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Abstract 17 

A prominent theory of psychedelics is that they increase brain entropy. Twelve studies have evaluated 18 

psychedelic effects on fMRI brain entropy quantifications, no findings have been replicated. Here we 19 

evaluated these metrics in an independent 28-participant healthy cohort with 121 pre- and post-psilocybin 20 

fMRI scans. We assessed relations between brain entropy and plasma psilocin, brain serotonin 2A receptor 21 

occupancy, and a subjective drug intensity rating using linear mixed-effects models. We observed 22 

significant positive associations for Shannon entropy of path-length, instantaneous correlation distributions, 23 

and divergent associations of sample entropy at varying time-scales. We did not observe significant effects 24 

for 8 of 13 entropy metrics. Brain entropy quantifications showed limited inter-measure correlations. Our 25 

observations support a nuanced acute psychedelic effect on brain entropy, underscoring the need for 26 

replication and that these metrics do not reflect a singular construct. Our findings highlight candidate brain 27 

entropy metrics that may mediate clinical effects of psychedelics.  28 
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Introduction 29 

Psychedelic drugs induce profound altered states of consciousness including affective, sensory and 30 

cognitive effects mediated by activation of downstream pathways initiated by agonism at the brain serotonin 31 

2A receptor 1–4. In combination with psychological support, clinical studies up to phase 2b indicate 32 

promising clinical efficacy of psychedelics in the treatment of affective and behavioural neuropsychiatric 33 

disorders that may be associated with their acute effects 5–10,10–12. Similarly, psychedelics induce acute and 34 

lasting effects on behaviour and personality in healthy participants 13–15. In parallel to evaluating clinical 35 

treatment effects, human brain functional magnetic resonance imaging (fMRI) has begun to shed light on 36 

neural pathways affected by psychedelics 16. 37 

Several prominent theories of critically relevant psychedelic effects on brain function have been advanced 38 
17. A prominent theory is the “Entropic Brain Hypothesis” (EBH), which posits that the 'richness' of the 39 

phenomenology of the acute psychedelic state reflects brain-wide increases in entropy of functional brain 40 

signals 18,19. The concept of "entropy" serves as a quantification of the degree of information or complexity 41 

contained in a system; it is typically expressed in bits, without physical dimensions. Entropy has been 42 

conceptualised as a metric of information content and is largely defined in terms of a probability 43 

distribution; the metric is commonly referred to by the eponymous name “Shannon entropy” 𝐻(𝑋) =44 

 − ∑ 𝑝(𝑥) ⋅ 𝑙𝑜𝑔2𝑝(𝑥) 𝑥∈𝑋  where H(X) refers to the Shannon entropy of probability mass function X 45 

containing bins (x) with height (p) 20. Other entropy metrics have been defined, e.g., Lempel-Ziv complexity 46 

and sample entropy 21–24, and adapted to characterise information contained in various objects, e.g., complex 47 

networks or graph structures 25. 48 

To date, 12 studies have evaluated either acute or lasting psychedelic effects on the information-entropy of 49 

brain-activity or connectivity using blood oxygen level dependent (BOLD) fMRI data (Figure 1), one of 50 

which evaluates two metrics, thus 13 entropy metrics have been previously evaluated in this field. Four 51 

papers analysed data from a study evaluating 2mg intravenous psilocybin administration in up to 15 healthy 52 

participants 19,26–28. Two papers reported effects from a study evaluating 75µg intravenous LSD 53 

administration in 15 healthy participants 29,30. Two papers evaluated data from both datasets 31,32. Three 54 

papers reported effects from a study evaluating oral ayahuasca administration, containing 96-160mg DMT 55 

and 25.2-42mg harmine (a monoamine oxidase inhibitor that facilitated the oral bioavailability of DMT) in 56 

9 healthy participants 33–35. Finally, one paper reported effects from a study evaluating lasting effects of 57 

25mg/70kg bodyweight orally administered psilocybin in 11 healthy participants 36. Notably, and 58 

highlighted in a recent review 16, each of these reports quantified a distinctly different metric of brain 59 

entropy. Here we group these metrics into three categories: 1) “static connectivity”, 2) “dynamic 60 

connectivity”, i.e., the time-varying relation between two or more time-series, 3) “dynamic activity”, i.e., 61 

the entropy of regional time-series (Figure 1). Nine of these metrics are based on the Shannon entropy of 62 

distributions, three are Lempel-Ziv complexity metrics of a time-series and one is the sample entropy of a 63 

time-series. Taken together, although there is a clear interest in evaluating psychedelic effects on brain 64 

entropy, prominent limitations include that none of these measures have been evaluated in an independent 65 

cohort, the set of effects have been evaluated in only a few datasets, some with atypical modes of drug 66 

administration, and the inter-correlation between these metrics has not been considered. Previous studies 67 

compared pre-drug or placebo and a single post-drug scan. For the most part, these previous studies report 68 

increased brain entropy with only a few exceptions, e.g., two studies report non-significant psilocybin 69 
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effects and one study reports no lasting changes (Figure 1, Table 1). See Supplementary Table S1 for more 70 

details about the previous studies. Previous fMRI studies have reported reduced brain entropy in other states 71 

of "reduced consciousness", including NREM sleep 37, minimal-consciousness 38, and anaesthesia 39, 72 

whereas other studies have shown increased brain entropy following caffeine 40 and Salvinorin A intake 41. 73 

In the current study, we sought to evaluate the acute effects of 0.2-0.3mg/kg psilocybin administration on 74 

these 13 brain entropy metrics in an independent dataset of 28 healthy individuals. Based on the entropic 75 

brain hypothesis, we hypothesised that brain entropy metrics would be increased following psilocybin 76 

administration. Participants completed a 5 or 10-min resting-state fMRI scan a single time before, and 77 

multiple times following psilocybin administration (121 total scan sessions). All scans for each participant 78 

were performed on one of two scanners.  Each scan was accompanied by a self-report measure of subjective 79 

drug intensity (SDI) and a blood sample to quantify plasma psilocin level (PPL), from which brain serotonin 80 

2A (5-HT2A) receptor occupancy (Occ2A), was estimated based on its relation to PPL established in a 81 

previous study from our lab 2. We evaluated the relations between each entropy metric and SDI, PPL and 82 

Occ2A using linear mixed-effect model with a subject-specific random intercept and correction for age, sex, 83 

scanner, and motion (see Methods Supplementary Material for more details). We report uncorrected 84 

permutation p-values (pperm) for each metric producing a single whole-brain value. For entropy metrics 85 

producing regional values, we report family-wise error rate corrected permutation p-values (pFWER) with 86 

correction across all regions within each metric using maxT correction 42. We report as significant those 87 

metrics which were significantly (i.e., p < 0.05) associated with SDI, PPL and Occ2A, collectively referred 88 

to as “PsiFx”. Standardised effect sizes are reported (Pearson’s rho). This evaluation was repeated across 89 

two parcellation strategies and seven pre-processing pipelines to explore the robustness of effects to pre-90 

processing decisions. Finally, we explored the inter-correlation between brain entropy metrics to 91 

characterise their associations.  92 
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Figure 1: Overview of previous psychedelic fMRI entropy quantifications. Methods are grouped according 94 

to the type of brain entropy metric. Symbols in the top left of each box represent the dataset that the original 95 

publication analysed. LSDIV (blue) refers to data collected in relation to a 75 µg intravenous LSD 96 

administration (n <= 15), PsiIV (green) refers to data collected in relation to a 2 mg intravenous psilocybin 97 

administration (n <= 15), Ay (orange) refers to data collected in relation to an oral ayahuasca administration 98 

