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Abstract 
Atypical femur fractures (AFF) represent a very rare type of fracture that can be difficult to 

discriminate radiologically from normal femur fractures (NFF). AFFs are associated with 

drugs that are administered to prevent osteoporosis-related fragility fractures, which are 

highly prevalent in the elderly population. Given that these fractures are rare and the 

radiologic changes are subtle currently only 7% of AFFs are correctly identified, which 

hinders adequate treatment for most patients with AFF. Deep learning models could be 

trained to classify automatically a fracture as AFF or NFF, thereby assisting radiologists in 

detecting these rare fractures. Historically, for this classification task, only imaging data have 

been used, using convolutional neural networks (CNN) or vision transformers applied to 

radiographs. However, to mimic situations in which all available data are used to arrive at a 

diagnosis, we adopted an approach of deep learning that is based on the integration of image 

data and tabular data (from electronic health records) for 159 patients with AFF and 914 

patients with NFF. We hypothesized that the combinatorial data, compiled from all the 

radiology departments of 72 hospitals in Sweden and the Swedish National Patient Register, 

would improve classification accuracy, as compared to using only one modality. At the 

patient level, the area under the ROC curve (AUC) increased from 0.966 to 0.987 when using 

the integrated set of imaging data and seven pre-selected variables, as compared to only using 

imaging data. More importantly, the sensitivity increased from 0.796 to 0.903. We found a 

greater impact of data fusion when only a randomly selected subset of available images was 

used to make the image and tabular data more balanced for each patient. The AUC then 

increased from 0.949 to 0.984, and the sensitivity increased from 0.727 to 0.849. 

These AUC improvements are not large, mainly because of the already excellent performance 

of the CNN (AUC of 0.966) when only images are used. However, the improvement is 
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clinically highly relevant considering the importance of accuracy in medical diagnostics. We 

expect an even greater effect when imaging data from a clinical workflow, comprising a more 

diverse set of diagnostic images, are used.
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1 Introduction 
Orthopedic trauma to the extremities is the most-common reason for visits to emergency 

departments worldwide (Welfare, 2020) (Kraaijvanger et al., 2015), and together with other 

musculoskeletal conditions such as back pain and osteoarthritis, fractures are the major cause 

for years lived with disability globally (Collaborators, 2021). While most musculoskeletal 

conditions can be treated as non-urgent, acute fractures require urgent attention to be 

diagnosed correctly, followed by acute treatment to decrease the risks for short- and long-

term morbidity and mortality. According to the Global Burden of Diseases, Injuries, and Risk 

Factors Study 2019, there were 178 million new fractures worldwide during 2019, which was 

an increase of 33% compared to 1990 (Collaborators, 2021). This increase in fractures likely 

corresponds to a similar increase in the number of radiologic examinations performed, which 

is the main modality used in fracture diagnostics. Only approximately 10% of radiographs 

(Gleadhill et al., 1987) permit the detection of a fracture, which means that in order to detect 

the 178 million fractures, theoretically, radiographs from 1.78 billion examinations would 

need to be reviewed annually (Liu et al., 2022). Reviewing and reporting this high volume of 

diagnostic images around the clock would create a situation with a high risk for diagnostic 

error (Pinto et al., 2016), which ranges from 4% to around 30% depending on the study 

sample (Bruno et al., 2015). These errors are the sixth most-common reason for malpractice 

claims in the US, even though radiologists make up less than 5% of physicians in the US 

(Whang et al., 2013). To detect rare disease patterns, such as the Atypical Femur Fractures 

(AFF) described here, through analyzing this bulk information is challenging, as disease 

prevalence has a profound impact on diagnostic accuracy, especially with respect to 

sensitivity (Willis, 2012). 

 

AFF represent a very rare disease pattern among the already rare stress fractures of the femur. 

Much attention has been focused on these fractures because of the paradoxical causal 

relationship between the most commonly used drugs to treat osteoporosis (bisphosphonates) 

and a dramatically increased risk for AFF (Schilcher et al., 2011) (Black et al., 2020; Dell et 

al., 2012; Meier et al., 2012; Schilcher et al., 2015). With a yearly incidence of 1.1–2.2 AFF 

per 100,000 inhabitants in Sweden (Bogl et al., 2022), AFF comprise only about 4 % of all 

fractures of the femoral shaft and less than 0.25% of all fractures of the femur. Since AFF are 

so rare, clinicians might overlook this fracture pattern among the abundance of other fractures 

(Harborne et al., 2016; Zdolsek et al., 2021). From the radiologic perspective, this implies 

that every musculoskeletal radiologist might see <1 AFF case every year. Even if the 

radiologic stress fracture pattern of AFF is well-defined by the American Society for Bone 

and Mineral Research (Shane et al., 2014; Shane et al., 2010) (Figure 1), it seems likely that 

the yearly incidence is too low to maintain alertness to this condition in the clinical working 

situation, motivating the use of automated alerting systems (Zdolsek et al., 2021). 
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Figure 1. Atypical femur fracture in the diaphysis of a right femur (A). At higher 

magnification (B), the transverse fracture line (green arrow) and focal periosteal thickening 

defining the stress fracture pattern can be clearly discriminated from a normal spiral fracture 

(C). 

