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Abstract 35 

Risk assessment of breast cancer (BC) seeks to enhance individualized screening and 36 

prevention strategies. BC risk informs healthy individuals of the short- and long-term 37 

likelihood of cancer development, also enabling detection of existing BC. Recent 38 

mammographic-based deep learning (DL) risk models outperform traditional risk factor-39 

based models and achieve state-of-the-art (SOTA) at short-term risk prediction, but 40 

mainly use single-time exams, which seem to rely more on detecting existing lesions. We 41 

present a novel temporospatial and explainable deep learning risk model, the Multi-Time 42 
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Point Breast Cancer Risk Model (MTP-BCR), which learns from longitudinal 43 

mammography data to identify subtle changes in breast tissue that may signal future 44 

malignancy. Utilizing a large in-house dataset of 171,168 screening mammograms from 45 

42,792 consecutive exams involving 9,133 women, our model demonstrates a significant 46 

improvement in long-term (10-year) risk prediction with an area under the receiver 47 

operating characteristics (AUC) of 0.80, outperforming the traditional BCSC 10-year risk 48 

model and other SOTA methods at 5-year AUC in various screening cohorts. 49 

Furthermore, MTP-BCR provides unilateral breast-level predictions, achieving AUCs up 50 

to 0.81 and 0.77 for 5-year risk and 10-year risk assessments, respectively. The heatmaps 51 

derived from our model may help clinicians better understand the progression from 52 

normal tissue to cancerous growth, enhancing interpretability in breast cancer risk 53 

assessment. 54 

 55 

Teaser 56 

MTP-BCR model uses multi-time points mammograms and rich risk factors to predict 10-57 

year breast cancer risk more accurately. 58 

 59 

 60 

MAIN TEXT 61 

 62 

 63 

Introduction 64 

Breast cancer (BC) is one of the most common cancers in the world and is the cause of a 65 

large fraction of cancer-related mortality among women (1, 2). Studies have shown that 66 

age-based population-level BC screening programs, which aim to detect breast tumors at 67 

an early stage (3), reduces breast cancer specific mortality (4–7). However, the broad 68 

adoption of mammographic screening results also in high cost of imaging, false-positives 69 

and over-diagnoses, which explains the strong controversy of screening (8, 9). Therefore, 70 

“personalized” BC screening regimens are advocated, based on the individual women’s 71 

future risk of BC, which follows from demographic and genetic information, exposure to 72 

endogenous and exogenous risk factors, and also medical imaging (10–12). Current BC 73 

risk assessment models are designed to be sensitive to the high-risk population who could 74 

benefit from more aggressive screening and prevention. At the same time these models 75 

could advocate less frequent screening for the low-risk population to reduce the harm and 76 

cost of screening, however this is less common. 77 

Based upon the timespan for breast cancer prediction, risk models can be divided into 78 

short- and long-term risk models. Short-term risk models can be used to guide physicians 79 

in selecting and adding supplemental screening modalities for women at the time of 80 

screening. Long-term risk prediction helps determine risk-based screening regimens and 81 

eligibility for preventive treatment (13). Many of the traditional risk models, such as 82 

Tyrer-Cuzick (11), CANRISK (14), National Cancer Institute Breast Cancer Risk 83 

Assessment Tool (BCRAT) (12), and Breast Cancer Surveillance Consortium (BCSC) 84 

(15) investigate primarily long-term risk estimates. The performances of these risk models 85 

remain modest in clinical practice and are not very sensitive to short/middle-term cancer 86 

risk variation due to the shortage of individual-specific risk adaptation, for example 87 

through the incorporation of detailed imaging findings beyond breast density only. With 88 

the recent boost in deep learning (DL) methods, some studies that combined large 89 

screening mammography datasets with detailed risk factors have shown considerable 90 

promise to help balance the harm-to-benefit ratios of BC screening (7, 16–22) and were 91 
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even validated in clinical settings (23). For example, a recent study (19) developed a risk 92 

model, MIRAI, that achieved state-of-the-art (SOTA) performance in five-year BC risk 93 

prediction and outperformed the clinically adopted traditional models (19, 23–25). 94 

However, most recent methods drive DL models to learn the risk output directly from an 95 

image or exam as single input without any historical reference (7, 16, 19). It's like judging 96 

the motion trajectory of an object in a still frame of a video. We hypothesize that accurate 97 

estimation of the breast tissue changes may make the task of predicting long-term BC risk 98 

easier. In clinical practice, radiologists routinely compare mammography exams to 99 

identify developing abnormalities. Therefore, beyond learning risk features (e.g. breast 100 

density) from single-time point imaging, multi-time point learning may also be helpful in 101 

discovering the underlying dynamics of the risk pattern for BC development (20, 26). 102 

Moreover, due to the lack of a long-term longitudinal screening mammogram dataset, the 103 

potential of image-based DL methods for longer-term (e.g., 10 years) BC risk prediction 104 

has been less explored. Only one recent research investigated the long-term performance 105 

of an image-based short-term risk model (27). 106 

Despite the development of promising risk models in BC screening programs, the 107 

interpretability of medical AI models is still difficult, whereas understanding the predicted 108 

outputs is essential for clinical acceptance. How to endow an existing risk model with 109 

explainability of the underlying reasoning remains the boundary to explore. Apart from 110 

being similar to what an actual radiologist does when searching for the sign of BC risk 111 

(28, 29), the AI models must reasonably show radiologists more details during inference 112 

(30) for clinical acceptance. However, most recent studies only aim to predict the patient-113 

level risk and do not produce a location-specific risk. Improvement of these specific 114 

predictions and visualizations could not only improve the interpretability of the model and 115 

make it easier for physicians to understand the model's decision-making but also inform 116 

doctors where to focus and then guide them when deciding on the most suitable targeted 117 

examinations and prevention strategies. An ideal risk model should therefore not only 118 

stratify high-risk groups but also focus the doctors attention to changing areas in the breast 119 

earlier. 120 

We propose the Multi-Time-Points Breast Cancer Risk model (MTP-BCR), an end-to-end 121 

model that estimates the long-term future BC risk based on changes in breast tissue. Our 122 

contributions are as follows. First, our model leverages historical and current exams from 123 

a large in-house clinical mammogram dataset and obtains remarkable performance 124 

compared to other SOTA methods on patient-level BC risk prediction. Second, we explore 125 

and show that our image-based DL risk model outperforms clinical traditional BCSC risk 126 

models for long-term 10-year risk prediction. Third, we explore the unilateral breast level 127 

BC risk prediction and achieve similar performance to our risk models at the patient level. 128 

Fourth, we highlight suspicious areas in a longitudinal test dataset using the model’s 129 

heatmaps, which may illustrate the attention consistency of our model and improve its 130 

interpretability. Fifth, to demonstrate the robustness of our method in clinical settings, we 131 

perform a systematic subgroup analysis. The results imply that our model may improve 132 

upon traditional and other image-based DL risk models. 133 

Results  134 

Overview of algorithm 135 

For investigating our hypothesis that the breast tissue changes can help in learning the 136 

tumor (including both invasive and ductal carcinoma in situ) development pattern better, 137 
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multiple time points of examinations from the longitudinal screening mammograms are 138 

required. Like radiologists, who typically identify developing abnormalities by looking at 139 

changes in longitudinal exams, we propose a novel end-to-end multi-time point network, 140 

MTP-BCR, shown in Fig. 1A, leveraging longitudinal mammograms and medical records 141 

to capture the features related to increased BC risk. We aim to predict the risks on a 142 

patient-based level as well as for a single breast. Briefly, the proposed risk model first 143 

utilizes the multi-level (breast and patient level risk) and multi-task learning to extract 144 

static risk features from a single time point exam and prior medical records. Then the 145 

features of five historic exams, obtained before the current exam are selected (to mimic 146 

the practical use scenario) for learning the dynamic risk features using a multi-time point 147 

fusion model. This is combined with the risk factors of patients for predicting the future 148 

risk. It means that our end-to-end model uses current and historic screening 149 

mammography exams and existing medical records and then predicts the future 10-year 150 

BC risk. Architectural details, contents of the medical records, and risk factors are 151 

presented in the method part. 152 

Risk calculation can be treated as a multi-class classification problem (16, 19), which is 153 

common in breast imaging, such as the classification of breast density (31), the Breast 154 

Imaging Reporting and Data System (BI-RADS (32)) score (33), the type of malignancy 155 

(3), and the BC molecular subtype (34). As shown in Fig. 1B, the risk of a patient getting 156 

BC within 5 or 10 years from the available data can be calculated as the cumulative sum 157 

of the probability from the first year up to the fifth or tenth year. Importantly, the 158 

prediction results of our model can guarantee that the risk is monotonically increasing and 159 

self-consistent. This avoids the situation, that can occur with separately trained models, 160 

where long-term risk may be lower than short-term risk. Moreover, this formulation also 161 

learns the inherent relationship between risks at different time points. In this study, the 162 

model is trained to predict the risk of BC at each of the 15 years and is validated by 163 

predicting BC within ten years. Therefore, our model can be easily extended for a longer 164 

than 15-year risk prediction when collecting enough longer-term follow-up data. 165 

Screening cohorts for risk modeling & compared candidates 166 

Fig. 1 shows the flowchart of the Screening Cohort selection in the inhouse dataset. The 167 

dataset contains 42,792 exams of 9,133 patients, split into 32,049 exams / 6,858 patients, 168 