(n = 9), and PsiL (green oval) refers to data collected one-week before, one-week after, and one-month after 99 

a 25 mg/70 kg oral psilocybin administration (n = 11). Brain images show an axial slice illustrating the 100 

parcellation/atlas used. Images in the top right describe the input into the entropy function as one of "region-101 

wise connectivity matrix", "ROI-wise BOLD signal" and "voxel-wise BOLD signal". Illustrations in the 102 

lower part of each box graphically represent simplified analysis steps for each method. The original 103 

publication for each metric is denoted in the bottom left corner of each box. See Supplementary Table 1 for 104 

more details. 105 

Results 106 

Participants showed substantial SDI and PPL following drug administration as anticipated (Supplementary 107 

Figure S1). See Figure 1, Supplementary Table S1 and Table 1 for a summary of entropy metrics, previous 108 

findings, and our findings respectively.  109 

Entropy of Static Connectivity 110 

Out-network Connectivity Distribution 111 

Shannon entropy of regional out-network connectivity was not significantly associated with psilocybin 112 

effects (PsiFx) in any of the 181 non-cerebellar brain regions after controlling for multiple comparisons 113 

(pFWER > 0.07 for all regions for at least one of PsiFx, Supplementary Table S2). 114 

Degree Distribution 115 

The entropy of degree distribution at a correlation coefficient threshold corresponding to a mean degree of 116 

27 was not associated with any of PsiFx (pperm > 0.18, Figure 2A). We also did not observe significant 117 

effects for thresholds producing a mean degree between 1 and 48 (Supplementary Table S3). 118 

Path-length Distribution 119 

The entropy of path-length distribution was significantly positively associated with PsiFx at the a priori 120 

described threshold producing mean degree 27 (pperm < 0.04, Figure 2B). The associations were weak to 121 

moderate (Pearson’s rho = 0.39, 0.27, and 0.23 for PPL, Occ2A and SDI, respectively). Significant weak to 122 

moderate positive associations with PsiFx were also observed across thresholds producing mean degrees 123 

from 22 to 38 (Supplementary Table S3). 124 
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Von Neumann Entropy 125 

The Von Neumann entropy of correlation matrices was not significantly associated with PsiFx (pperm > 0.35, 126 

Figure 2C and Supplementary Table S3).  127 

 128 

 129 

 130 
Figure 2: Scatter plots describing the relation between static connectivity entropy and PPL. Y-axis values 131 

are partial residuals i.e., entropy values adjusted for age, sex, MR scanner and motion. Degree distribution 132 

and path-length distribution statistics are computed using a correlation coefficient threshold corresponding 133 

to a mean-degree of 27.  134 

 135 

Entropy of Dynamic Connectivity 136 

Intra-network Synchrony Distribution 137 

Intra-network synchrony distribution was not significantly associated with PsiFx in any of nine networks 138 

(All pFWER > 0.98, Supplementary Table S2, Supplementary Figure S2). 139 

Motif-connectivity Distribution 140 

The four-ROI motif-connectivity state distribution was not significantly associated with PsiFx at any 141 

window length from 15 to 150s except a single weak association at window-length 100s (pperm < 0.05, 142 

Pearson’s rho 0.30, 0.25, and 0.24 for PPL, Occ2A, and SDI, respectively) surrounded by non-significant 143 

findings (Supplementary Figure S3 and Supplementary Table S3). 144 

LEiDA-state Markov-rate 145 

LEiDA-state Markov-rate was not significantly associated with PsiFx (pperm > 0.7 for all PsiFx, Figure 3A, 146 

Supplementary Table S3). 147 
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Meta-state Complexity 148 

Meta-state entropy was positively associated with Occ2A (pperm = 0.03) and SDI (pperm = 0.003), but not PPL 149 

(pperm = 0.076, Figure 3B). Associations were weak (Pearson’s rho = 0.22, 0.33, and 0.20 for Occ2A, SDI, 150 

and PPL, respectively; Supplementary Table S3). 151 

Integration/Segregation-state Distribution 152 

Integration sub-state entropy was not significantly associated with PsiFx (pperm > 0.06 for all PsiFx, Figure 153 

3C, Supplementary Table S3).  154 

 155 

 156 

 157 
Figure 3: Scatter plots and linear models describing the relation between whole-brain dynamic connectivity 158 

entropy measures and plasma psilocin levels. Y-axis values are partial residuals i.e., entropy values adjusted 159 

for age, sex, MR scanner and motion. Panel B (Meta-state complexity) shows a non-significant association 160 

with PPL but this entropy metric does show a significant linear relation with Occ2A and SDI. 161 

 162 

Dynamic Conditional Correlation Distribution 163 

Dynamic conditional correlation entropy was significantly positively associated with PsiFx in 35 of 36 164 

network-network connections (18/36 pFWER < 0.0001, i.e., observed data superseded all permutations, 29/36 165 

pFWER < 0.001, 35/36 pFWER < 0.05;  Figure 4A; Supplementary Table S2). Associations were moderate to 166 

strong (Pearson’s rho range: 0.35 to 0.78, Supplementary Table S2). The one association with at least one 167 

non-significant relation was for edges within the motor cortex. 168 
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 169 

 170 

Figure 4: A: Heatmap of the Pearson’s correlation and p-values for the association between Dynamic 171 

Conditional Correlation entropy and plasma psilocin level for each within and between network entropy 172 

estimate. *** represents pFWER < 0.0001, ** pFWER < 0.001, and * pFWER < 0.05 for associations with PPL. 173 

B: A scatter plot of the network edge with the strongest association between DCC entropy and PPL 174 

(Pearson’s Rho = 0.74). Y-axis values are partial residuals i.e., entropy values adjusted for age, sex, MR 175 

scanner and motion. 176 

 177 

Entropy of Dynamic Activity 178 

Multi-Scale Sample Entropy 179 

At scale 1, (i.e., no time-series compression), sample entropy was significantly positively associated with 180 

PsiFx (pFWER < 0.05) in 7 of 17 networks (i.e., Central Visual, Dorsal Attention A, Control A, B and C, 181 

Default-Mode A and C). At scales 2, 3, and 4, no associations were significantly associated with PsiFx 182 

(pFWER > 0.05). At scale 5, sample entropy was significantly negatively associated with PsiFx in 14 of 17 183 

networks; Control A and C and Default-Mode A (pFWER < 0.001), Somatomotor A, Dorsal Attention A and 184 

B, Salience-Ventral-Attention B, Limbic B, Control B, Temporal-Parietal, Default-Mode B and C (pFWER < 185 

0.05, Figure 5, Supplementary Table S2). Scale 1 associations were weak to moderate (Pearson’s rho range: 186 

0.26 to 0.47), as were Scale 5 associations (Pearson’s rho range: -0.27 to -0.49). 187 
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 188 

Figure 5: Forest plots representing the estimate of the association between sample entropy and PPL in each 189 

network of the Yeo-17 network parcellation and at each of scales 1 to 5. Colours represent networks and 190 

error bars represent the 95% confidence interval. *** pFWER < 0.0001, ** pFWER < 0.001 and * pFWER < 0.05 191 

for associations with PPL.  192 
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Spatial and Temporal Dynamic BOLD Complexity 193 