 

A correct diagnosis is a prerequisite for successful treatment of any disease. In patients with 

AFF who need acute surgical treatment of their fracture, a correct diagnosis based on the first 

diagnostic radiographs is important because the decision regarding how to treat the fracture 

will be made within hours of the radiographs being acquired. A correct choice of implant for 

fracture fixation in AFF can minimize surgical complications (Bogl et al., 2020), and 

screening of the contralateral side and the timely cessation of bisphosphonate treatment can 

prevent the progression or development of an incomplete AFF on the contralateral side 

(Shane et al., 2014; Starr et al., 2018).  

1.1 Related work on data fusion 
Physicians use several sources of information, such as medical images and healthcare 

records, to make a diagnosis (Huang et al., 2020) because combining different types of data 

can increase diagnostic accuracy. In machine learning, the fusion of medical images and 

tabular data aims to replicate medical differential diagnostics using different sources of 

information. The idea of multi-modality fusion is that the different data types contribute with 

different independent strands of information to the AI model (Huang et al., 2020) (Acosta et 

al., 2022; Kline et al., 2022). Somewhat surprisingly, deep learning research on medical 

imaging has so far focused on imaging data, and largely ignored the wealth of clinical 

information available in electronic healthcare records. Currently, three different fusion 

techniques are used: (1) late fusion (e.g., probability fusion; PF); (2) joint fusion (e.g., feature 

fusion; FF); and (3) early fusion (e.g., learned feature fusion; LFF) (Huang et al., 2020). Late 

fusion (decision-level fusion) refers to fusing the predictions from multiple models, typically 

accomplished by averaging or majority voting. Probability fusion combines the predictions 

from an image-only network and a tabular data-only network. Joint fusion (intermediate 

fusion) also combines the learned features from different modalities into a single model, 

although the networks generating the features are not updated during the fusion training. 

Early fusion (feature-level fusion) combines feature vectors from imaging and tabular data 

into a single feature vector prior to migrating it to a dense network; the networks generating 
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the two feature vectors are also trained during the fusion training. According to the literature, 

multimodal models generally outperform the corresponding single-modality models for the 

same tasks, although the optimal fusion technique depends on the specific application (Huang 

et al., 2020).  

 

Previous work on multimodal machine learning for fractures is very limited. Yenidogan et al. 

have used a multimodal model to improve mortality predictions for patients with hip fractures 

(Yenidogan et al., 2021). Soenksen et al. (Soenksen et al., 2022) have proposed a general 

framework for multimodal AI for healthcare, and applied it to several different applications, 

such as thorax-level fractures. Recently, we have shown that a convolutional neural network 

(CNN) could classify AFF and normal femoral shaft fractures (NFF) with an AUC of 0.94 

(Zdolsek et al., 2021). Here, we extend this work in two ways. First, the dataset is increased 

to cover 1,073 patients (from 373 previously). Second, we combine imaging and tabular data 

through a data fusion process to improve further the prediction accuracy. 

2 Data 
This work was performed using data collected from 1,124 patients in Sweden who suffered a 

femur fracture. The dataset was compiled from all the radiology departments of 72 hospitals 

in Sweden during 2011, as part of an epidemiologic research project (Schilcher et al., 2014, 

2015). Images were either transferred on compact discs or transmitted electronically through 

an existing data transfer infrastructure provided by a picture archiving and communications 

systems company (Sectra AB, Sweden). After transfer, all the images were manually re-

reviewed (JS) and classified as AFF (N= 172) or other fracture types (Figure 2). Among all 

the other fractures, NFF were identified. The diagnostic criteria for AFF were based on the 

ASBMR radiologic criteria (Shane et al., 2014), as characterized by a fracture that was: (1) 

located in the femoral shaft; (2) originated in the lateral cortex and ran perpendicular to the 

longitudinal axis of the femur; (3) not at all or only minimally comminuted; (4) showed a 

medial spike; and (5) exhibited endosteal/periosteal thickening at the fracture site. In our 

definition, the transverse fracture line and endosteal/periosteal thickening, both of which are 

pathognomonic signs of stress fractures, were compulsory features of AFF (Schilcher et al., 

2013). NFF were not transverse on the lateral side. Both fracture types lacked any signs of 

previous surgery or malignancy. For 1,073 of the 1,124 patients, both radiographs and tabular 

data were available. The manual sorting process included the elimination of those images in 

which no fracture was present, as well as the removal of images obtained after surgery (e.g., 

showing an implant). Images that showed a femur fracture and no implant on one side but 

with an implant in the contralateral femur were retained in the dataset. A script was then used 

to remove exact duplicates of images. The final dataset contained a total of 4,014 radiographs 

(548 AFF, 3,466 NFF), with a median of three images per patient (range, 1–9) from 159 

patients with AFF and 914 patients with NFF. The median image size was 2125 × 2761 

pixels (range, 1,024 × 1,024 to 3,520 × 4,280). The 1,073 patients had a median age of 83 

years (range, 56–102 years), and 893 were female. 
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Figure 2. Flowchart showing the creation of the multimodal dataset using the Swedish 

National Patient Register. Personal numbers and tabular data were obtained from the patient 

register, and the images were obtained from 72 radiology departments in Sweden.  