4,432 exams / 919 patients, and 6,311 exams / 1,356  for the train set, validation set, and 169 

test set, respectively. The proposed model aims to handle multiple tasks, including cancer 170 

detection and future risk prediction. This would facilitate implementation in an actual 171 

clinical BC screening program, where not only focusing on the stratification of the high-172 

risk population, short-term risk and determining whether women should be recalled is also 173 

essential. In fact, detection of existing malignancies, can be considered as an extremely 174 

short-term BC risk (35). Moreover, some of the model characteristics for the tasks of 175 

cancer detection and future risk prediction can be complementary (19).  176 

To evaluate the model’s capability of longer term BC risk prediction, we use two standard 177 

screening test sets following the protocols of (25) and (19). The first one is named as the 178 

biopsy-negative screening group (5,937 exams / 1,236 patients), which includes 179 

mammography exams with BI-RADS 1 and 2 scores, or other BI-RADS scores but with 180 

benign biopsy results within 90 days from the screening date. The second test set is called 181 

the normal BI-RADS screening group (5,139 exams / 1,157 patients), which only consists 182 

of the exams scored as BI-RADS 0, 1 and 2. It aims to explore how the model performs on 183 

high-risk population stratification when radiologists deem the exams not suspicious. 184 
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The inhouse mammogram dataset is coupled to patient derived classical risk factors that 185 

can be used in the clinical Breast Cancer Surveillance Consortium version 2 (BCSC, 186 

https://tools.bcsc-scc.org/BC5yearRisk/). The distribution of clinical risk factors is shown 187 

in Supplemental Table S1. The BCSC model can estimate five-year, and ten-year BC risk 188 

based on risk factors but requires excluding patients following exclusion criteria (previous 189 

diagnosis of BC, younger than age 35 or older than age 74, or missing density estimates). 190 

Although studies have shown that image-based DL risk models outperform traditional risk 191 

models in 5-year risk assessments (19, 24, 25), the potential advantages of the former still 192 

need to be explored in longer-term 10-year risk assessments. Thus, we compare our model 193 

with not only the traditional BCSC 1-year and 5-year risk models but also with the BCSC 194 

predicted 10-year risk. To demonstrate the added value of the inclusion of patient based 195 

risk factors , we also build a similar multi-time point model without risk factors as MTP-196 

BCR for comparison. 197 

To demonstrate the risk prediction capacity, we compare it to the SOTA MIRAI 198 

(Massachusetts Institute of Technology, Boston, Massachusetts) model (19). MIRAI is a 199 

mammogram-based risk model that can predict 5-year risk at multiple time points and 200 

outperforms traditional models. Moreover, this model includes a pretrained risk factor 201 

predictor that allows missing risk factors. In this study, we also explore MIRAI's ability of 202 

the longer-term 10-year risk estimate. We obtain the pretrained MIRAI model from their 203 

public GitHub (https://github.com/yala/Mirai). For a competitive comparison, we finetune 204 

the MIRAI model on the inhouse training dataset to alleviate the impact of domain shift. 205 

We conduct hyperparameter search to finetune MIRAI and select the model with the best 206 

concordance index (C-index) on the validate set. Similar to the research (19), to 207 

investigate the performance of our method on BC detection, we also compare our model 208 

with the retrospective radiologist BI-RADS scores and the Globally Aware Multiple 209 

Instance (GMIC, New York University, New York) model (29). The GMIC is another 210 

recent SOTA DL model which focuses on detecting BC within three months, and some 211 

researches also show its potential for BC risk prediction (19,25). The pretrained GMIC 212 

model is obtained from the public GitHub repository 213 

(https://www.github.com/nyukat/gmic). For fairness, we re-implement the prepossessing 214 

from the raw DICOM format mammograms through their preset prepossessing pipeline 215 

and collect the ensembled predictions from the five pretrained models. 216 

Note that, for full leverage of the mammogram examinations, we include all exams with at 217 

least one-year screening follow-up. To fairly compare five-year risk prediction with other 218 

SOTA methods and prove the contribution of our algorithm design of longitudinal input 219 

and multi-task learning, we also re-form the inhouse five-year risk dataset by excluding 220 

the examinations without at least five-year screening follow-up. Then we train our model 221 

from scratch on five-year risk prediction using the inhouse five-year risk dataset and we 222 

reperform all experiments (shown in the Supplemental Section). 223 

Risk prediction on full inhouse test dataset 224 

All concordance index (C-index) and Area Under the Receiver Operating Characteristics 225 

(AUC) results on the inhouse test dataset (6,311 examinations / 869 positives within 5 226 

years / 1,132 positives within 10 years) are summarized in Table 2. 227 

Our method’s performance: The performances of the MTP-BCR model with risk factors 228 

and without risk factors at patient level risk prediction (as shown in Table 2, and ROCs are 229 

shown in Fig. S3) obtained 10-year C-indices of 0.82 (95% CI, 0.81-0.84) and 0.77 (95% 230 
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CI, 0.75-0.78), with AUCs of 0.91 (95% CI, 0.89-0.92) and 0.87 (95% CI, 0.85-0.89) at 231 

easiest 1-year risk prediction and AUCs at the most difficult 10-year risk prediction of 232 

0.80 (95% CI, 0.78-0.82) and 0.77 (95% CI, 0.75-0.79), respectively. The AUCs results of 233 

1- to 10-year risk prediction show that the performances of the MTP-BCR with risk 234 

factors are significantly higher than those of MTP-BCR without risk factors (All P values 235 

< 0.05). We also evaluate the unilateral breast level cancer prediction of MTP-BCR 236 

models both with risk factors and without risk factors, as shown in Fig. S3. Similar 237 

performances of patient-level risk prediction are obtained, with the 10-year C-indices of 238 

0.81 (95% CI, 0.79-0.82) and 0.76 (95% CI, 0.75-0.78) for our methods with and without 239 

risk factors, and 5-year C-indices of 0.82 (95% CI, 0.81-0.84) and 0.78 (95% CI, 0.76-240 

0.80). The AUCs of unilateral breast-level cancer prediction without risk factors ranged 241 

from 0.76 to 0.87. When incorporating patient derived risk factors, the AUCs ranged from 242 

0.77 to 0.89. Therefore, our MTP-BCR risk model can also accurately predict the risk of 243 

development of BC in a unilateral breast, and using risk factor information can further 244 

improve the performance of 1- to 10-year risk. 245 

Moreover, we perform two ablation studies to choose the best design of the MTP-BCR 246 

model (Table S4 and S5). The first one is to investigate whether our multi-task and multi-247 

level, and multi-time point learning strategies can improve the ability to extract risk-248 

related features. The C-indices and AUCs show that the model with multi-task, multi-249 

level, and multi-time-point learning is better than others alone. Using risk factors can 250 

further improve the performance of the risk models. Besides, the model achieves the best 251 

performance when using five time-point historic mammogram references. 252 

Comparing with other methods (except BCSC): The 1-year AUCs of Radiologists BI-253 

RADS assessments and the BC detection method GMIC are 0.83 (95% CI, 0.81-0.85) and 254 

0.74 (95% CI, 0.72-0.77) respectively, which are significantly lower than both MTP-BCR 255 

risk models (P < 0.001). Therefore our MTP-BCR risk model outperforms radiologists 256 

and the SOTA BC detection model for BC detection and extremely short-term risk 257 

prediction, even when only using mammograms. Comparing to the SOTA DL-based 258 

MIRAI model, the 5-year C-indices of the MTP-BCR models (with/without risk factor) 259 

are 0.82 (95% CI, 0.81-0.84) and 0.77 (95% CI, 0.75-0.78) versus 0.73 (95% CI, 0.72-260 

0.75). The AUC results show that both the MTP-BCR models significantly outperform the 261 

MIRAI model at all time points from 1-year to 5-year risk (All P values < 0.01). Also for 262 

10-year risk prediction, the MTP-BCR methods still have a significant advantage (All P 263 

values < 0.05). 264 

Comparing with BCSC risk model: Note that our study also include patients who are not 265 

eligible for risk calculation by the BCSC model as they are either out of the required age 266 

range of 35-74 or had a prior BC history. For this comparison, we conduct the experiments 267 

excluding the women that did not have scores from the BCSC model (Table S1). The 268 

AUC curves of all methods are shown in Fig. 3A. The AUC results show that both the 269 

MTP-BCR models significantly outperform the 1-year, 5-year, and 10-year BCSC risk 270 

models (All P values < 0.001). The latter obtains AUCs of 0.62 (95% CI, 0.58-0.64), 0.65 271 

(95% CI, 0.62-0.68), and 0.71 (95% CI, 0.68-0.74), respectively. The 5-year and 10-year 272 

C-indices of BCSC models are 0.63 (95% CI, 0.61-0.65) and 0.64 (95% CI, 0.61-0.66), 273 

compared to C-indices of 0.91 (95% CI, 0.90-0.92) and 0.90 (95% CI, 0.88-0.91) by our 274 

MTP-BCR risk model with risk factors. Moreover, we also compare our risk models with 275 

the other methods in this specific population. The AUC results show that both the MTP-276 
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BCR models significantly outperform all other models for 1-year to 10-year risk 277 

prediction (All P values < 0.001).  278 

Performing experiments of 5-year risk prediction: Similar results are obtained for 279 

reperformed experiments on the formed 5-year risk prediction dataset (Table S6 and S7). 280 