Temporal BOLD complexity (LZct) was not associated with PPL (pperm = 0.14, Figure 6B) but was 194 

associated with Occ2A (pperm = 0.03) and SDI (pperm = 0.009). Associations were weak (Pearson’s rho = 0.23, 195 

0.30 and 0.17 for Occ2A, SDI, and PPL respectively). Spatial BOLD complexity (LZcs) was not 196 

significantly associated with PsiFx (pperm > 0.6, Figure 6A, Supplementary Table S3).  197 

 198 

 199 

 200 
Figure 6: Scatter plots and linear models describing the relation between spatial (A) and temporal (B) 201 

Lempel-Ziv entropy of dynamic BOLD activity and PPL. Y-axis values are partial residuals i.e., entropy 202 

values adjusted for age, sex, MR scanner and motion. Temporal BOLD complexity (LZct) was 203 

significantly, but weakly associated with both Occ2A and SDI despite not being significantly associated with 204 

PPL. 205 

Effect of Parcellation 206 

To evaluate PsiFx on brain entropy metrics using a common parcellation, all analyses were re-run using an 207 

atlas combining the Schaefer-100 (7 Yeo networks) and Tian-16 subcortical atlases43,44. Path-length 208 

distribution showed a weak positive association with all PsiFx at mean degrees 31 to 38. Meta-state 209 

complexity was weakly positively associated with Occ, but not PPL nor SDI. LEiDA-state Markov-rate 210 

was weakly negatively associated with all PsiFx and DCC distribution was weak-to-strongly associated 211 

with all PsiFx across most network edges. Sample Entropy was weak-to-moderately associated with PsiFx 212 

at scale 1 but no significant associations were observed at longer scales, though the trend of increased 213 

entropy at short scales and decreased entropy at long-scales was maintained. All other metrics were not 214 

significantly associated with PsiFx. See Table 1 for a summary and Supplementary Table S5 for detailed 215 

results.  216 
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Effect of Pre-processing Pipeline 217 

To explore moderating effects of pre-processing pipelines on PsiFx associations with brain entropy metrics, 218 

we considered six variations on the above Schaefer-100, Yeo-7, Tian-16 pipeline: 1) including global-signal 219 

regression, 2) removal of the low-pass filter (0.09 Hz), 3) applying a narrow bandpass filter (0.03-0.07 Hz), 220 

4) regressing 24 motion parameters, 5) omitting scrubbing, and 6) a stricter scrubbing threshold (z > 3 SDs, 221 

motion > 0.5mm). Some brain entropy metrics were relatively robust to pre-processing pipeline, i.e., 222 

showing significant associations with PsiFx across most pipelines: sample entropy (scale 1), dynamic 223 

conditional correlation entropy, meta-state complexity and path-length distribution. Some metrics were 224 

consistently not associated with PsiFx across pipelines: motif-connectivity distribution, I/S state 225 

distribution, LEiDA-state distribution and Intra-network synchrony. Some metrics were significantly 226 

associated with PsiFx for some pipelines and not others: temporal BOLD complexity (i.e., only significant 227 

with no-scrubbing and strict scrubbing) and Von Neuman Entropy (i.e., only significant with GSR and 228 

significant associated with SDI and Occ2A when the low-pass filter was removed). Two pre-processing 229 

pipelines modulating signal-filtering had substantial effects on results. First, removing the low-pass filter 230 

flipped the sign to negative for the association between PsiFx and dynamic conditional correlation entropy 231 

and sample entropy (scale 1). Second, a narrow-band filter (0.03-0.07 Hz) made non-significant all PsiFx 232 

associations with dynamic and dynamic-connectivity metrics. See Supplementary Table S8 for a summary 233 

and Supplementary Table S9 for a full detailing of pre-processing effects. 234 

Moderating Effect of Scanner 235 

To evaluate scanner effects on observed associations, we fit linear mixed models estimating the moderating 236 

effect of scanner. Of the three entropy metrics that had a significant association with PsiFx, we observed a 237 

significant moderating effect of scanner on the relation between PPL and entropy for path-length 238 

distribution over the range of thresholds at which we observe significant associations with PsiFx. The nature 239 

of this interaction was that for scanner A the effect was closer to zero than for scanner B. We also show a 240 

significant moderating effect of scanner for Sample Entropy scale 5 across many ROIs that are significantly 241 

associated with PsiFx. However, the observed effect is the same direction for scanner A and B, only 242 

numerically stronger for scanner A. We do not observe a significant moderating effect of scanner for DCC 243 

entropy, further supporting the robustness of this metric. For entropy metrics that were not associated with 244 

PsiFx in the main model, we observed moderating effects of scanner for I/S-state distribution, some 245 

window-lengths of motif-connectivity distribution, some ROIs of out-network connectivity, degree 246 

distribution, and some sample entropy scale 4 ROIs. See Supplementary Table S6 for full results. 247 

Correlation Between Whole-brain Entropy Quantifications 248 

We estimated the correlation between whole-brain entropy metrics to explore their association with one 249 

another across all included scans. Some pairs of metrics were both positively correlated and negatively 250 

correlated and some pairs were effectively not correlated with one another (Figure 7). After correction for 251 

multiple comparisons, five entropy quantification pairs were positively related (LZcs & LZct, LZcs & Von-252 

Neumann, Path-distribution & Degree-distribution, LEiDA state & Von-Neumann, Motif Connectivity 253 

Distribution-window100 & Von-Neumann) and four were negatively related (Path-distribution & LEiDA 254 

state, Path-distribution & Von-Neumann, Degree-distribution & LEiDA state, Degree-distribution & Von-255 
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Neumann). LZcs was significantly negatively associated with motion. See Supplementary Table S4 for 256 

pairwise correlation coefficients and p-values.  257 

 258 

 259 

Figure 7: Heatmap showing the correlations between whole-brain entropy metrics and motion. Colours 260 

represent the Pearson’s correlation coefficient. * represents pcorr < 0.05. I/S state, Integration/Segregation 261 

state distribution; MCD, Motif connectivity distribution (with either 100 or 15 second windows); LZcs, 262 

Spatial Lempel-Ziv complexity. LZct, Temporal Lempel-Ziv complexity.  263 
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Table 1: Summary of entropy quantification methods, previous findings, and findings reported within this 265 

manuscript. For the “Original findings” and “Our findings” columns, grey cells describe no association of 266 

effect, light grey refers to no reporting of acute effects on brain entropy, yellow describes marginal 267 

effects, and green statistically significant effects. For a more in-depth evaluation of our findings please 268 

see supplementary tables 1 and 2.  269 
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Discussion 270 

Overview 271 

Recent studies have reported acute psychedelic effects on functional brain entropy, but to date none of these 272 

metrics have been evaluated in an independent sample. In this study we evaluated 13 previously reported 273 

entropy metrics in a novel sample of 28 healthy participants scanned with BOLD fMRI before and several 274 

times after psilocybin with concomitant measurements of subjective drug intensity and plasma psilocin 275 

level. We observed statistically significant psilocybin effects that echoed previous reports for only two brain 276 

entropy metrics: path-length distribution, wherein we replicate increased entropy at previously reported 277 

thresholds; and sample entropy, wherein we replicate a previously observed increase in entropy at short 278 

scales and decrease at long scales. We observed a strong positive relation between psilocybin effects and 279 

brain entropy measured by Dynamic Conditional Correlation analyses that has not been previously reported. 280 