The tabular data originated from the Swedish National Patient Register1, which is a high-

quality register of inpatient diagnoses (Ludvigsson et al., 2011). This dataset contains 45 

variables for each patient (see Appendix A for a complete list of the variables) and the 

variables are available as binary (disease present: yes/no) or as non-binary data. In the non-

binary data, the number indicates the number of days with a certain diagnosis or treatment. 

Seven variables are of particular interest for the present work: age, sex, osteoporosis 

diagnosis, rheumatoid disease, cortisone treatment, treatment with proton pump inhibitors, 

and bisphosphonate treatment. These variables have previously been identified as risk 

modifiers for AFF in regression models (Black et al., 2020; Schilcher et al., 2015). We 

focused on these seven variables to mimic the clinical situation in a meaningful way, 

deeming it unfeasible for a radiologist to keep track of 45 variables for every patient. While 

automatically combining radiology information with the patients’ medical charts in a clinical 

workflow would be challenging under Swedish law due to privacy restrictions, it might be 

possible in an integrated healthcare system. The dataset used in this work is unique and 

comprises high-quality register data and high-quality digital radiographic data for one of the 

largest AFF cohorts in the world. 

3 Methods 
The following sections describe the preprocessing of the data and the different prediction 

models. All the models were implemented in Keras 2.6 and trained on a computer with a 10-

core CPU, 128 GB RAM and an Nvidia RTX 3090 graphics card with 24 GB of memory. 

The developed code is shared on Github at https://github.com/wanderine/AFF_fusion. 

 
1 https://www.socialstyrelsen.se/en/statistics-and-data/registers/national-patient-register/ 
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3.1 Preprocessing 
The DICOM images (from modality computed radiography (CR) and digital x-ray imaging 

(DX)) were first converted to 16-bit PNG for anonymization purposes and to fit into the deep 

learning frameworks (not supporting the DICOM format). A large portion of the DICOM 

images were stored with inverted intensity, indicated in the DICOM tag 

“PhotometricInterpretation”. To create images with uniform intensity, all the images were 

converted to an intensity in the range of 0–50,000. All the images were pseudonymized using 

ID numbers from the tabular data. All of the images were made square using zero padding, 

and then down-sampled to 224 × 224 pixels, so as to fit CNN that were pre-trained on 

ImageNet. Down-sampling was performed using the OpenCV function cv2.resize (Bradski, 

2000) with the “INTER_AREA” option.  

3.2 Deep learning  
Several different classification networks were implemented to compare the performances of 

different input data and different fusion approaches. The baseline networks used only 

imaging data or tabular data as the input. The three fusion networks (probability fusion, 

feature fusion and learned feature fusion) used imaging data and tabular data simultaneously. 

The multimodal dataset was randomly split into six equal parts, one for testing and the 

remaining five for cross-validation. During the training process, four parts were used for 

training and the fifth part was used for validation (early stopping). To avoid bias, all the 

radiographs from one patient were aggregated and analyzed together (Tampu et al., 2022). To 

ensure this patient-specific analysis of radiographs, a dictionary-object that contained several 

dictionaries was used, to divide randomly the patients (and all their images) into training, 

validation, and test groups. However, cross-validation is sensitive to the test set used. To 

assess more accurately the performance of each network, the process of randomization was 

repeated five times (each comprising 5-fold cross-validation) (Shi et al., 2010). 

For all the networks, binary cross-entropy was used as the loss function and Adam was used 

as the optimizer. Early stopping was used based on the validation loss, to prevent overfitting 

to the training data and restoring the best weights. Patience was set to 100 epochs. The 

dataset contains an unequal number of radiographs for each type of fracture (14.8% AFF). To 

compensate for this imbalance, proportional class weights were used during the training.  

3.3 Classification using images only 
CNN are the standard choice for image classification tasks. Inspired by the previous work on 

a similar but much smaller dataset (Zdolsek et al., 2021), a pre-trained ResNet50 (He et al., 

2016) was selected as the image classifier for this study. As our classification task only has 

two classes (AFF and NFF), compared to the 1,000 in ImageNet, the last, fully connected 

layers were modified with inspiration from a previous study (Holste et al., 2021), and the 

used CNN is shown in Figure 3. Since radiographs differ substantially from the images in the 

ImageNet dataset, it is not sufficient to train just the last dense part of the network. Therefore, 

re-training was carried out from layer 39 (out of 178 layers) in the ResNet50 model.  
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Figure 3. The CNN used for classification of AFF and NFF using only imaging data. The 

CNN is based on a pre-trained ResNet50. 