Both the MTP-BCR models with and without risk factors are significantly better than 281 

other methods. Moreover, we also perform two same ablation studies on the inhouse 5-282 

year risk dataset (Table S12 and S13). Similar results to those of 10-year risk ablation 283 

experiments also demonstrate the stability of our learning strategy. 284 

Risk prediction in a healthy screening population 285 

In biopsy negative screening population: we evaluate all methods using the inhouse 286 

negative biopsy screening test set including 5,937 examinations / 495 positives within 5 287 

years / 758 positives within 10 years, as shown in Table 3. In this test set, results show that 288 

our MTP-BCR with risk factors holds superiority in C-index and AUC metrics. Extremely 289 

short-term (1 year) risk prediction can be equivalent to interval cancer detection. In this 290 

task, the AUC of our model without risk factors is 0.70 (95% CI, 0.65-0.74). The AUC 291 

increases to 0.77 (95% CI, 0.73-0.81) when using risk factors, significantly higher than 292 

that from BI-RADS scores with 0.61 (95% CI, 0.57-0.65), the BC detection method 293 

GMIC with 0.59 (95% CI, 0.54-0.65), and also the finetuned MIRAI with 0.65 (95% CI, 294 

0.60-0.70). In Fig. 3B and Table S2, the clinical BCSC 1-year risk model obtains an AUC 295 

of 0.70 (95% CI, 0.63-0.76), which is significantly lower than the AUCs of our MTP-BCR 296 

models (with risk factor: 0.87 / without risk factor: 0.82). For the long-term 5-year risk 297 

prediction, our model reaches a C-index of 0.65 (95% CI, 0.63-0.68) without risk factors 298 

and a C-index of 0.74 (95% CI, 0.72-0.76) with risk factors, versus 0.64 (95% CI, 0.62-299 

0.66) for the finetuned MIRAI model (Table 3). When comparing with the clinical BCSC 300 

5-year risk model (as shown in Table S1), our MTP-BCR obtains a C-index of 0.79 (95% 301 

CI, 0.76-0.82) versus 0.69 (95% CI, 0.65-0.72). For the longer-term 10-year risk estimate, 302 

our only image based MTP-BCR model has a similar performance to 10-year risk BCSC 303 

model according by the 10-year C-index. But the results indicate that the MTP-BCR with 304 

risk factors model still significantly outperforms all other models by AUCs at each time 305 

point (All P values < 0.05). 306 

In normal BI-RADS screening population: In the normal BI-RADS screening test set 307 

with 5,139 examinations / 404 positives within 5 years / 612 positives within 10 years, we 308 

investigate the potential of risk models when radiologists cannot find any suspicious 309 

findings on the mammograms. Thus, the C-indices and AUCs of the BI-RADS are close to 310 

0.5, as shown in Table 3 and Table S2. Our MTP-BCR with risk factors is still 311 

significantly better than all other methods among the extremely short-term with a 1-year 312 

AUC of 0.74 (95% CI, 0.69-0.79), long-term with a 5-year AUC of 0.72 (95% CI, 0.70-313 

0.75), and longer-term with 10-year AUC of 0.73 (95% CI, 0.71-0.76) risk predictions. 314 

Especially in the BCSC model target population (aged 35-74, without prior BC history), 315 

the 1-year AUC of our MTP-BCR risk-based model reaches 0.85 (95% CI, 0.78-0.91) 316 

while the radiologists and the cancer detection-based models fail to outperform random 317 

guessing. 318 

Consistent with the findings on the full inhouse test set, AUC and C-index metrics show 319 

that our MTP-BCR model performs similarly for unilateral BC risk prediction and patient-320 

level cancer risk prediction on both screening sets. We note that using the full training 321 

dataset to finetune MIRAI lead to poor performance of MIRAI on these two screening sets 322 
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(shown in Table S8 and S9, Replicate 5-Year BC Risk Prediction). Thus, we clean the 323 

training and validation sets using the same settings as for the two screening sets, and then 324 

re-finetune the MIRAI model and test it on the corresponding test set. Despite that, we 325 

find that the finetuned MIRAI model on the dataset with missing screening follow-up 326 

seems to be difficult. Specifically, the performances of the finetuned MIRAI from 3- to 327 

10-year BC risk prediction become worse (shown in Fig. 3 B and C). Thus, for a 328 

meaningful comparison, it is necessary to re-implement these comparison experiments on 329 

the two recollected five-year screening datasets which cleaned exams with missing follow-330 

up labels.  As shown in Table S8 and S9, the AUCs and C-indices of MIRAI, after 331 

finetuning, reaches its own optimal, and outperforms the 5-year BCSC model. The 332 

finetuned MIRAI only achieves similar performance to our image-only MTP-BCR model 333 

from 3- to 5-year risk at both screening test sets (when only for women who can be scored 334 

by the BCSC model) (Table S9). Yet our method with risk factors still surpasses the 335 

MIRAI. 336 

The ability of short and long future BC risk assessment 337 

While the above results demonstrate the advantages of our methods in risk prediction, the 338 

ability to predict real long-term future BC risk after eliminating the biases of cancer 339 

detection and short-term to 5-year risk prediction from current mammograms requires 340 

further exploration. Thus, we compare the models' performance in 5-year and 10-year risk 341 

prediction in the different subgroups of the full inhouse test sets by excluding exams from 342 

women diagnosed with cancer within less than 1, 3, and 5 years. These results, as shown 343 

in Table 4, demonstrate that our methods could not only detect BC and improve the 344 

performance of 5-year risk prediction compared with other SOTA methods but also learn 345 

the features related to the real longer-term (10 years) risk. The results of replicate 5-year 346 

BC risk prediction are shown in Table S10. 347 

Clinical sub-group analysis 348 

To distinguish how our MTP-BCR model performs in different populations and to 349 

determine the potential population that can benefit most from it, we evaluate our risk 350 

model in different clinical subgroup, based on age, breast density, personal history, and 351 

future cancer sub-types (Fig. 4). We find that the MTP-BCR model performed similarly 352 

across different density groups and independent from future cancer sub-types. The C-353 

indices for the MTP-BCR model for women aged <40, 40-60, and 60-80 are 0.87 (95% 354 

CI, 0.84-0.90), 0.81 (95% CI, 0.79-0.83) and 0.82 (95% CI, 0.79-0.84), respectively, 355 

which implies that our risk model performs better in younger cohorts. We also note that 356 

the risk model performs best in the female population without any prior personal BC 357 

history with C-index of 0.86 (95% CI, 0.84-0.87), compared to 0.76 (95% CI, 0.74-0.78),  358 

for women with a personal history of breast cancer. We also compare the C-index of 10-359 

year risk prediction of different methods in different sub-groups, which are available in 360 

Table S3.  Our results are further supported by the consistent performance from additional 361 

subgroup analyses in recollected 5-year risk dataset (Tables S11, supplemental). Due to a 362 

lack of race labels, the group analysis for different race groups is not performed.  363 

Consistency of model attention in longitudinal images 364 

To investigate how risk-related areas evolve on multiple-time mammograms that our 365 

MTP-BCR model focused on, we utilize the gradient-weighted class activation maps 366 

(Grad-CAM) (36). Fig. 5 shows a visualization example of a BC patient. The heatmaps 367 

highlight potentially related regions where our proposed MTP-BCR model identifies 368 

predictive imaging features for BC risk. While this visualization is a preliminary process, 369 
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results show that the high-risk regions from multiple time point examinations that our 370 

model focuses on are relatively consistent. Moreover, the heatmaps show that our risk 371 

model could accurately figure out high-risk areas of short-term BC at both the 372 

craniocaudal (CC) and the mediolateral oblique (MLO) views of mammograms. The 373 

similar result is observed from the heatmaps of the retrained model on the inhouse five-374 

year risk dataset (Fig. S5, supplemental).  375 

Discussion  376 

In this study, we develop a multi-time-point examination-based risk model, MTP-BCR, to 377 

assess 10-year breast cancer risk on patient and unilateral breast level using longitudinal 378 

screening mammograms and medical records. From extremely short-term risk (1-year, BC 379 

detection) to long-term (10-year) risk prediction, MTP-BCR outperforms radiologists' BI-380 

RADS assessment, a SOTA BC detection method (GMIC), an extensively clinically 381 

validated single time point-based 5-year risk DL approach (MIRAI), and a traditional 382 

clinical risk model (BCSC). Apart from the patient level risk, our method could also 383 

estimate the risk base on unilateral breast level with comparable ability. Experiments on 384 

different screening subcohorts suggest that the longitudinal assessment of MTP-BCR is 385 

able to accurately identify longer-term, future risk-related features on mammograms, 386 

which is further supported by consistent heatmaps of multi-time point mammograms. 387 

Final sub-group analysis indicates that the proposed method performs consistently across 388 

subgroups of different breast densities and for future types of BC.  389 

The motivation to develop BC risk models is for guiding personalized screening or 390 

triggering prevention regimens. The idea is to determine the screening frequency and the 391 

appropriate screening modality based on the individual risk of women, potentially also to 392 

recommend preventive therapy for women at a high-risk of developing breast cancer (13). 393 

Based on of risk factors such as age, genetic determinants, family history, previous benign 394 

biopsies, and recently considered image-based breast density, traditional risk models are 395 

used to globally assess 5-year, 10-year, or lifetime risk for large groups of women (37). 396 

However, our results show that density alone is not sufficient to represent all of the risk-397 

related information within the mammograms. Moreover, ignoring the short-term risk of 398 