Two Lempel-Ziv complexity metrics showed some evidence for associations with psilocybin effects. For 8 281 

of 13 brain entropy metrics previously reported, we did not observe a significant association with psilocybin 282 

measures and we see limited correlation between entropy metrics. These mixed findings underscore the 283 

importance of corroborating outcomes in independent datasets. Although we observe some evidence 284 

supporting the entropic brain hypothesis, these variable findings underscore the broadness of this theory 285 

and the need to more clearly establish which brain entropy metrics of functional brain imaging signals are 286 

acutely affected by psychedelics. 287 

Path-length Distribution 288 

We report a significant positive association between the Shannon entropy of the distribution of path lengths 289 

across the whole brain as previously reported by Viol and colleagues 34 and all three psilocybin metrics 290 

evaluated: PPL, Occ2A, and SDI. We observed statistically significant associations at a range of correlation 291 

coefficient thresholds that produce graphs with a mean degree from 22 to 38, Viol and colleagues reported 292 

significant differences between conditions at thresholds producing mean degrees from 24 to 35. 293 

Characteristic path length is a description of the number of edges that must be traversed to get from any 294 

one brain region to another, a putative measure of capacity for information flow. Our results suggest that 295 

one of the effects of psilocybin on the brain can be described as a broadening of the histogram of path 296 

lengths across region-to-region connections in the brain. Notably, this does not imply that the average path 297 

length is shorter or longer, only that there is a wider distribution of these across the whole brain i.e., it is 298 

more equally likely that the path-length between any two nodes is 1, 2 or 3 instead of being more likely to 299 

be one of these. Our convergent results are encouraging considering that the previously reported dataset 300 

used a different drug (ayahuasca, which contains MAOIs as well as the psychedelic N,N-301 

dimethyltryptamine) and different imaging parameters, suggesting robustness of the metric. This 302 

association with PsiFx was relatively robust to pre-processing strategies, though did appear sensitive to 303 

scanning parameters between the two explored in this study. Thus, path-length entropy may be a useful 304 

candidate biomarker of neural psychedelic effects, though associations were weak-moderate and 305 

interpretation is not straightforward. We are not aware of other studies evaluating the entropy of path-length 306 

distribution so comparison to other drugs or psychiatric conditions are not yet possible and should be 307 

evaluated in future studies.  308 
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Dynamic Conditional Correlation Distribution 309 

We observed a statistically significant positive relation between psilocybin effects and Dynamic 310 

Conditional Correlation (DCC) Distribution for all within or between network relations except within the 311 

motor network. DCC distribution is a measure of the width of the distribution of instantaneous connectivity 312 

values for any region-region edge across each scan. The previous study found no change in DCC 313 

distribution at one-week and one-month post administration 36 and importantly did not evaluate acute effects 314 

during psilocybin. We observed moderate to strong correlations with psilocybin effects (i.e., Pearson's rho 315 

with PPL > 0.7 for three edges, all including DMN (DMN-DMN, DMN-Frontoparietal, DMN-Medial 316 

Frontal), and Pearson’s rho > 0.5 for 28/36 network edges). The strength of these associations is remarkable, 317 

perhaps as large as any previously reported fMRI effect of psychedelic action, suggesting that DCC 318 

distribution may be a strong candidate neural correlate of acute psychedelic effects and among the strongest 319 

correlations observed in pharmaco-fMRI. Our results suggest that psilocybin increases the variability of 320 

connectivity between regions across time across almost all region-region pairs, which are summarised into 321 

networks. Furthermore, this association was robust to most pre-processing strategies and was similar across 322 

the two scanning parameters applied in this study. As above, we are not aware of other pharmaco-fMRI 323 

studies evaluating DCC distribution. Notwithstanding, the sheer magnitude of the observed associations 324 

suggests DCC distribution may be a sensitive marker for acute psychedelic effects on the brain and so we 325 

encourage independent replication. 326 

Multi-scale Sample Entropy 327 

We observed a significant positive relation between psilocybin effects and scale-1 sample entropy (i.e., 328 

temporal resolution = 2-seconds) in seven out of 17 brain networks. Conversely, we observed a significant 329 

negative relation between scale 5 sample entropy (temporal resolution = 10-seconds) in 14 out of 17 330 

networks. This association at short-scale was somewhat robust to pre-processing pipelines and at all scales 331 

consistent across scanning parameters. Multi-scale sample entropy measures the irregularity of a signal 332 

over its entire length. Increased sample entropy in most networks at scale-1 and decreased sample entropy 333 

at scale-5 align in both cases with the original observation  29. Unfortunately, we were unable to align the 334 

previously reported network labels with available versions of the atlas; thus, it is hard to resolve the spatial 335 

overlap between studies. fMRI-measured multi-scale sample entropy has been shown to be increased in the 336 

default-mode, visual, motor and lateral-prefrontal networks following caffeine 40 and decreased at scale 1 337 

during sleep 37, although certain parameters used in their calculations were different to those employed here. 338 

As such, it is possible that the effects that we, and Lebedev and colleagues, observed may reflect differences 339 

in wakefulness and may thus be non-specific to psychedelic effects. Positive symptoms of schizophrenia 340 

have been positively associated with sample entropy at scales 1 and 2, and negatively associated  in certain 341 

brain regions at scales 3, 4, and 5  45. This is consistent with our observations and is also phenomenologically 342 

consistent, as the high-dose psychedelic state has some overlap with some positive symptoms of 343 

schizophrenia e.g., verisimilitude, alterations in visual perception (though psychedelics do not normally 344 

produce ‘true’ hallucinations, i.e., sensory appearances indistinguishable from reality, as are present in 345 

schizophrenia), and sense of self. We are aware of the problematic history of psychedelic 346 

‘psychotomimetic’ research and urge caution in overinterpretation of this apparent convergence 46. Our 347 

convergent results with Lebedev and colleagues are intriguing considering that the original paper reported 348 

effects following intravenous LSD administration whereas we administered psilocybin orally. Taken 349 
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together, divergent effects on sample entropy at short and long temporal resolutions may be a candidate 350 

biomarker for psychedelic effects, if they cannot be explained by, e.g., wakefulness state.  351 

Lempel-Ziv Complexity 352 

Intriguingly, Lempel-Ziv complexity of two measures (meta-state complexity and temporal BOLD 353 

complexity (LZct)) were significantly positively associated with Occ2A and SDI, but not PPL. LZct was 354 

significantly moderately associated with all PsiFx in the no-scrubbing and strict-scrubbing pre-processing 355 

pipelines, and meta-state complexity was significantly weak-moderately associated with at least one PsiFx 356 

in all but one pre-processing pipeline. The original study of meta-state complexity does not report a 357 

statistical analysis of intravenous LSD nor intravenous psilocybin effects, but the data are publicly available 358 

and do not support a significant effect of either drug 31. The original study of BOLD complexity reports an 359 

increase in spatial BOLD complexity following LSD, but not psilocybin and does not report any findings 360 

pertaining to temporal BOLD complexity. We speculate that the less significant relations with PPL reflect 361 

that PPL is non-linearly related to brain 5-HT2A receptor occupancy, which is ultimately responsible for 362 

the neural effects of psychedelics 2. Therefore, PPL may be a less precise metric of acute psychedelic effects 363 

on brain function. One MEG and four EEG studies have reported increased LZc following psychedelic 364 

administration 47–51, providing convergence for its utility as a marker of psychedelic effects, however one 365 

reports increases in LZct in the absence of subjective drug effects, indicating a potential epiphenomenon. 366 