 

On-the-fly data augmentation was used to limit overfitting, and this included random flipping 

(horizontal and vertical), random rotations (-180° to 180°), random translations (±10% in 

each direction), random zooming (±10%), and random contrast adjustment (factor of 0.3). A 

learning rate scheduler was used, where the learning rate started at 10-5 and was constant 

throughout the first 50 epochs. The learning rate then decreased exponentially with a factor of 

10-0.05 per epoch, until it reached a value of 10-6. Thereafter, the learning rate remained 

constant. The learning rate was lower compared to that when training a CNN from random 

weights, so as not to update the pre-trained weights too quickly. Training the CNN for one 

fold took about 22 minutes. 

3.4 Classification using tabular data only 
The baseline model using only tabular data was based on previous research on medical 

conditions, such as prediction of decompensation in heart failure (Guo et al., 2020) and breast 

cancer classification using magnetic resonance (MR) imaging (Holste et al., 2021). Due to the 

low number of variables in the tabular data, this network has a low number of trainable 

parameters (Figure 4). 

3.5 Classification using data fusion 
The two single-modality networks were used as baseline methods and were compared with 

the three fusion networks. In a fusion model, it is necessary to ensure that the imaging and 

tabular data originate from the same patient. Therefore, the tabular data were duplicated for 

each available radiograph, yielding a multimodal dataset that consisted of 4,014 pairs of 

images and sets of tabular data variables. All the fusion networks used pre-trained baseline 

models for the imaging data, and to avoid bias, the same patients were used in each 

corresponding fold during the training of the fusion models. To ensure coherent use of patient 

data between the baseline and fusion forms, the weights of both baseline models (imaging 

and tabular data) were saved for each cross-validation fold. When training the fusion models, 
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each cross-validation fold used the saved imaging and tabular data models corresponding to 

the same fold.   

3.5.1 Probability fusion 
The architecture of the probability fusion network (which is an example of late fusion) is 

heavily influenced by a previous work (Holste et al., 2021) (Figure 4). In Figure 4, the blue 

region, illustrating the CNN, shows the baseline model using imaging data as the input. The 

green region, illustrating the tabular data model, shows the baseline model using tabular data 

as the input. As mentioned above, the weights from the corresponding folds of the pre-trained 

baseline models were used when a certain fold of the fusion model was trained. In this fusion 

method, both baseline models are running in inference mode, producing one prediction each. 

These two separate predictions are then concatenated and fed into a shallow neural network, 

to yield a final prediction. The layers shaded in yellow are trainable. A scheduler was used to 

control the learning rate. It started at 10-4 and then decreased by a factor of 10-0.01 per epoch, 

until it reached the value of 10-5. Training the network for one fold took about 7 minutes. 
 

 

Figure 4. Diagram of the probability fusion architecture. The layers shaded in yellow are 

updated during the training. The trained baseline models are running in inference mode, and 

each model returns a probability for AFF. On the left is the image model, and on the right is 

the tabular data model. The two probabilities are then combined and fed into a trainable, 

small, dense network. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2023. ; https://doi.org/10.1101/2023.07.02.23292125doi: medRxiv preprint 

https://doi.org/10.1101/2023.07.02.23292125
http://creativecommons.org/licenses/by-nc/4.0/


   

 

   

 

3.5.2 Feature fusion 
The architecture of the feature fusion network (which is an example of early fusion) 

concatenates a 2,048-sized feature vector, obtained from a radiograph, with a vector that 

comprises the 2–45 variables from the tabular data for the same patient (Holste et al., 2021). 

Prior to concatenation, both feature vectors were normalized with respect to the mean and 

standard deviation for each of the feature vectors. The pre-trained ResNet50 CNN was the 

same as that used in the probability fusion method. However, in this fusion method, a feature 

vector of size 2,048 is extracted from the model, instead of a scalar prediction. As in the case 

of the probability fusion, both baseline models were running in inference mode (no weights 

were updated). The combined vector was then fed into a shallow neural network, to generate 

a final prediction. The structure of the network is shown in Figure 5, where the layers shaded 

in yellow are trainable. The learning rate had a constant value of 10-4. Training the network 

for one fold took about 9 minutes. 

 

Figure 5. Diagram of the feature fusion architecture. The layers shaded in yellow are trainable 

and the baseline models are running in inference mode. The feature vectors from the baseline 

models are concatenated into a single-feature vector, which is then fed into a trainable dense 

network. 

3.5.3 Learned feature fusion 
The learned feature fusion architecture is an example of joint fusion (Holste et al., 2021). 

This model also used the ResNet50 as the image model. In addition, three trainable, fully 

connected layers were added to derive a feature vector with size of 128. This feature vector 

was concatenated with another feature vector, also of size 128, which was derived by the 
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tabular data model. This model was based on the same model as that used for the probability 

fusion, but instead of producing a scalar prediction it learned a feature vector representation. 

Unlike the other two fusion approaches, this approach combines features that were learned 

and updated during the training. As in the feature fusion model, the extracted features from 

an image and the tabular data variables were normalized. The concatenated feature vector 

was fed into a shallow neural network to produce a final prediction (Figure 6). A constant 

learning rate of 10-4 was used during the training of this model. Training the network for one 

fold took about 11 minutes. 