BC limits the value of these models in early BC detection. Recent DL-based risk models 399 

may fully utilize screening images but mainly target short-term risk prediction or interval 400 

cancer detection while ignoring long-term risk, which limits the ability to offer 401 

personalized screening recommendations and preventive interventions. In contrast our 402 

MTP-BCR risk model  combines the advantages of both  short- and long-term risk 403 

prediction strategies. 404 

For short-term risk estimation, our risk model outperforms radiologists' BI-RADS and 405 

other recent DL methods. The results on the full test set demonstrate that our MTP-BCR 406 

risk model is more competitive than other risk models in indicating current or future BC 407 

risk in a realistic complex clinical screening setting independent of radiological 408 

interpretation. Other methods, especially traditional risk tools, can only work with modest 409 

performance to estimate women's future risk on the premise that the physician confirm 410 

that there is no existing cancer. Furthermore, in the normal BI-RADS screening group, our 411 

risk model has the highest AUC of 0.74 for the 1-year risk prediction, which can be 412 

regarded as an aid for radiologists to improve interval cancer detection in the whole 413 

screening population, including primary and recurring cancers. When detecting the 414 

primary interval cancers of the population that the BCSC model targets, our risk model 415 

reaches an AUC of 0.87. Aiming to facilitate radiologists' understanding of the model 416 
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decision-making, our risk model could also estimate the unilateral-breast level risk with 417 

similar performance to the patient-level risk prediction. Thus, our retrospective analysis 418 

and visualizations indicate that the MTP-BCR risk model could improve early detection 419 

and reduce interval cancer by guiding radiologists to identify high-risk regions on images.  420 

For 5-year risk prediction, our methods surpass the SOTA MIRAI risk method across all 421 

screening cohorts or subcohorts. Although the MIRAI model does not need to have the 422 

risk factors as inputs and performs similarly to our image-only MTP-BCR model at 5-year 423 

risk (P > 0.05) on the biopsy negative screening set and normal BI-RADS set, we note that 424 

the MIRAI model involves a pretrained risk factors predictor enabling it to benefit from 425 

the missing risk factors that reaches a similar performance of 5-year risk prediction as 426 

MIRAI with risk factors (P = 0.27) (19). While our MTP-BCR model with risk factors is 427 

significantly better than all others (All P values < 0.05). Besides, the MIRAI is already 428 

trained on their large private MGH dataset. The training set includes 210,819 exams is 6.5 429 

times larger than our Inhouse training set. Then we still fully finetuned the MIRAI with its 430 

weight in our In-house training set without freezing the encoder. On the other hand, our 431 

MTP-BCR model is only trained on the In-house dataset directly. As for long-term risk, 432 

the MTP-BCR risk model is more accurate than the BCSC 10-year risk model, which 433 

suggests our risk model has the potential for better decisions regarding a risk-adapted 434 

screening regimen and preventive therapy. At breast level, risk could be the foundation of 435 

more refined screening and prevention strategies. It should be underlined that in this study 436 

we also involve patients with prior BC history, which are not included in most of the risk 437 

models. Our risk model is, in fact, also designed to leverage the history information of 438 

prior-tumor and therapy, which the recurrence risk models use (38), for recurrence cancer 439 

risk prediction. 440 

The promising performance of MTP-BCR can be attributed to its capacity to capture 441 

unique BC risk-related characteristics. The multi-task learning strategy helps the model to 442 

fully extract risk-related features from images and also improves the generalization of the 443 

DL model (39). The multi-level learning strategy enables our model to learn the 444 

relationship between local (unilateral breast) level risk and global (patient) level risk while 445 

keeping the local information as much as possible when combining the local features for 446 

the summary of the global features. Thus, the MTP-BCR risk model can consistently focus 447 

on similar regions on longitudinal mammograms without registration. For accurate longer-448 

term BC risk prediction, we need not only the static risk-related features from the single 449 

time point exam but also the dynamic features from the multi-time point exams to indicate 450 

the development risk of BC. Recently, a study (20) also explored the potential of using 451 

longitudinal mammogram examinations to improve short-term risk prediction. But we 452 

note that it has been restricted to a small image-only dataset and a setting of a fixed 453 

number of input time points, which hinders its clinical application. On the contrary, our 454 

MTP-BCR model is built based on an extensive clinical screening mammogram dataset, 455 

enabling efficient use of risk factors, and has the flexibility to input 0-5 historical 456 

reference exams. 457 

This research has limitations. Although we leverage the prior tumor information and 458 

therapy records (as explained in Section Methods) to improve our risk model’s 459 

performance on BC recurrence risk, big gaps exist between the subgroups with/without 460 

prior BC. More efforts are needed to improve the performance of recurrence risk 461 

prediction. Further validation of our model is required before it can be broadly 462 

implemented in clinical practice. For instance, more detailed demographics (e.g., race) are 463 
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required to prove its generalizability. We note that the breast cancer incidence in our 464 

screening set is higher than that of the standard screening dataset. Therefore, in the future, 465 

we will also explore the clinical potential of our MTP-BCR model based on external 466 

standard screening mammography datasets from multiple hospitals. To validate the 467 

detection of extremely early signs of BC, a pixel-level annotated dataset is necessary. 468 

Moreover, a reader study for incorporation of the risk model in the radiologist workflow 469 

may also be a future direction for further demonstrating the benefits of risk models for 470 

personalization BC screening policy. 471 

In conclusion, we propose a novel DL model using longitudinal mammogram 472 

examinations and history obtained from medical records that outperforms the SOTA 473 

MIRAI and traditional BCSC risk model by a large margin. The improvement is 474 

consistent across screening and future risk subgroups. These results support the hypothesis 475 

that longitudinal mammography contains informative spatiotemporal indicators of future 476 

breast risk that cannot be captured by the single-time point DL models. Multi-time point 477 

models based on longitudinal analysis strategies have the potential to replace single-time 478 

point based risk prediction models. Apart from increasing the accuracy for BC risk 479 

prediction, we also improve the interpretability of our risk model, which could potentially 480 

accelerate the translation of personalized AI-based risk stratification into routine BC 481 

screening policies.  482 

 483 

Materials and Methods 484 

Data collection 485 

Our retrospective study was approved by the Institutional Review Board (IRB) of 486 

Netherlands Cancer Institute (NKI) with protocol numbers: IRBd21-060. A flowchart 487 

illustrating the construction of this large study dataset is shown in Fig. 2. We collect 488 

37,517 patients recorded in our hospital between January 1, 2004, and December 31, 489 

2020. Then we collect the longitudinal digital screening mammograms and exclude 490 

patients without at least one year of screening follow-up, in line with the research (19). 491 

Details about the distributions of the dataset are available in Fig. S1. Although part of the 492 

patients did not have 10-year screening follow-up, we also leverage their known outcomes 493 

and images to supervise the model. Therefore, we keep 9,133 patients consisting of 2,562 494 

BC patients who were biopsy-proven within 10 years and 6,571 at intermediate risk who 495 

had at least 10 years of screening follow-up and did not receive a cancer diagnosis. All 496 

patients are randomly divided into training, validation, and test sets with a ratio of 497 

7.5:1:1.5. The training, validation, and test sets include 6,858, 919, and 1,356 patients with 498 

32,049, 4,432, and 6,311 examinations, respectively. 499 

BC-relevant risk factors are already showing an essential role in both traditional (12, 15) 500 

and image-based DL methods (16, 19). In our study, we collect the risk factors through 501 

electronic medical records from clinical radiology, tumor, therapy, and pathology reports 502 

from our hospital. The distribution of clinical risk factors in the inhouse dataset is shown 503 

in Table 1. Specifically, we obtain age, race, BI-RADS and breast density (ACR) grade, 504 

family history, genetic determinants, previous BC history, previous ovarian cancer history, 505 

self-reported menopausal status, and age of menarche. The BI-RADS and breast density 506 

(ACR) grade are estimated by radiologists during clinical interpretation. BI-RADS grades 507 

include additional imaging required (BI-RADS 0), normal (BI-RADS 1), benign (BI-508 

RADS 2), probably benign (BI-RADS 3), suspicious for malignancy (BI-RADS 4), highly 509 

suggestive of malignancy (BI-RADS 5), and known biopsy-proven malignancy (BI-RADS 510 
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6). ACR class include mostly composed of fatty tissue (ACR 1), scattered fibroglandular 511 

tissue (ACR 2), heterogeneously dense (ACR 3), and extremely dense (ACR 4). Images 512 

with missing densities are interpolated by nearest neighbour interpolation with reference 513 

to the density estimates of screening images from adjacent years of the patient. Because 514 

the weights of patients are missing, we did not calculate the body mass index (BMI). In 515 

our study, we also include patients with prior BC. Thus, following the research of 516 

recurrence risk prediction (38), we also leverage the information of prior tumor, which 517 

include pathologic tumor (pT)-stage, pathologic node (pN)-stage, hormone receptor status 518 

(estrogen receptor (ER)- and progesterone receptor (PR)-status), anti-hormonal therapy, 519 

human epidermal growth factor receptor 2 (HER2-status), type of surgery, adjuvant 520 

chemotherapy, adjuvant radiation therapy, antibody therapy and Pathologic Complete 521 