Across previous studies analysing regional timeseries, there is inconsistency in the quantification of LZc in 367 

the temporal (LZct) and spatial (LZcs) domain. Our borderline statistically significant associations were 368 

observed for LZct only. It is our perspective that LZct is more sensible and should be used in future studies 369 

as it preserves region-specific temporal information, whereas LZcs is sensitive to arbitrary region order. 370 

Null Findings 371 

We did not observe a significant association between 8 of the 13 brain entropy metrics considered here 372 

(Table 1). Of these seven metrics, the original studies reported either increased entropy following 373 

psychedelic drug administration 19,27,28,35, no effect 30, or did not formally evaluate the effect of psychedelic 374 

drug administration 26,33 (Table 1, Supplementary Table S1). Our observed entropy estimates for 375 

hippocampal-ACC motif entropy are markedly different from those previously reported 28. We are 376 

concerned that the originally reported values are not mathematically possible, see the Supplementary Text 377 

and Supplementary Figure S3 for a detailed consideration. Although our null findings with respect to these 378 

metrics does not establish that they have no relation to acute psychedelic drug effects, they imply a smaller 379 

relation that limits their utility as biomarkers of acute psychedelic effects. The discrepancy between our 380 

observations and those reported previously underscores the need to replicate or corroborate findings in 381 

independent cohorts to validate initial reports. 382 

 383 

Our inability to replicate previous findings may be due to greater statistical power and different statistical 384 

models i.e., linear regression with PsiFx. Incongruence may also be attributed to differences in data 385 

collection. All previous studies reporting acute effects on brain entropy administered either 2mg of 386 

intravenous psilocybin, 75µg of intravenous LSD or 96-160mg of oral DMT with harmine, yet we 387 

administer 0.2-0.3mg/kg oral psilocybin, though the acute effect appear similar, we cannot rule out 388 

differences due to drug or route of administration. However, if entropic brain effects are not consistent 389 
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across drugs this would indicate that these metrics are not useful neural correlates of the psychedelic 390 

experience. We encourage all future fMRI studies evaluating psychedelic effects on brain function to 391 

measure subjective drug intensity at time of scanning and to collect plasma samples for quantification of 392 

plasma drug levels as described in the psychedelic fMRI consensus paper 16. 393 

Inter-correlation Between Entropy Metrics 394 

Despite the large set of brain entropy metrics that have been reported previously, no studies have considered 395 

whether these measures are inter-correlated. We observed positive associations between path-length and 396 

degree distribution, which are based on the same graph-theory representation of connectivity, and between 397 

LZcs and LZct which are conceptually very much related. Notably, we observed four pairs of brain entropy 398 

metrics that were significantly negatively correlated. This highlights the importance of specificity in 399 

describing “brain entropy”.  Many of these metrics represent distinctly different constructs, their individual 400 

meaning and collective representation of psychedelic effects is muddied by superficially considering them 401 

all metrics of “brain entropy”. Future studies should be cognisant of this variable relation in considering 402 

whether findings are consistent or convergent across studies.   403 

Alternative Neuroimaging Techniques 404 

Although we focus here on fMRI quantifications of entropy, it is worth noting that psychedelic effects on 405 

brain entropy, specifically LZc, have been applied to five original MEG and EEG datasets, over eight papers 406 
47–54. The entropy measures applied in these studies leverage the high temporal sampling rate that is not 407 

clearly applicable to temporally slower fMRI and were not evaluated here. Further, the methods capture 408 

different aspects of physiological response to psychedelics. Future work evaluating psychedelic effects on 409 

brain entropy using multimodal neuroimaging and evaluating relations between alternative quantifications 410 

of brain-entropy will contribute meaningfully to the field. 411 

Limitations 412 

Our study is not without its limitations. Brain imaging data were acquired on two different MRI scanners 413 

with different sequences (e.g., different TRs) requiring temporal downsampling of some data to match the 414 

other. However, each participant was scanned on only one scanner, enabling us to map within-subject 415 

changes onto psilocybin effects independent of scanner differences. Our study did not include a placebo 416 

condition, but we did acquire a pre-drug scan with which we estimated brain entropy metrics in the absence 417 

of psilocybin effects. Due to the large within-subject variability in fMRI outcomes in participants scanned 418 

several days apart, pre-drug vs post-drug scans performed on the same day may be superior to placebo scans 419 

performed weeks apart for evaluating drug effects because it limits this within-subject variance component 420 
55. PPL and SDI were associated with increased motion in the scanner, see Supplementary Figure S4; 421 

although we included an estimate of motion as a covariate in our models, employed scrubbing, motion 422 

correction and denoising strategies, and show that motion was not positively associated with any whole-423 

brain entropy metrics, we cannot rule out that motion confounds our reported effects. It has been reported 424 

in many groups that head motion is increased following psychedelic drug administration so this is not a 425 

limitation unique to our data 48. Most fMRI scans were 10 minutes long, though some were only five. This 426 

may not be long enough to derive stable estimates of brain entropy metrics, e.g., previous studies have 427 
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recommended >13 minutes for single-echo fMRI 56. Future studies, e.g., using openly available data with 428 

longer scan durations, could inform recommended scan durations to establish stable brain entropy estimates 429 

or other methods that improve signal quality, e.g., multi-echo fMRI 57. Approximately half of the scans 430 

analysed herein utilised a multi-band acceleration protocol that may negatively affect signal-to-noise 58, 431 

though these effects may be less pronounced for task-free imaging as performed here 59. We corrected for 432 

estimated physiological noise using aCompCor but did not statistically model physiological effects such as 433 

changes in respiration, heart rate, or vasoconstriction which are affected by psilocybin and may have 434 

confounded our findings 60,61. Our statistical models assume a close temporal relation between brain entropy 435 

and PsiFx (measured adjacent to scans), thus, if changes in brain entropy occur after PsiFx, they would not 436 

be well captured. 437 

Pre-processing 438 

A prevailing challenge in fMRI research is how best to handle the enormous flexibility in data pre-439 

processing 62. Here we explored this space by evaluating brain entropy metrics across a set of pre-processing 440 

strategies. Most of our results were robust to using the original and common atlases, indicating robustness 441 

to parcellation choice. We also considered six different denoising strategies. The associations with PsiFx 442 

of some metrics (DCC distribution, Sample Entropy (scale 1), Meta-state complexity and Path-length 443 

distribution) were robust to most pre-processing strategies, whereas some were sensitive to pre-processing 444 

strategy, e.g., temporal BOLD complexity (LZct). For those metrics which remained significantly 445 

associated with PsiFx across pipelines, the strength of some associations varied across pipelines. Notably, 446 

the removing the low-pass filter and applying a relatively narrow bandpass filter both substantively affected 447 

the statistical relations between PsiFx and brain entropy metrics. This is consistent with previous reports 448 

that pre-processing decisions can influence observed effects on fMRI outcome measures62, which 449 

underscores the need for future studies in large, normative datasets probing brain entropy metric 450 

characteristics in the context of this pre-processing multiverse. This is all the more relevant to advance their 451 

predictive or prognostic utility in clinical cohorts.  452 

 453 

 We provide a public MATLAB-toolbox, the Copenhagen Brain Entropy toolbox (CopBET 454 

https://github.com/anders-s-olsen/CopBET), containing functions to evaluate each of the entropy metrics 455 

evaluated here, allowing future studies to determine how these entropy metrics are affected by the multitude 456 

of possible fMRI pre-processing pipelines. For the purposes of this manuscript, we show that our pre-457 

processing pipeline was very similar to all previously applied in this space (See Supplementary Table S7) 458 

and thus believe that our results are directly comparable with previously reported findings. We have shown 459 

that one of our findings was more strongly supported using a multi-band sequence (path-length distribution) 460 

and another when not using multi-band (Long-scale Sample Entropy). Further work may therefore also 461 

wish to apply CopBET to data collected using a range of scanning sequences to evaluate the effect of 462 

scanning parameters such as multi-band acceleration or multi-echo recording. However, given the 463 

enormous number of possible parameter choices and the unsupervised nature of the problem, interpretation 464 

of results from such an analysis remains a challenge 62. 465 
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Conclusion 466 