 

Figure 6. Diagram of the learned feature fusion architecture. The layers shaded in yellow are 

trainable. The learned feature vectors from the image network and the tabular data network 

are combined into a single vector and fed into a dense network. The baseline models start 

from the pre-trained weights and are further updated during the joint training. 

3.6 Post-processing 
The CNN output was one prediction per image. Most of the patients had more than one x-ray 

image available (range, 1–9), which led to multiple output predictions. However, the desired 

output was a single prediction per patient, i.e., the probability of a patient being diagnosed as 

AFF or NFF. Therefore, the post-processing of all the models with images as inputs needed 

to consider all the predictions for a certain patient, aggregated into a single prediction. Our 

approach was to calculate the mean of all the predictions (float values between 0 and 1), and 

to convert this mean into a binary classification. 

3.7 Evaluation 
The different networks were compared using the area under the ROC curve (AUC), 

sensitivity, specificity, and Matthew’s correlation coefficient (MCC) (Matthews, 1975). MCC 

has been shown to be superior for unbalanced cases such as ours (Chicco and Jurman, 2020), 

as it considers true positives, true negatives, false positives, and false negatives together to 
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calculate a value between –1 and 1. All the metrics were calculated using functions in scikit-

learn (Pedregosa et al., 2011). Each fusion training was performed in three different ways: (1) 

with only two tabular variables (age, sex); (2) with the seven pre-chosen variables; (3) and 

with all 45 variables. Each training with seven or all variables was performed with the binary 

as well as the non-binary versions of the variables.  

 

As each patient had 1–9 images with more than 4 million pixels on average (about 50,000 

when down-sampled to 224 × 224 pixels), there was a significant imbalance between the 

imaging data (4–36 million pixels, or 50,000–450,000 when down-sampled) and the tabular 

data (2–45 variables) for the average patient. Therefore, we repeated the training of the 

different models with a maximum of one and two randomly selected images from each 

patient, to render the two modalities more balanced. 

4 Results 

4.1 Fusion using all available images 
Figures 7–9 show the comparisons of the different networks reported on the patient level (not 

the image level). The figures show the mean values and standard deviations for all the metrics 

over the 25 training sessions (five times repeated 5-fold CV). In the text below, we refer to 

the mean metrics calculated over the 25 trainings. Table 1 summarizes the most important 

findings when using the seven pre-selected tabular variables. 

 

Data AUC Sensitivity MCC Specificity 

Only images, all 

images 
0.9655 0.7963 0.8135 0.9797 

Only images, two 

images per 

patient 

0.9490 0.7274 0.7739 0.9833 

Only tabular 

data 
0.8968 0.8100 0.6049 0.8721 

Probability 

fusion 
 

fusion of all 

images + tabular 

data 

0.9866 0.9025 0.8467 0.9641 

fusion of two 

images + tabular 

data 

0.9844 0.8489 0.8367 0.9772 

Feature fusion  

fusion of all 

images + tabular 

data 

0.9701 0.8350 0.8415 0.9805 

fusion of two 

images + tabular 

data 

0.9573 0.7941 0.8087 0.9799 

Learned feature 

fusion 
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fusion of all 

images + tabular 

data 

0.9820 0.8450 0.8309 0.9737 

fusion of two 

images + tabular 

data 

0.9718 0.8015 0.8233 0.9833 

Table 1. Summary of the most important results, using seven non-binary tabular variables. 

Each value represents the mean of the 25 trainings. Data fusion improves the predictions, 

especially when the two modalities are more balanced (fewer images per patient). 

 

 
Figure 7. AUC values for the different networks when using all the available radiographic 

images per patient. PF, Probability fusion; FF, feature fusion; LFF, learned feature fusion. 

The error bars represent standard deviations. 
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Figure 8. Sensitivity levels assessed for the different networks when using all the available 

radiographic images per patient. PF, Probability fusion; FF, feature fusion; LFF, learned 

feature fusion.  The error bars represent standard deviations. 

 
Figure 9. MCC values for the different networks when using all the available radiographic 

images per patient. PF, Probability fusion; FF, feature fusion; LFF, learned feature fusion. 

The error bars represent standard deviations. 

 

 

Our results show that the fusion networks in general improve the AUC, sensitivity and MCC 

(Table 1). The AUC increased from 0.966 when using only images to 0.987 when using PF 

and to 0.982 when using LFF (both with seven non-binary variables). Sensitivity increased 
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from 0.796 when using only images, to 0.902 when using PF with seven non-binary 

variables. MCC increased from 0.813 for image-only classification, to 0.847 when using PF 

with seven non-binary variables. The average AUC improvements (over all settings and 

trainings) were small, i.e., 0.5%–2.0%, mainly due to the already high AUC for images only. 

The average improvements in sensitivity were 6.1% for PF, 4.5% for FF, and 6.7% for LFF. 

