced AD risk using VUMC 
data (p<0.05); * indicates drugs associated with significantly reduced AD risk in the meta-
analysis (p<0.05). To ensure adequate statistical power, we did not report drugs with fewer than 
five AD cases in the study cohort (i.e., bexarotene and nilotinib in both VUMC and All of Us; 
minocycline, candesartan, rapamycin, and lithium in All of Us).  
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