In conclusion, we observed acute effects of psilocybin on 3 of 13 previously reported brain entropy metrics. 467 

We report novel evidence for a strong association effect on DCC distribution entropy, implicating it as a 468 

potential biomarker of acute psychedelic effects. We also present convergent evidence for weak 469 

associations with increases in path-length distribution entropy. In addition, two Lempel Ziv complexity 470 

measures showed marginal associations with psilocybin measures. We did not observe significant 471 

associations for 8 of 13 metrics evaluated, suggesting nuanced support for the popular theory that 472 

psychedelics acutely increase brain entropy. Our observations implicate potential brain biomarkers of acute 473 

psychedelic effects and emphasise the need for both transparency in reporting brain entropy metrics and 474 

corroborating previously reported findings in independent datasets.  475 
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Methods 476 

Twenty-eight healthy volunteers participated in the study (10 female, mean age ± SD : 33 ± 8) and were 477 

recruited from a database of individuals interested in participating in a study involving psychedelics. A 478 

detailed description of the study design can be found in the Supplementary Text and has been reported 479 

previously 64. The study protocol was approved by the ethics committee of the capital region of Copenhagen 480 

(H-16026898) and the Danish Medicines Agency (EudraCT no.: 2016-004000-61). The study was 481 

registered at clincaltrials.gov (NCT03289949). Data presented here were collected between 2018 and 2021. 482 

A subset of the functional brain imaging data presented here has been included in different studies reported 483 

previously 64,65. Details of recruitment, procedures during the psilocybin session, ethical approvals, MRI 484 

acquisition and quality control, are described in the Supplementary Text. Analyses were pre-registered on 485 

the 3rd of August 2022 (https://aspredicted.org//bw8y7.pdf). Some analyses that met our inclusion criteria 486 

(i.e., fMRI studies investigating entropy changes pertaining to psychedelics) were identified after pre-487 

registration and were added. No statistical methods were used to pre-determine sample sizes but our sample 488 

sizes are larger than all previous publications (see Figure 1). 489 

Data Collection 490 

After obtaining written informed consent and screening for neurological, somatic and psychiatric illness, 491 

participants completed a single-blind, cross-over study design wherein participants received a single 0.2-492 

0.3 mg/kg dose of psilocybin (mean ± SD dose: 19.7 ± 3.6 mg, administered in units of 3 mg capsules) or 493 

20 mg of ketanserin. Data from ketanserin scans are outside the scope of the current evaluation and not 494 

presented here. After drug administration, participants completed MRI scan sessions including resting-state 495 

fMRI (see Supplementary Text for details) approximately 40, 80, 130, and 300 minutes after administration. 496 

Following each scan, participants were asked, "On a scale from 0 to 10 how intense is your experience right 497 

now" to measure SDI and a venous blood-draw used to quantify PPL (see Supplementary Text for details). 498 

After each resting-state fMRI scan, participants were asked if they had fallen asleep (no participants 499 

reported doing so). Occ2A, i.e., occupancy of psilocybin at the 5-HT2A receptor is closely related to PPL 500 

and SDI 2. Here we applied the previously reported parameter estimates relating PPL to occupancy based 501 

on the Hill-Langmuir equation: 𝑂𝑐𝑐2𝐴  =  
𝑂𝑐𝑐𝑚𝑎𝑥 × 𝐶𝑝

𝐸𝐶50 +  𝐶𝑝
 where Occmax refers to the maximum measurable 502 

occupancy, Cp refers to the measured concentration of the ligand in plasma (i.e., PPL), and EC50 refers to 503 

the concentration in plasma at which occupancy is equal to 50% of Occmax (fixed parameters used to 504 

compute Occ2A: EC50 = 1.95 µg/L and Occmax = 76.6%). 505 

Pre-processing 506 

Pre-processing and denoising was uniform across all entropy metrics despite differences in the pipelines of 507 

the original publications. Our pipeline included slice-timing correction (where applicable), unwarping, 508 

realignment, co-registration of structural scans to functional data, segmentation, normalisation, and 509 

smoothing. Two MR-scanners were used to acquire the data, and some functional data were temporally 510 

downsampled so that the sampling frequency was consistent across scan sessions. Denoising in CONN 66 511 

included linear detrending, aCompCor 67, 12-motion (three translations, three rotations and their first 512 

derivatives) and artefact-flagged volume regression (z > 4 SDs or motion > 2 mm using ART), band-pass 513 
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filtering (0.008-0.09 Hz) and parcellation. Cerebellar ROIs were removed from included atlases as they 514 

were not consistently within the field of view. See Supplementary Text for more details. 515 

Entropy of Static Connectivity 516 

Four studies evaluated the entropy of static connectivity given by the matrix of Pearson correlation 517 

coefficients, R, computed from 𝑁-regional time-series data 27,33–35, 𝑁 being the number of ROIs in the atlas 518 

used by the study. 519 

Out-network Connectivity Distribution 520 

Following a graph-theory framework, ROIs from the 200-region Craddock-atlas 68 were partitioned into 521 

“networks” using the Louvain modularity algorithm applied to the average connectivity matrix across scan 522 

sessions 69. The “Out-network Connectivity", referred to as "diversity coefficient" in the original publication 523 

and “Brain Connectivity Toolbox” 27,70, of an ROI was calculated for each scan session as the Shannon 524 

entropy of the distribution of connectivity estimates between a given ROI and the set of ROIs assigned to 525 

a different network. 526 

Degree Distribution 527 

Degree refers to the number of non-zero elements in any given row of a thresholded matrix. ROI-specific 528 

degrees are computed based on R, the Pearson correlation matrix between ROIs, with 𝑁=105 using the 529 

Harvard-Oxford-105 atlas 71. Both this analysis and Path-length distribution use the absolute correlation 530 

values. The thresholding for this analysis occurred in two steps. In the first step, any correlation for which 531 

the corresponding p-value was above 0.05 was set to 0. In the second step the goal is to reach a pre-specified 532 

mean degree across rows. In order to achieve this, a threshold below which all absolute values are set to 0 533 

is gradually increased until the mean number of non-zero elements is at the desired level. Here we applied 534 

a scan-specific threshold that produced a mean degree of 27 because this was the threshold that produced 535 

the largest effect in the original publication 35. This means that each scan may have a different absolute 536 

threshold value, but identical mean degree. The final entropy quantification is simply the Shannon entropy 537 

of the distribution of degrees across ROIs. We also calculated entropy for mean degrees of 1 up to the point 538 

at which for any given scan session an increase in absolute threshold did not produce an increase in mean 539 

degree, i.e., 48. This also applies to the path-length entropy described below.  540 