Response (pCR). 522 

Problem formulation 523 

For the risk prediction, we first divide the relevant time span into one-year time-slots and 524 

treat each slot as an independent class. To evaluate the overall risk of the first 𝑗 years, the 525 

probabilities of each year are summed together from the first year up to the 𝑗𝑡ℎ year. The 526 

formulas are defined as follows Eq. 1: 527 

𝑅𝑖𝑠𝑘𝑗 = ∑ 𝑦𝑖

𝑗

𝑖=1

= ∑ 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹(𝑥))
𝑖

𝑗

𝑖=1

(1) 528 

where, 𝑦𝑖 means the predicted probability of an exam getting BC diagnosis at 𝑖𝑡ℎ year, 529 

which is calculated by inputting a sequence of a mammograms and corrected risk factors 530 

𝑚 into the model 𝐹 and using the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function for the probability generalization. 531 

For example, as shown in Fig. 1B, to predict the 𝑅𝑖𝑠𝑘 of a patient getting BC within 𝑗 = 2 532 

years from the checked images, it can be calculated as the sum of the probability of the 533 

first year and second year. 534 

Architectural details 535 

As shown in Fig. 1, the MTP-BCR model consists of the network weights shared Image 536 

Encoder (𝝋𝒆𝒏𝒄𝒐𝒅𝒆𝒓) connected by Side-Specific (Unilateral-based) Module 537 

(𝝋𝒖𝒏𝒊𝒍𝒂𝒕𝒆𝒓𝒂𝒍), Exam-based Module (𝝋𝒆𝒙𝒂𝒎), and finally, Multi-Time-Point fusion 538 

Module (𝝋𝒇𝒖𝒔𝒊𝒐𝒏) combines with the inputted risk factors of patients. Moreover, to 539 

improve risk modeling performance and generalization, we also introduce multi-task 540 

learning, which could benefit from learning the domain-specific features from multiple 541 

BC risk-related tasks (detailed below). 542 

Image Encoder: We employ ImageNet pre-trained ResNet-18, excluding the last full 543 

connection (FC), as the encoder (𝜑𝑒𝑛𝑐𝑜𝑑𝑒𝑟) to extract breast tissue features. The weights-544 

shared encoders correspond to each image from a sequence of mammography exams. 545 

Each exam includes four images including craniocaudal (CC) view (𝑣 = 𝑐𝑐) and 546 

mediolateral oblique (MLO) view (𝑣 = 𝑚𝑙𝑜) from the left(𝑙 = 𝑙𝑒𝑓𝑡)  and right(𝑙 = 𝑟𝑖𝑔ℎ𝑡) 547 

side breast. Thus, shown in the Eq. 2, each input mammogram, 𝑥𝑣,𝑙
𝑡 , from the 6 time point 548 

(𝑡) exams is represented as the high-dimensional locally feature vector 𝜃𝑣,𝑙
𝑡  with the size of 549 

512 × 1 by the encoder separately. 550 

𝜃𝑣,𝑙
𝑡 = 𝜑𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑣,𝑙

𝑡 ), 𝑣 ∈ {𝑐𝑐, 𝑚𝑙𝑜}, 𝑙 ∈ {𝑟𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡}, 𝑡 ∈ {0, 1, 2, 3, 4, 5} (2) 551 
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Side-Specific Prediction Module: Ipsilateral CC and MLO views are different projection 552 

views of the same breast. Practically, they are combined to express the three-dimensional 553 

structure of the breast, which radiologists use to detect abnormalities. Moreover, most 554 

tumors only appear in one of the breasts (40). In order to train the model to learn the three-555 

dimensional structure of the breast fully and correspond to the previous left and right 556 

breast-specific tumor information, we concatenate (⊕) the feature vectors of the 557 

ipsilateral view, combined with the side-specifically prior tumor information (𝑡𝑢𝑚𝑜𝑟𝑙
𝑡) 558 

and then place a Multi-layer Perceptron (MLP) for side-based multi-task learning. The 559 

MLP layer includes two FC layers with an input size of 1152 for the first FC layer and 512 560 

output units each. A dropout layer with a rate of 0.5 between the two FC layers. Therefore, 561 

show in Eq. 3 features of the ipsilateral CC and MLO views and outputs a vector (𝜀𝑙
𝑡) with 562 

the size of 512 × 1 representing the unilateral-based breast features. 563 

𝜀𝑙
𝑡 = 𝜑𝑢𝑛𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝑡𝑢𝑚𝑜𝑟𝑙

𝑡 ⊕ 𝜃𝑙,𝑣=𝑐𝑐
𝑡 ⊕ 𝜃𝑙,𝑣=𝑚𝑙𝑜

𝑡 ), 𝑙 ∈ {𝑟𝑖𝑔ℎ𝑡, 𝑙𝑒𝑓𝑡}, 𝑡 ∈ {0, 1, 2, 3, 4, 5} (3) 564 

Exam-Based Prediction Module: For a similar purpose, we also need to combine the 565 

information of bilateral breasts to predict the patient level risk. As in Eq. 4, we 566 

concatenate the feature vectors from the output bilateral breasts and feed them to another 567 

MLP layer with the same structure for the exam-based multi-task learning. Also, a size of 568 

512 × 1 vector feature (𝛿𝑡), which combines the features from right and left breast, 569 

represents the global information of a four-view exam. 570 

𝛿𝑡 = 𝜑𝑒𝑥𝑎𝑚(𝜀𝑙=𝑟𝑖𝑔ℎ𝑡
𝑡 ⊕ 𝜀𝑙=𝑙𝑒𝑓𝑡

𝑡 ), 𝑡 ∈ {0, 1, 2, 3, 4, 5} (4) 571 

Multi-Time Point Fusion Model: For learning the risk development pattern from the 572 

longitudinal screening mammograms, five historic exams before the current exam are 573 

randomly selected as the reference for the comparison by the multi-time point fusion 574 

model. The current exam refers to the target exam for which we access future BC risk. A 575 

sequence of mammography exams serve as references along with the time intervals 576 

(𝑖0, 𝑖1, ⋯ , 𝑖5) to the current exam and are combined with the risk factors to predict the 577 

future likelihood of BC occurring after the current mammograms. Inspired by the research 578 

(26), we leverage a sequence/time-aware transformer learning (41) to capture features 579 

about the temporal relations between multiple mammograms, which aims to disentangle 580 

the risk-relevant changing patterns from the normal breast tissue changing patterns. For 581 

embedding the spatiotemporal relationships of past-current exams into the continuous 582 

latent space, we employ Continuous Position Embedding (CPE) method (26), which 583 

computes time continuous embedding 𝑒𝑡 to condition the image features. Not that, to 584 

avoid ignoring local information of images during multi-time exam comparison, we 585 

combine both the local image features 𝜃𝑣,𝑙
𝑡 , and global features 𝛿𝑡. For patients without 586 

five history records for references, we select all history records and then mute the missing 587 

data by filling 0. At the same time, for the purpose of data augmentation, we randomly 588 

drop a subset of exams in the reference sequence to improve model robustness and avoid 589 

overfitting. The fusion model also includes the patient risk factors (𝑟𝑖𝑠𝑘𝑓). Subsequently, 590 

a fused feature (𝜏, a vector size of 640 × 1) is obtained for the final multi-time fused-591 

based multi-task learning, representing the patient’s multi-time point screening 592 

information. 593 

𝜏 = 𝜑𝑓𝑢𝑠𝑖𝑜𝑛( 𝑟𝑖𝑠𝑘𝑓 ⊕ 𝑒𝑡 ⊕ 𝛿𝑡 ⊕ 𝜃𝑙,𝑣
𝑡 ) (5) 594 



 14 / 28 

 

Multi-task classifier for side-based, exam-based, and multi-time fused prediction:  595 

During the multi-task learning, we constrain the feature extractor for BC risk-related 596 

prediction task learning, shown in Fig. 1C. For instance, the predictions of breast-based 597 

BC risk, history, tumor location, and tumor sub-type are included for the side-based multi-598 

task classifier. For the exam-based multi-task classifier, we replace the breast-based BC 599 

risk prediction and history prediction with exam-based prediction. We also add the 600 

prediction of age, BI-RADS, race, density, and manufacture. And for the final multi-time 601 

fused classifier, we mainly focus on unilateral specific BC risk. We calculate the Binary 602 

Cross Entropy (BCE) for risk prediction and Cross Entropy (CE) Loss for other 603 

predictions. For all three classifiers, we mainly focus on the task of risk prediction thus 604 

risk-specific tasks have 5 times higher weight than other tasks during the training. For 605 

total loss computing, Eq. 6, we also allocate weight 𝑤𝑓𝑢𝑠𝑖𝑜𝑛 = 1 to the final multi-time 606 

point fused classifier, 5 times higher than the other two classifiers (𝑤𝑠𝑖𝑑𝑒 = 0.2, 𝑤𝑒𝑥𝑎𝑚 =607 

0.2). We choose the weights of loss after the hyperparameter search. 608 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑠𝑖𝑑𝑒 × 𝑤𝑠𝑖𝑑𝑒 + 𝐿𝑒𝑥𝑎𝑚 × 𝑤𝑒𝑥𝑎𝑚 + 𝐿𝑓𝑢𝑠𝑖𝑜𝑛 × 𝑤𝑓𝑢𝑠𝑖𝑜𝑛 (6) 609 

Implementation details 610 

We use ResNet-18 initializing with ImageNet pre-trained weights as the backbone of all 611 

our methods. All methods are implemented in PyTorch (version 1.12.1) with the same 612 

training strategies. We use the Adam (42) optimizer and a rate of 0.5 for dropout (43) after 613 

every fully connected layer. We train models for 20 epochs with a batch size of 8 and an 614 

initial learning rate of 10-4. The learning rate is decayed by a factor of 10 every five 615 

epochs. The best models of each method are chosen with the best AUC performance index 616 

on the validation set. The experiments are performed on a Quadro A6000 GPU (48GB). 617 