Again, the largest improvement in sensitivity was seen for the seven non-binary variables 

(8.1%). The average MCC improvement was about 3% for FF and LFF, and the best tabular 

data were the seven non-binary variables (3.2% improvement). The level of specificity was 

very similar when using only images or data fusion (0.96–0.98). 

 

4.2 Fusion using one or two randomly selected images 
The results obtained using a maximum of two randomly selected images per patient are 

shown in Figures 10–12, and the results for using one randomly selected image per patient 

are shown in Figures 13–15. 

 

 
Figure 10. AUC values for the different networks when using a maximum of two randomly 

selected images per patient. PF, Probability fusion; FF, feature fusion; LFF, learned feature 

fusion. The error bars represent standard deviations. 
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Figure 11. Sensitivity levels for the different networks when using a maximum of two 

randomly selected images per patient. PF, Probability fusion; FF, feature fusion; LFF, 

learned feature fusion. The error bars represent standard deviations. 

 

 
Figure 12. MCC values for the different networks when using a maximum of two randomly 

selected images per patient. PF, Probability fusion; FF, feature fusion; LFF, learned feature 

fusion. The error bars represent standard deviations. 

 

 

Using a maximum of two images per patient, the AUC values for the images decreased from 

0.966 to 0.949, while PF resulted in an AUC of 0.984 and LFF resulted in an AUC of 0.972 
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(both with seven non-binary variables), which was close to the results obtained when using 

all the images. The sensitivity when using only images decreased from 0.796 to 0.724, while 

the sensitivity for PF with seven non-binary variables decreased from 0.902 to 0.849. The 

average sensitivity improvements were 8.1% for PF, 8.3% for FF, and 6.9% for LFF. For 

seven non-binary variables, the improvement in sensitivity was 12.0%.  

 

 

 
Figure 13. AUC values for the different networks when using one randomly selected image 

per patient. PF, Probability fusion; FF, feature fusion; LFF, learned feature fusion. The error 

bars represent standard deviations. 
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Figure 14. Sensitivity levels for the different networks when using one randomly selected 

image per patient. PF, Probability fusion; FF, feature fusion; LFF, learned feature fusion. The 

error bars represent standard deviations. 

 

 

 
Figure 15. MCC values for the different networks when using one randomly selected image 

per patient. PF, Probability fusion; FF, feature fusion; LFF, learned feature fusion. The error 

bars represent standard deviations. 
 

Training using one image per patient led to a decrease in the image AUC to 0.815, while PF 

resulted in an AUC of 0.908 and LFF gave an AUC of 0.912 (both with seven non-binary 

variables). However, the standard deviation over 25 trainings was much larger for all the 

networks. When only using images, the sensitivity went down to 0.511, while the sensitivity 

for PF with seven non-binary variables was 0.767. The average sensitivity improvements 

were 30.8% for PF, 21.3% for FF, and 23.6% for LFF. However, the sensitivity for fusion 

was not higher than that seen when only using tabular data.  

 

Taken together, the results show that fusion achieves larger improvements when the different 

modalities are more balanced, although the estimates were less-precise between the different 

trainings.  

5 Discussion 
We show that fusing the data from radiographs and electronic health records improves the 

performances of deep neural networks in discriminating a very rare type of stress fracture 

(AFF) from normal fractures of the femur (NFF). Although the AUC improvements are not 

large, going from 0.966 to 0.986, they are clinically relevant considering the importance of 

avoiding diagnostic errors in medicine. More importantly, the sensitivity increased 

substantially, from 0.796 to 0.903. These improvements in sensitivity are highly relevant for 

the clinical situation, where an automated alerting system can attract the attention of the 

clinician to the very rare event of an AFF. We show that data fusion approaches have greater 
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impacts when the radiographic data and health record data are more balanced. It seems likely 

that these improvements will be even more pronounced in a more-difficult classification task, 

such as classifying fractures into several types of fractures.  

Fracture classification in orthopedics is popular because it can improve the understanding, 

diagnosis, and managing of fractures. However, fracture classification systems can be 

complex, and reproducibility is much poorer compared to the binary classification used in 

this study. One historical example is the classifying of proximal humerus fractures into 

fracture types depending on anatomic location and fracture fragment displacement, as 

described by Neer (Neer, 1970). The classification has been shown to have low inter-observer 

reliability (50%) and low intra-observer reliability (60%) (Sidor et al., 1993), although it 

remains as one of the most widely used classification systems. When CNN were applied to 

the same classification problem, the level of accuracy was very similar to that achieved by 

human experts, at 65%–86% (Chung et al., 2018), while automated distinction of fractured 

from non-fractured cases was achieved with almost perfect accuracy (96%). This poor 

agreement between experts in the assessment of medical conditions is not new but has gained 

attention recently based on the widely diverging risk assessments made in conjunction with 

the COVID-19 pandemic and its risks for Society (Ibrahim et al., 2022). Using an arbitrary 

classification system based on expert opinion, not only limits the accuracy of other human 

assessments but also that of a mathematical algorithm. In our study, only two types of 

fractures needed to be discriminated, which might explain the much higher classification 

accuracy observed compared to other studies. 