Path-length Distribution 541 

Again using absolute correlation values, the matrix was thresholded using only the mean-degree criteria 542 

and not the p-value threshold. The matrix was then binarised, setting all non-zero elements to 1. The 543 

"shortest path length" was then computed as the fewest edges one must traverse to go from one node to 544 

another. The Shannon entropy of the distribution of path lengths from each node to all other nodes was then 545 

calculated 34. Path-length distribution was evaluated for correlation coefficient thresholds up to a mean 546 

degree of 53. 547 
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Von Neumann Entropy 548 

Entropy of the Pearson correlation matrix, R, derived for the Harvard-Oxford-105 atlas, was calculated 549 

through the von Neumann entropy: S(ρ) = − ∑ 𝜆𝑖 𝑙𝑜𝑔 𝜆𝑖,𝑁
𝑖 = 1  where 𝜆 are the eigenvalues of the scaled 550 

correlation matrix ρ=R/N. The von Neumann entropy may also be defined as S(ρ) = -tr(ρlogρ), where log 551 

represents the matrix logarithm 33.  552 

Entropy of Dynamic Connectivity 553 

Intra-network Synchrony Distribution 554 

Nine brain networks were defined according to a previous study 72: auditory, dorsal attention, default mode, 555 

left and right frontoparietal, motor, salience, visual 1 and visual 2. For a given network, for a given time 556 

point, the variance across voxels within the network was evaluated. The Shannon entropy was then 557 

calculated on the histogram of the variance estimates over time 19. 558 

Motif-connectivity Distribution 559 

Dynamic functional brain connectivity was evaluated in four regions (10mm diameter spheres) located at 560 

bilateral hippocampi, MNI coordinates: right: (26, -21, -16), left: (-34, -22, -16), and anterior cingulate 561 

cortices, right: (4, 35, 18), left: (-2, 23 ,28) using a non-overlapping sliding window approach with varying 562 

window lengths (15-150s). In each window, the partial correlation coefficient and corresponding p-value 563 

was calculated for every region pair, controlling for the remaining regions and the motion framewise 564 

displacement time-series. These time-series were standardised before windowing. The 4 x 4 partial 565 

correlation matrix was binarised for every window, according to a corrected significance threshold 566 

p=0.0083 (i.e., 0.05/6, where 6 is the number of region pairs). A probability distribution of the frequency 567 

of each of the 64 possible graph structures was established and the Shannon entropy was calculated 28. 568 

LEiDA-state Markov-rate 569 

Notably, this entropy metric was not applied to evaluate psychedelic effects in the original paper. Rather, 570 

the authors provided a computational framework wherein parameters were learned by optimising this 571 

entropy measure. For each scan session, Leading Eigenvector Dynamics Analysis (LEiDA) 73 was applied 572 

to the time-series of 90 AAL atlas regions 74. The phase series was computed using the Hilbert transform 573 

and, for each time point, a phase coherence matrix was estimated based on the cosine of the difference 574 

between pairwise instantaneous phases. The phase coherence matrices were decomposed using the 575 

eigenvalue decomposition and the first eigenvector was retained for every time point. The set of 576 

eigenvectors was clustered using K-means with K = 3 states. Subsequently, the transition probability matrix 577 

was computed for each scan session. The entropy rate of the transition matrix, 𝑃(𝑖, 𝑗), for each state, i, was 578 

calculated as 𝑆𝑖 =  −𝑝(𝑖) ∑ 𝑃(𝑖, 𝑗)𝑙𝑜𝑔𝑃(𝑖, 𝑗).𝐾
𝑗=1 where, 𝑝 is the leading eigenvector of 𝑃. The final entropy 579 

measure is given as 𝑆 = ∑ 𝑆𝑖 /𝑙𝑜𝑔2(𝐾)𝐾
𝑗=1  26. 580 
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Dynamic Conditional Correlation Distribution 581 

Regional time-series were evaluated for each of the regions described in the Shen 268 region atlas 75. 582 

Windowless framewise correlation coefficients were calculated for all edges using the Dynamic 583 

Conditional Correlation (DCC) toolbox 76. Subsequently, the probability distribution over each ROI-to-ROI 584 

DCC time-series was established, and the Shannon entropy was calculated. Each ROI was assigned to one 585 

of eight networks: default mode, fronto-parietal, medial-frontal, motor, subcortical-cerebellar, visual 586 

association, visual 1, and visual 2. Each ROI-to-ROI pair was assigned to its respective network-to-network 587 

association (e.g., motor-to-motor, default mode-to-motor) and the mean entropy of each network-to-588 

network association was calculated. Although the original publication applies bin-width correction, they do 589 

not report an effect of bin width and we report findings using MATLAB’s histcounts function, which 590 

automatically calculates bin-width 36. Thus, we did not implement bin-width correction. 591 

Meta-state Complexity 592 

Regional time-series were evaluated for each of the regions described in the Lausanne 463 region atlas 77. 593 

BOLD time-series across all scan sessions were clustered using K-means into K = 4 states using the Pearson 594 

correlation distance metric. The clustering procedure was repeated 200 times with random initialisations 595 

and the best repeat in terms of K-means loss was extracted. The four states were grouped into two meta-596 

states because the clustering procedure typically produces sign-symmetric states. Each volume was 597 

assigned to meta-state 0 or 1 and the Lempel-Ziv complexity (LZ76 exhaustive algorithm) of this binary 598 

sequence was calculated 31.  599 

Integration/Segregation-state Distribution 600 

Regional time-series were evaluated for each region described in the Schaefer 200 region atlas 44, 601 

augmented with 32 subcortical regions from the Tian atlas 43. A sliding-window correlation analysis was 602 

performed using a window defined by convolving a rectangular window of size 44 seconds with a temporal 603 

Gaussian kernel (FWHM = 3s). The correlation matrix was established for each window (stride of 1), and 604 

the Louvain modularity algorithm 69 was applied to estimate the module degree z-score and participation 605 

coefficient for each region. The Louvain modularity algorithm was repeated 100 times to ensure an optimal 606 

assignment. K-means clustering with K = 2 states was applied to a cartographic profile, i.e., a two-607 

dimensional unnormalised histogram of these measures, using the correlation distance and 500 replications. 608 

The Shannon entropy was computed on the probability distribution of state occurrences 30. 609 

Entropy of Regional Dynamics 610 

Multi-scale Sample Entropy 611 

Networks were defined using the Yeo 17-network atlas 78. Sample entropy is defined as the negative 612 

logarithm of the conditional probability that if two vectors with length 𝑚 (set to 2) are dissimilar below a 613 

threshold distance 𝑟 (set as 0.3), then vector pairs with length 𝑚 + 1 will also have distance below the 614 

threshold 21. Scales 1-5 were evaluated for each network, meaning that each time-series was split into non-615 

overlapping windows of length (scale) 𝑠 volumes and the means of each window were concatenated to form 616 

a condensed time-series upon which sample entropy was calculated 29. 617 
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BOLD Complexity 618 

Regional time-series were evaluated for each of the regions described in the Schaefer 1000 region atlas 44. 619 

BOLD time-series for each ROI were first Hilbert-transformed. The amplitude of the Hilbert series was 620 

then binarised around the mean amplitude for that region, i.e., assigned as “1” if greater than the mean and 621 