The source code is available at https://github.com/Netherlands-Cancer-Institute/MTP-618 

BCR. Mammograms with standard DICOM format are pre-processed before being fed 619 

into the model. First, we convert the images into 16-bit PNG format and segment the 620 

whole breast region to exclude the background. Then, to unify the size of all images, we 621 

zero-pad and resize images to 512 by 1024 pixels while retaining the relative scale and 622 

aspect ratio. Finally, the image is normalized using the min‐max method. We also employ 623 

standard data augmentation techniques (i.e., random flip, brightness, and contrast) during 624 

training for model robustness and overfitting prevention. 625 

Evaluation metrics and statistical analysis 626 

In this study, the tasks of prediction of 1- to 10-year risk are categorical classification 627 

tasks, in which positive samples are the patients diagnosed with BC within 1 to 10 years 628 

while negative samples are women who stayed healthy for at least 1 to 10 year-screening 629 

follow-ups. The performances of the different methods are evaluated by the area under the 630 

receiver operating characteristic curve (AUC, calculated by scikit-learn, version: 1.1.2, 631 

https://scikit-learn.org). To generally evaluate AUCs across all times (from 1- to 10-year 632 

risk), the Uno’s C-index (44) is calculated using scikit-survival (version 0.18.0, 633 

https://scikit-survival.readthedocs.io/en/stable/). The 95% confidence intervals (CI) of 634 

AUC and C-index matrices are estimated by bootstrapping with 1,000 bootstraps for each 635 

measure. Statistical significance among different methods is assessed using DeLong's test 636 

(45), with the significant level predefined as P < 0.05. 637 

 638 

 639 

 640 
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Figures and Tables 812 
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 816 
Fig. 1. The flowchart of Inhouse mammogram dataset collection for 10-year risk 817 

prediction.  818 
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 820 
 821 

Fig. 2. Schematic description of Multi-Time-Point Breast Cancer Risk (MTP-BCR) 822 

model. A. Overview of selecting the multi-time points mammograms for training the MTP-BCR 823 

model. B. how to calculate the BC risk C. The details of the MTP-BCR model 824 

 825 

 826 

  827 
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 828 

 829 
Fig. 3. Cumulative risk at multiple time points (only for women who are completely scored across the BCSC model). Results on the 830 

full test set (A), biopsy negative screening test set (B), and normal BI-RADS screening test set (C) are shown in the left, middle, and right, respectively. Ours 831 

A: MTP-BCR with risk factors; Ours B: MTP-BCR without risk factors. The color dots represent the performance of the target tasks for which different 832 

methods are originally designed to. For instance, the MIRAI risk model is designed to predict 5-year BC risk at multiple time points, GMIC and BI-RADS 833 

focus on detecting BC within three months, and the BCSC risk model is used to predict 1-, 5-, and 10-year BC risk. Our methods are designed to predict 10-834 

year BC risk at multiple time points. The dashed curves with different colors represent the AUC metric of 1- to 10- years BC risk for these methods we 835 

explored. Asterisk (*) means that there is a significant difference (DeLong's test, P < 0.05) in two AUCs corresponding to the methods, whereas tilde (~) 836 

indicates that there is no significant difference (DeLong's test, P > 0.05) in AUCs of the two methods. 837 

 838 
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 839 
Fig. 4. Cumulative risk at multiple time points on different sub-groups.  840 
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 841 
Fig. 5. An example of  class activation map (CAM) visualization. The longitudinal craniocaudal (CC) and mediolateral oblique (MLO) 842 

mammograms were acquired from a patient who participated in ten consecutive breast cancer screening from 2005 to 2015, culminating in a breast cancer 843 

diagnosis during the last screening (invasive ductal and lobular carcinoma located at C50.4, exhibiting positive expression of estrogen receptor (ER+), 844 

progesterone receptor (PR+), and human epidermal growth factor receptor 2 (Her2Neu+)). The closer to red, the more relevant the pixel is to the risk 845 

prediction.  846 
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Table 1. Detailed demographics for the Inhouse dataset. We categorize the number of 847 

mammography examinations into different demographic subgroups (rows) and different health 848 

subgroups (columns). The reported percentages are the number of examinations as a proportion of 849 

the total number of exams in the corresponding health conditions (Num/ColSum) and as a ratio of 850 

all exams in the same demographic sub-group (Num/RowSum).  851 

Sub-group 
Healthy in 5Y 
(Num/ColSum) 

(Num/RowSum) 

Healthy in 10Y 
(Num/ColSum) 

(Num/RowSum) 

Get BC in 1Y 
(Num/ColSum) 

(Num/RowSum) 

Get BC in 5Y 
(Num/CoSum) 

(Num/RowSum) 

Get BC in 10Y 
(Num/ColSum) 

(Num/RowSum) 

All  
(Num/ColTotal) 

(Num/ RowSum) 

 

Total: 

    
36,522 

(100%)(85.3%) 

34,769  

(100%)(81.3%) 

3,742  

(100%)(8.7%) 

6,270  

(100%)(14.7%) 

8,023  

(100%)(18.7%) 

42,792 

 (100%)(100%) 

 

Age: 

  <40 
4,473  

(12.2%)(90.1%) 

4,290  

(12.3%)(86.4%) 

327  

(8.7%)(6.6%) 

492  

(7.8%)(9.9%) 

675  

(8.4%)(13.6%) 

4,965  

(11.6%)(100%) 

  40-50 
9,371  

(25.7%)(87.0%) 

8,983  

(25.8%)(83.4%) 

850  

(22.7%)(7.9%) 

1,405  

(22.4%)(13.0%) 

1,793  

(22.3%)(16.6%) 

10,776  

(25.2%)(100%) 

  50-60 
10,580  

(29.0%)(85.6%) 

10,017  

(28.8%)(81.1%) 

1,092  

(29.2%)(8.8%) 

1,776  

(28.3%)(14.4%) 

2,339  

(29.2%)(18.9%) 

12,356  

(28.9%)(100%) 

  60-70 
7,295  

(20.0%)(81.6%) 

6,828  

(19.6%)(76.4%) 

902  

(24.1%)(10.1%) 

1,647  

(26.3%)(18.4%) 

2,114  

(26.3%)(23.6%) 

8,942  

(20.9%)(100%) 

  70-80 
3,212  

(8.8%)(83.6%) 

3,070  

(8.8%)(79.9%) 

360  

(9.6%)(9.4%) 

630  

(10.0%)(16.4%) 

772  

(9.6%)(20.1%) 

3,842  

(9.0%)(100%) 

  >80 
279  

(0.8%)(64.7%) 

273  

(0.8%)(63.3%) 

102  

(2.7%)(23.7%) 

152  

(2.4%)(35.3%) 

158  

(2.0%)(36.7%) 

431  

(1.0%)(100%) 

  Unknow 
1,312  

(3.6%)(88.6%) 

1,308  

(3.8%)(88.4%) 

109  

(2.9%)(7.4%) 

168  

(2.7%)(11.4%) 

172  

(2.1%)(11.6%) 

1,480  

(3.5%)(100%) 

 

BI-RADS： 
 

  BI-RADS 0 
306  

(0.8%)(83.8%) 

296  

(0.9%)(81.1%) 

39  

(1.0%)(10.7%) 

59  

(0.9%)(16.2%) 

69  

(0.9%)(18.9%) 

365  

(0.9%)(100%) 

  BI-RADS 1 
6,126 

(16.8%)(95.5%) 

5,913 

(17.0%)(92.2%) 

66  

(1.8%)(1.0%) 

290  

(4.6%)(4.5%) 

503  

(6.3%)(7.8%) 

6,416  

(15.0%)(100%) 

  BI-RADS 2 
25,363 

(69.4%)(91.1%) 

24,174 

(69.5%)(86.8%) 

603 

(16.1%)(2.2%) 

2,492 

(39.7%)(8.9%) 

3,681 

(45.9%)(13.2%) 

27,855 

(65.1%)(100%) 

  BI-RADS 3 
1,052 

(2.9%)(76.1%) 

991  

(2.9%)(71.7%) 

245 

(6.5%)(17.7%) 

331 

(5.3%)(23.9%) 

392 

(4.9%)(28.3%) 

1,383  

(3.2%)(100%) 

  BI-RADS 4 
242  

(0.7%)(28.2%) 

230 

 (0.7%)(26.8%) 

590 

(15.8%)(68.8%) 

616 

(9.8%)(71.8%) 

628 

(7.8%)(73.2%) 

858  

(2.0%)(100%) 

  BI-RADS 5 
21  

(0.1%)(2.5%) 

21  

(0.1%)(2.5%) 

826 

(22.1%)(97.3%) 

828 

(13.2%)(97.5%) 

828 

(10.3%)(97.5%) 

849  

(2.0%)(100%) 

  BI-RADS 6 
0  

(0.0%)(0.0%) 

0  

(0.0%)(0.0%) 

917 

(24.5%)(100%) 

917 

(14.6%)(100%) 

917 

(11.4%)(100%) 

917  

(2.1%)(100%) 

  None 
3,412 

(9.3%)(82.2%) 

3,144 

(9.0%)(75.8%) 

456 

(12.2%)(11.0%) 

737 

(11.8%)(17.8%) 

1,005 

(12.5%)(24.2%) 