5.1 Comparisons with other studies 
Comparisons of our results with the results of previous studies on multimodal fusion in 

biomedicine are difficult because each multimodal dataset has unique features that can be 

fused using many different approaches. Furthermore, the results might differ substantially 

depending on whether or not N-fold CV is used (and M-times repeated N-fold CV is even 

more uncommon). In a recent review of multimodal fusion (Kline et al., 2022), the mean 

improvement in predictive accuracy (AUC) was reported to be 6.4% when comparing 

multimodal and unimodal predictions, which is similar to the improvements seen in our 

study. In the same review, only 55 out of the 128 reviewed papers were found to have 

performed N-fold CV. Other studies reported improvements in AUC in the range of 6%–33% 

for a high number of different multimodal models, when combining up to four different 

modalities (text, time series, tabular data, and images) (Soenksen et al., 2022) and AUC 

improvements in the range of 0.02–0.16, irrespective of the approach to fusion that was used 

(Huang et al., 2020). However, none of these studies have investigated the effect of data 

fusion on predictive accuracy for fracture classification.  

Our study was inspired by a comparison of different fusion approaches to detect breast cancer 

in MR imaging (Holste et al., 2021). In that study, improvements in AUC from 0.849 to 

0.898 were reported when only imaging data were compared with image and non-image 

features, such as demographics and clinical data. In that study, cross-validation was not 

performed, which limits the external validity. Few studies have reported on the value of data 

fusion in musculoskeletal imaging. In the prediction of osteoarthritis progression, an 

improvement in AUC from 0.76 to 0.80 has been reported, when using radiographs and 

tabular data such as sex, age, body mass index and radiologic assessment instead of 

radiologic assessment alone (Tiulpin et al., 2019). In addition, the prediction of mortality for 

patients with hip fractures was improved from an AUC of 0.717 to 0.786 when combining 

hip x-ray images, chest x-ray images, and 99 tabular variables (Yenidogan et al., 2021), as 

compared to a clinical scoring system (Nijmeijer et al., 2016). Similar improvements were 

obtained (6%) when a unified Holistic AI in a Medicine framework utilized multimodal data 

from a healthcare system to detect thorax-level spinal fractures (Soenksen et al., 2022). Our 
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results are aligned with these previously reported improvements of multimodal fusion, the 

main difference being that our performance level is higher when using only imaging data. 

5.2 Technical limitations 
In this work, the high-resolution images were simply zero-padded and down-sampled to 224 

× 224 pixels, as the CNN pre-trained on ImageNet expect images of this size. This process 

removes a lot of information, since the median original size is 2,125 × 2,761 pixels. A better 

approach could be to train another CNN to first predict the center of each fracture, followed 

by an automated selection of 224 × 224 or 512 × 512 pixels around the center of the fracture, 

so as to perform the classification using these patches. It has, for example, been demonstrated 

that providing attention information for a CNN can improve fracture classification accuracy 

by some 5%–11% (Liao et al., 2022). However, training a fracture localization CNN on the 

original high-resolution images is challenging due to the large variations in image size, as 

well as the substantial computational resources required to perform such a task. 

Based on the clinical routine, fracture diagnostics are performed using several radiographic, 

often orthogonal, projections. This clinical routine provides the clinician with the requisite 

views, which when analyzed together improve the diagnostic accuracy (Brandser et al., 

2000). Compared to this human-based assessment in the clinical routine, our networks only 

use one image at a time to make a prediction, and then combine the different predictions into 

a patient-specific prediction. Combining these individual predictions into a single prediction 

could have a strong impact on network performance. Since we used only one way to combine 

these predictions, other ways of doing this might yield different results. To assess the effects 

of different strategies to combine individual predictions, it might be beneficial to use all the 

images simultaneously. This was not possible in our setting because of the wide variation in 

the number of images available per patient (varying from 1 to 9). Using Monte Carlo dropout 

(Gal and Ghahramani, 2016), it would be possible to acquire a measure of the uncertainty for 

the prediction of each image, or each pairing of imaging and tabular data, potentially utilizing 

weighted averages of the predictions from each patient, thus limiting the impacts of 

predictions with high uncertainty.  

We used radiographic images obtained from 72 radiology departments in 72 different 

hospitals throughout Sweden. Consequently, there was substantial variability in terms of the 

radiology equipment used, patient positioning, education level of the staff, image labeling, 

and several other factors that might have confounded our results. However, using such a high 

number of images (4,014) with wide variations in resolution and image quality is beneficial 

in terms of the generalizability of our results. Initial harmonization of the images could yield 

even higher accuracy levels, but even without such harmonization the image network was 

able to reach an AUC of 0.96 when using all the images from each patient. 

Since the dataset is unbalanced (15% AFF), it is possible to force the networks to pay more 

attention to the AFF class in different ways. In this work, we have used only proportional 

weighting, whereas manually setting the weights could result in a higher level of sensitivity. 