“0” if less. These binarised time-series were combined into an 𝑇 × 𝑁 matrix, where 𝑁 = 1000 is the 622 

number of regions and 𝑇 and is the number of time points.This matrix was collapsed into a single vector to 623 

compute 1) the Lempel-Ziv complexity over time (LZct, LZ78 algorithm) wherein regional time-series 624 

were concatenated or 2) Lempel-Ziv complexity over space (LZcs) wherein time-adjacent “region series” 625 

were concatenated. LZct represents a calculation of the temporal entropy of each ROI, whereas LZcs 626 

represents a calculation of the spatial entropy at each timepoint. The original publication 32 reported only 627 

LZcs, but LZct is also described in 47 whom Varley and colleagues reference as the source of their methods. 628 

Statistical Model 629 

Effects of psilocybin on brain entropy metrics were estimated using a linear mixed effects model with 630 

relevant R packages, i.e., predictmeans (v1.0.6), lme4 (v1.1.30), nlme (v3.1.157), lmerTest (v3.1.3) and 631 

LMMstar (v0.7.6). We regressed each metric against each of the three measures (PPL, SDI, or Occ2A) 632 

separately with a subject-specific random intercept and adjusting for motion, age, sex, and scanner. A test 633 

statistic for the association between metric and measure was obtained using the Wald statistic. To ensure 634 

adequate control of the family-wise error rate (FWER) across regions within each of the 13 metrics, (e.g., 635 

17 networks for one time scale of multi-scale sample entropy), we calculate pFWER adjusted using the maxT 636 

test method 42 in a permutation framework similar to 79, employing 10000 permutations. As such, if 637 

observed data superseded all permutations, the p-value is reported as p < 0.0001. “Motion” reflects the 638 

framewise displacement computed using the Artifact Detection Toolbox (ART) (see Supplementary Text) 639 

and “scanner” controls for MR scanner, of which there were two. We do not adjust p-values across metrics, 640 

nor across SDI, PPL and Occ2A; unadjusted p-values are reported for non-regional metrics as pperm. We 641 

defined findings as statistically significant if they were associated with all three psilocybin effects, SDI, 642 

PPL and Occ2A (collectively summarised “PsiFx”) at pperm < 0.05 for non-regional metrics or pFWER < 0.05 643 

for regional metrics. Effect sizes are reported as Pearson’s correlation coefficient between the partial 644 

residuals of the entropy metrics (adjusted for covariates using the mixed-model described above) and each 645 

of PsiFx. The strength of Pearson’s correlation coefficients for significant associations are described as 646 

“weak” (≤0.3), “moderate” (>0.3 and ≤0.6), or “strong” (>0.6) as previously defined 80. 647 

 648 

Moderating Effect of Scanner 649 

Our data were collected on one of two MRI scanners. In order to investigate whether scanner choice had an 650 

impact on the estimated relation between PPL and entropy moderating effects of scanner were explored in 651 

separate models that included the scanner-x-PPL interaction as an additional covariate. 652 

Correlation Between Metrics 653 

Simple Pearson correlation coefficients were calculated between each whole-brain entropy metric pair as 654 

well as with motion. Of the two graph theory metrics requiring thresholding, the threshold producing a 655 
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mean degree of 27 was used. For the motif-connectivity distribution, 15 and 100 second windows were 656 

selected to represent fast and slow dynamics, respectively. P-values were adjusted using Bonferroni 657 

correction 81. All scans remaining after pre-processing were used in these analyses. 658 

Effect of Parcellation 659 

To explore parcellation effects on outcomes, all entropy metrics were evaluated using the Schaefer 100 660 

region atlas with 16 subcortical regions from the Tian atlas 43,44. For metrics using network definitions, the 661 

Yeo 7-network atlas was applied as a common atlas. 662 

Effect of Pre-processing Pipelines 663 

To explore the effect of pre-processing decisions on the associations between PsiFx and brain entropy 664 

metrics, analyses were repeated for six additional pre-processing pipelines. Each pre-processing pipeline 665 

was run on the data parcellated as described in the section “Effect of parcellation” i.e., 116 ROIs assigned 666 

to seven networks. Each pipeline changed one variable from the “reference” pipeline. These were as 667 

follows: 1) adding global signal regression, 2) removing the low-pass 0.09 Hz filter (i.e., not removing 668 

high-frequency signal), 3) expanding the 12-motion regressors to include squares of the derivatives (i.e., 669 

Volterra expansion), 4) not regressing out flagged volumes 5) regressing flagged volumes with a stricter 670 

threshold (z >3 or motion>0.5mm), (6) applying a narrower bandpass filter (0.03-0.07 Hz). 671 

Code and Data Availability 672 

We shared relevant analysis scripts with original authors, hoping to ensure as much as possible that our 673 

computations aligned with original reports; we are thankful for the feedback we received. All functions 674 

used to derive entropy estimates from pre-processed data have been compiled into the "Copenhagen Brain 675 

Entropy Toolbox" (CopBET), a Matlab-based toolbox that can be found here: https://github.com/anders-s-676 

olsen/CopBET. The permutation testing code is also available here. Code for other statistical analyses and 677 

figures can be made available upon request. The data that support the findings of this study are available 678 

from the corresponding author upon request to the CIMBI database 82. 679 
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Entropy Original dataset Original findings Our findings (original atlases) Our findings (common atlas)

Out-network connectivity  IV Psi Region-specific effects Not associated with PsiFx Not associated with PsiFx

Degree distribution Oral Aya Increased Not associated with PsiFx Not associated with PsiFx

Path-length distribution Oral Aya Increased Weak-moderate associa$on with PsiFx† Weak-moderate associa$on with PsiFx‡

Von Neumann Entropy Oral Aya Numerically increased Not associated with PsiFx Not associated with PsiFx

Intra-network synchrony  IV Psi Increased (some networks) Not associated with PsiFx Not associated with PsiFx

Motif-connectivity distribution  IV Psi Increased Not associated with PsiFx Not atlas dependent

Meta-state complexity IV Psi & IV LSD No change Weak association with SDI and Occ but not PPL Weak association with Occ but not SDI or PPL

I/S state distribution IV LSD No change Not associated with PsiFx Not associated with PsiFx

LEiDA state Markov Rate IV LSD Not reported Not associated with PsiFx Weak negative association with all PsiFx

Edge-wise DCC distribution Oral Psi* No persisting change
Moderate-strong association with all PsiFx all 

networks except within motor cortex

Weak-strong association with all PsiFx in most 

networks

Multi-scale sample entropy IV LSD
Increased at scales 1 2 and 3.      

Decreased at scale 5

Weak-moderate association with all PsiFx in several 

networks. Positive at scale 1, negative at scale 5

Weak-moderate association with all PsiFx in 

several networks. Positive at scale 1

BOLD complexity (spatial) IV Psi & IV LSD
Increased (LSD)                                                 

No change (psilocybin)
Not associated with PsiFx Not associated with PsiFx

BOLD complexity (temporal) IV Psi & IV LSD Not reported Weak association with SDI and Occ but not PPL Not associated with PsiFx

‡ at thresholds producing a mean degree of 31-38

Dynamic Activity

Static Connectivity

Dynamic Connectivity

*Investigates persisting effects at 1 week and 1 month post-psilocybin administration

†  at thresholds producing a mean degree of 22-38
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