4,149  

(9.7%)(100%) 

 

Density: 
 

  ACR 1 
2,340 

(6.4%)(86.8%) 

2,250 

(6.5%)(83.5%) 

208  

(5.6%)(7.7%) 

355 

(5.7%)(13.2%) 

445 

(5.5%)(16.5%) 

2,695  

(6.3%)(100%) 

  ACR 2 
21,163 

(57.9%)(84.7%) 

20,051 

(57.7%)(80.2%) 

2,308 

(61.7%)(9.2%) 

3,829 

(61.1%)(15.3%) 

4,941 

(61.6%)(19.8%) 

24,992 

(58.4%)(100%) 

  ACR 3 
9,782 

(26.8%)(87.1%) 

9,385 

(27.0%)(83.6%) 

812 

(21.7%)(7.2%) 

1,448 

(23.1%)(12.9%) 

1,845 

(23.0%)(16.4%) 

11,230 

(26.2%)(100%) 

  ACR 4 
3,137 

(8.6%)(85.7%) 

2,987 

(8.6%)(81.6%) 

310  

(8.3%)(8.5%) 

523 

(8.3%)(14.3%) 

673 

(8.4%)(18.4%) 

3,660  

(8.6%)(100%) 

  unknow 
100  

(0.3%)(46.5%) 

96  

(0.3%)(44.7%) 

104 

(2.8%)(48.4%) 

115 

(1.8%)(53.5%) 

119 

(1.5%)(55.3%) 

215  

(0.5%)(100%) 

 

Race: 
 

  White 
10,820 

(29.6%)(88.2%) 

10,133 

(29.1%)(82.6%) 

659 

(17.6%)(5.4%) 

1,446 

(23.1%)(11.8%) 

2,133 

(26.6%)(17.4%) 

12,266 

(28.7%)(100%) 

  African 
141  

(0.4%)(88.1%) 

135  

(0.4%)(84.4%) 

11  

(0.3%)(6.9%) 

19  

(0.3%)(11.9%) 

25  

(0.3%)(15.6%) 

160  

(0.4%)(100%) 

  Asian 
270  

(0.7%)(91.2%) 

265  

(0.8%)(89.5%) 

9  

(0.2%)(3.0%) 

26  

(0.4%)(8.8%) 

31  

(0.4%)(10.5%) 

296  

(0.7%)(100%) 

  Other Race 
94  

(0.3%)(88.7%) 

90  

(0.3%)(84.9%) 

7  

(0.2%)(6.6%) 

12  

(0.2%)(11.3%) 

16  

(0.2%)(15.1%) 

106  

(0.2%)(100%) 

  Unknow 
25,197 

(69.0%)(84.1%) 

24,146 

(69.4%)(80.6%) 

3,056 

(81.7%)(10.2%) 

4,767 

(76.0%)(15.9%) 

5,818 

(72.5%)(19.4%) 

29,964 

(70.0%)(100%) 

Continued Table 1 

 

Gene: 
 

  BRCA 1 mutation 1,321 

(3.6%)(83.8%) 

1,229 

(3.5%)(77.9%) 

103  

(2.8%)(6.5%) 

256 

(4.1%)(16.2%) 

348 

(4.3%)(22.1%) 

1,577  

(3.7%)(100%) 
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  BRCA 2 mutation 
1,183 

(3.2%)(86.3%) 

1,115 

(3.2%)(81.3%) 
75 (2.0%)(5.5%) 

188 

(3.0%)(13.7%) 

256 

(3.2%)(18.7%) 

1,371  

(3.2%)(100%) 

  Positive 
2,722 

(7.5%)(84.6%) 

2,529 

(7.3%)(78.6%) 
197 (5.3%)(6.1%) 

497 

(7.9%)(15.4%) 

690 

(8.6%)(21.4%) 

3,219  

(7.5%)(100%) 

  Negative 
3,120 

(8.5%)(78.5%) 

2,653 

(7.6%)(66.8%) 
367 (9.8%)(9.2%) 

852 

(13.6%)(21.5%) 

1,319 

(16.4%)(33.2%) 

3,972  

(9.3%)(100%) 

  Unknow 
30,680 

(84.0%)(86.2%) 

29,587 

(85.1%)(83.1%) 

3,178 

(84.9%)(8.9%) 

4,921 

(78.5%)(13.8%) 

6,014 

(75.0%)(16.9%) 

35,601 

(83.2%)(100%) 

 

Menopausal Status： 
 

  Pre-menopausal 
5,570 

(15.3%)(88.7%) 

5,333 

(15.3%)(85.0%) 

431 

(11.5%)(6.9%) 

707 

(11.3%)(11.3%) 

944 

(11.8%)(15.0%) 

6277  

(14.7%)(100%) 

  
Peri-menopausal  

& Unknow 
18,599 

(50.9%)(86.9%) 

17,825 

(51.3%)(83.3%) 

1,769 

(47.3%)(8.3%) 

2,792 

(44.5%)(13.1%) 

3,566 

(44.4%)(16.7%) 

21,391 

(50.0%)(100%) 

  Post- menopausal 
12,353 

(33.8%)(81.7%) 

11,611 

(33.4%)(76.8%) 

1,542 

(41.2%)(10.2%) 

2,771 

(44.2%)(18.3%) 

3,513 

(43.8%)(23.2%) 

15,124 

(35.3%)(100%) 

 

Personal History: 
 

  
Breast Cancer  

Positive 
18,149 

(49.7%)(87.2%) 

17,058 

(49.1%)(82.0%) 

985 

(26.3%)(4.7%) 

2,656 

(42.4%)(12.8%) 

3,747 

(46.7%)(18.0%) 

20,805 

(48.6%)(100%) 

  
Breast Cancer 

Negative 

18,373 

(50.3%)(83.6%) 

17,711 

(50.9%)(80.6%) 

2,757 

(73.7%)(12.5%) 

3,614 

(57.6%)(16.4%) 

4,276 

(53.3%)(19.4%) 

21,987 

(51.4%)(100%) 

  
Ovarian Cancer 

Positive 
401  

(1.1%)(79.2%) 

368  

(1.1%)(72.7%) 

42  

(1.1%)(8.3%) 

105 

(1.7%)(20.8%) 

138 

(1.7%)(27.3%) 

506  

(1.2%)(100%) 

  
Ovarian Cancer 

Negative 
36,121 

(98.9%)(85.4%) 

34,401 

(98.9%)(81.4%) 

3,700 

(98.9%)(8.7%) 

6,165 

(98.3%)(14.6%) 

7,885 

(98.3%)(18.6%) 

42,286 

(98.8%)(100%) 

 

Menarche Age： 
 

  <12 
854  

(2.3%)(91.6%) 

819  

(2.4%)(87.9%) 

30  

(0.8%)(3.2%) 

78  

(1.2%)(8.4%) 

113 

(1.4%)(12.1%) 

932  

(2.2%)(100%) 

  12-15 
4,981 

(13.6%)(90.5%) 

4,744 

(13.6%)(86.2%) 

202  

(5.4%)(3.7%) 

521  

(8.3%)(9.5%) 

758 

(9.4%)(13.8%) 

5,502  

(12.9%)(100%) 

  >15 
228  

(0.6%)(90.8%) 

223  

(0.6%)(88.8%) 

9  

(0.2%)(3.6%) 

23  

(0.4%)(9.2%) 

28  

(0.3%)(11.2%) 

251  

(0.6%)(100%) 

  Unknow 
30,459 

(83.4%)(84.4%) 

28,983 

(83.4%)(80.3%) 

3,501 

(93.6%)(9.7%) 

5,648 

(90.1%)(15.6%) 

7,124 

(88.8%)(19.7%) 

36,107 

(84.4%)(100%) 

 

Family History： 
 

  
Breast Cancer 

Positive 
25,687 

(70.3%)(83.2%) 

24,026 

(69.1%)(77.8%) 

2,908 

(77.7%)(9.4%) 

5,191 

(82.8%)(16.8%) 

6,852 

(85.4%)(22.2%) 

30,878 

(72.2%)(100%) 

  
Breast Cancer 

Negative 
10,835 

(29.7%)(90.9%) 

10,743 

(30.9%)(90.2%) 

834 

(22.3%)(7.0%) 

1,079 

(17.2%)(9.1%) 

1,171 

(14.6%)(9.8%) 

11,914 

(27.8%)(100%) 

  
Ovarian Cancer 

Positive 
2,155 

(5.9%)(85.5%) 

2,009 

(5.8%)(79.8%) 

150  

(4.0%)(6.0%) 

364 

(5.8%)(14.5%) 

510 

(6.4%)(20.2%) 

2,519 

(5.9%)(100%) 

  
Ovarian Cancer 

Negative 
34,367 

(94.1%)(85.3%) 

32,760 

(94.2%)(81.3%) 

3,592 

(96.0%)(8.9%) 

5,906 

(94.2%)(14.7%) 

7,513 

(93.6%)(18.7%) 

40,273 

(94.1%)(100%) 

 

Manufacturer： 
 

  Hologic Selenia 
5,648 

(15.5%)(81.2%) 

5,220 

(15.0%)(75.1%) 

880 

(23.5%)(12.7%) 

1,307 

(20.8%)(18.8%) 

1,735 

(21.6%)(24.9%) 

6,955  

(16.3%)(100%) 

  Lorad Selenia 
9,543 

(26.1%)(82.2%) 

8,870 

(25.5%)(76.4%) 