A simple dense network was used for the tabular data, while other methods, such as random 

forest and XGBoost, have been shown to outperform deep learning for tabular data 

(Grinsztajn et al., 2022). In future work, we will test a combination of CNN (or vision 

transformers) and random forest or XGBoost, to obtain even higher-quality metrics. This 

could lead to better performance, for example when using all 45 tabular variables, as dense 

networks have a limited capability to handle uninformative features.  

5.3 Study limitations 
Our results are based on a highly selected sample, comprising almost entirely individuals of 

Caucasian ethnicity. AFF risk is associated with ethnicity and Asians have a higher risk for 

AFF, which is linked to increased femoral bow, short stature, and smaller diameter of the 
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femur (Dhanekula et al., 2022). Therefore, the validity of our results for ethnics groups other 

than Caucasian needs to be evaluated.  

 

Although our dataset contains data from 1,073 patients, a test set of 15% corresponds to 160 

patients (about 25 AFF), which may be too small to detect significant differences between the 

baseline models and fusion models, as well as between different fusion models. 

 

A smaller dataset containing radiographs of NFF and AFF from 373 patients has previously 

been shared through the AIDA datahub (Hedlund et al., 2020; Zdolsek et al., 2021). The 

sharing of a combination of radiographs and healthcare data is currently not feasible in 

European countries due to privacy concerns and regulations. 

Conclusion 
In fracture diagnostics, fusion of radiographic and tabular data improves prediction accuracy. 

The greatest improvement in accuracy achieved in our study related to sensitivity. One of the 

great advantages associated with automated diagnostic tools is that they can be used in the 

background to screen large datasets and to alert the clinician to cases requiring specific 

attention. Specifically, in rare disease patterns such as AFF, deep learning has strong 

potential to decrease the number of missed diagnoses.  

Appendix A 
The 45 available tabular data variables for each patient are listed in Appendix Table A. The 

majority of these variables are available as binary or non-binary (n=36). The non-binary 

version represents the number of days with a certain diagnosis or treatment. The seven pre-

selected variables are: age, sex, osteoporosis diagnosis, rheumatoid disease, cortisone 

treatment, treatment with proton pump inhibitors, and bisphosphonate treatment.  

 

Variable Type ICD10 codes 

Age  Non-binary  

Acute myocardial infarction  Non-binary I21-22 

Acute pancreatitis  Non-binary K85 

Antidepressants  Binary ATC=N06A 

Antiepileptic drugs  Binary ATC=N03A 

Any other fracture Non-binary 
S12, S22, S32, S42, S52, S62, 

S72, S82, S92 

Atherosclerosis  Non-binary I70-74 

Bisphosphonates Non-binary ATC=M05BA, M05BB 

Blood diseases  Non-binary D* 

Cardiomyopathy   Non-binary I25, I42-43 

Charlson index Non-binary (Charlson et al., 1987) 

Cholelithiasis or cholecystitis   Non-binary K80-81 

Circulatory system diseases  Non-binary I* 

Glucocorticoids Binary ATC=H02AB, H02BA 

Diabetes   Non-binary E10-14 

Digestive system diseases  Non-binary K* 

Disorders of lipoprotein 

metabolism  
Non-binary E78 
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Endocrine, nutritional and 

metabolic diseases  
Non-binary E* 

Estrogen replacement therapy  Binary ATC=G03C 

Fracture of head and neck of 

femur  
Non-binary S72 

Gastrointestinal cancer Non-binary C15-C25 

Gastrointestinal cancer 2 Non-binary C17-19, C23-25 

Genitourinary diseases  Non-binary N* 

Hemorrhagic stroke  Non-binary I60-62 

Heart failure  Non-binary I50 

Hip fracture  Non-binary S720-722 

Hypertensive diseases  Non-binary I1* 

Infectious and parasitic 

diseases  
Non-binary A*, B*, J18, N30, N39 

Ischemic stroke  Non-binary I63-67 

Ischemic heart diseases  Non-binary I2* 

Mental behavioral and 

neurodevelopmental disorders  
Non-binary F* 

Musculoskeletal diseases  Non-binary M* 

Neoplasms  Non-binary C* 

Nervous system diseases  Non-binary G* 

Osteoporosis Non-binary M80 

Osteoporotic fracture  Non-binary 
S52, S42, S12, S22, S320-325, 

S328, S720-722 

Pertrochanteric or 

subtrochanteric fracture of 

femur  

Non-binary S721-722 

Proton pump inhibitors  Binary ATC=A02BC 

Respiratory diseases  Non-binary J* 

Rheumatoid arthritis Non-binary M05-09 

Selective estrogen-receptor 

modulators  
Binary ATC=G03XC 

Sex  Binary  

Skin diseases  Non-binary L* 

Stroke  Non-binary I61-67 

Vertebral fracture  Non-binary S12, S22, S320 

Table A. The 45 tabular variables available for each patient, along with their ICD10 codes. 

Ethics   
This research study was approved by the Swedish ethical review authority (Dnr. 2021-06482-

02).  
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