1,352 

(36.1%)(11.6%) 

2,072 

(33.0%)(17.8%) 

2,745 

(34.2%)(23.6%) 

11,615 

(27.1%)(100%) 

  Selenia Dimensions 
21184 

(58.0%)(89.6%) 

20,539 

(59.1%)(86.8%) 

1,100 

(29.4%)(4.7%) 

2,465 

(39.3%)(10.4%) 

3,110 

(38.8%)(13.2%) 

23,649 

(55.3%)(100%) 

 

Train Val Test： 
 

  Train 
27,294 

(74.7%)(85.2%) 

25,991 

(74.8%)(81.1%) 

2,853 

(76.2%)(8.9%) 

4,755 

(75.8%)(14.8%) 

6,058 

(75.5%)(18.9%) 

32,049 

(74.9%)(100%) 

  Valid 
3,786 

(10.4%)(85.4%) 

3,599 

(10.4%)(81.2%) 

378 

(10.1%)(8.5%) 

646 

(10.3%)(14.6%) 

833 

(10.4%)(18.8%) 

4,432  

(10.4%)(100%) 

  Test 
5,442 

(14.9%)(86.2%) 

5,179 

(14.9%)(82.1%) 

511 

(13.7%)(8.1%) 

869 

(13.9%)(13.8%) 

1,132 

(14.1%)(17.9%) 

6,311 

(14.7%)(100%) 

  852 
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Table 2. Comparison of 10-year risk predictions on full test set. C-index and AUC results 853 

are presented with 95% Confidence Interval. Note that results of the BCSC model are based on the 854 

part of the full inhouse test set, as they are out of the age range of 35-74 or with prior BC history. 855 

For a fair comparison, we also implemented the comparison experiments excluding the women that 856 

did not have scores from the BCSC model, Shown in Fig. 3. The black fonts represent the 857 

performance of the target tasks for which different methods were originally designed to. The gray 858 

fonts represent the AUC metric of 1- to 10- years BC risk for these methods we explored. Bold: P < 859 

0.05, the AUCs of our methods are significantly higher than all other model for the same time 860 

horizon (except BCSC risk model). 861 

  BI-RADS BCSC* GMIC  

MIRAI  

Test 

MIRAI  

Finetune 

MTP-BCR (Ours)  

Patient Level 

MTP-BCR (Ours)  

Unilateral Breast Level 
Use Risk 

Factors  - Yes No - - No Yes No Yes 

Full inhouse test set: 6,311 exams, 511 followed by cancer diagnosis within 1 years; 869 diagnosis within 5 years; 1,132 diagnosis within 10 

years. 

5-Year  

C-Index 

0.71  

(0.70-0.73) 

0.63  

(0.61-0.65) 

0.7  

(0.68-0.72) 

0.67  

(0.65-0.69) 

0.75  

(0.73-0.77) 

0.78  

(0.76-0.80) 

0.84  

(0.82-0.85) 

0.78  

(0.76-0.80) 

0.82  

(0.81-0.84) 

10-Year  

C-Index 

0.69  

(0.67-0.70) 

0.64  

(0.61-0.66) 

0.69  

(0.67-0.70) 

0.67  

(0.65-0.68) 

0.73  

(0.72-0.75) 

0.77  

(0.75-0.78) 

0.82  

(0.81-0.84) 

0.76  

(0.75-0.78) 

0.81  

(0.79-0.82) 

1-Year 

AUC 

0.83  

(0.81-0.85) 

0.62  

(0.58-0.64) 

0.74  

(0.72-0.77) 

0.70  

(0.68-0.73) 

0.84  

(0.81-0.86) 

0.87  

(0.85-0.89) 

0.91  

(0.89-0.92) 

0.87  

(0.85-0.89) 

0.89  

(0.87-0.91) 

2-Year 
AUC 

0.78  
(0.76-0.80) 

0.62  
(0.59-0.65) 

0.72  
(0.70-0.75) 

0.69  
(0.66-0.71) 

0.80  
(0.78-0.82) 

0.83  
(0.81-0.85) 

0.88  
(0.86-0.89) 

0.83  
(0.81-0.85) 

0.87  
(0.85-0.88) 

3-Year 

AUC 

0.74  

(0.72-0.76) 

0.63  

(0.61-0.66) 

0.72  

(0.69-0.74) 

0.69  

(0.67-0.72) 

0.78  

(0.76-0.80) 

0.80  

(0.79-0.82) 

0.86  

(0.84-0.87) 

0.80  

(0.79-0.82) 

0.84  

(0.83-0.86) 
4-Year 

AUC 

0.72  

(0.70-0.73) 

0.64  

(0.61-0.67) 

0.71  

(0.69-0.73) 

0.69  

(0.67-0.71) 

0.76  

(0.74-0.78) 

0.79  

(0.77-0.80) 

0.84  

(0.82-0.85) 

0.79  

(0.77-0.81) 

0.82  

(0.81-0.84) 

5-Year 
AUC 

0.70  
(0.68-0.71) 

0.65  
(0.62-0.68) 

0.70  
(0.68-0.72) 

0.70  
(0.68-0.72) 

0.74  
(0.72-0.76) 

0.77  
(0.75-0.79) 

0.82  
(0.81-0.84) 

0.77  
(0.75-0.79) 

0.81  
(0.79-0.82) 

6-Year 

AUC 

0.68  

(0.67-0.70) 

0.66  

(0.63-0.69) 

0.70  

(0.68-0.72) 

0.70  

(0.68-0.72) 

0.73  

(0.71-0.75) 

0.77  

(0.75-0.79) 

0.82  

(0.80-0.83) 

0.76  

(0.75-0.78) 

0.80  

(0.78-0.81) 
7-Year 

AUC 

0.67  

(0.66-0.69) 

0.67  

(0.65-0.70) 

0.70  

(0.68-0.72) 

0.70  

(0.68-0.72) 

0.73  

(0.71-0.75) 

0.76  

(0.74-0.78) 

0.81  

(0.80-0.83) 

0.76  

(0.74-0.77) 

0.79  

(0.77-0.80) 

8-Year 
AUC 

0.66  
(0.65-0.68) 

0.69  
(0.66-0.71) 

0.69  
(0.67-0.71) 

0.69  
(0.67-0.71) 

0.72  
(0.70-0.74) 

0.76  
(0.74-0.78) 

0.80  
(0.79-0.82) 

0.75  
(0.74-0.77) 

0.78  
(0.76-0.79) 

9-Year 

AUC 

0.65  

(0.64-0.67) 

0.70  

(0.67-0.73) 

0.69  

(0.67-0.71) 

0.68  

(0.66-0.70) 

0.71  

(0.69-0.73) 

0.76  

(0.74-0.78) 

0.80  

(0.78-0.81) 

0.75  

(0.74-0.77) 

0.77  

(0.75-0.78) 
10-Year 

AUC 

0.65  

(0.63-0.66) 

0.71  

(0.68-0.74) 

0.69  

(0.66-0.71) 

0.67  

(0.65-0.70) 

0.71  

(0.68-0.73) 

0.77  

(0.75-0.79) 

0.80  

(0.78-0.82) 

0.76  

(0.74-0.77) 

0.77  

(0.75-0.78) 

  862 
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Table 3. Comparison of 10-year risk predictions on Screening Test sets. C-index and 863 

AUC results are presented with 95% Confidence Interval. Note that results of the BCSC model are 864 

based on part of the test sets- as they are out of the age range of 35-74 or with prior BC history. For 865 

fair comparison we also impended the comparison experiments excluding the women that did not 866 

score across the BCSC model Show as Fig. 3. The black fonts represent the performance of the 867 

target tasks for which different methods were originally designed to. The gray fonts represent the 868 

AUC metric of 1- to 10- years BC risk for these methods we explored. Bold: P < 0.05, the AUCs of 869 

our methods are significantly higher than all other model for the same time horizon (except BCSC 870 

risk model). 871 

  BI-RADS BCSC * GMIC  

MIRAI  

Test 

MIRAI  

Finetune 

MTP-BCR (Ours)  

Patient Level 

MTP-BCR (Ours)  

Unilateral Breast Level 
Use Risk 

Factors  - Yes No - - No Yes No Yes 

Inhouse Biopsy Negative Screening Test set: 5,937 exams, 137 followed by cancer diagnosis within 1 years; 495 diagnosis within 5 years; 758 

diagnosis within 10 years. 

5-Year  

C-index 

0.54  

(0.53-0.56) 

0.69  

(0.65-0.72) 

0.61  

(0.59-0.64) 

0.63  

(0.60-0.65) 

0.64  

(0.62-0.66) 

0.65  

(0.63-0.68) 

0.74  

(0.72-0.76) 

0.65  

(0.63-0.67) 

0.73  

(0.71-0.75) 

10-Year  

C-index 

0.53  

(0.52-0.55) 

0.69  

(0.66-0.72) 

0.61  

(0.59-0.63) 

0.62  

(0.60-0.64) 

0.64  

(0.62-0.66) 

0.65  

(0.63-0.67) 

0.74  

(0.72-0.76) 

0.65  

(0.63-0.67) 

0.72  

(0.71-0.74) 

1-Year 

AUC 

0.61  

(0.57-0.65) 

0.70  

(0.63-0.76) 

0.59  

(0.54-0.65) 

0.63  

(0.58-0.68) 

0.65  

(0.60-0.70) 

0.70  

(0.65-0.74) 

0.77  

(0.73-0.81) 

0.68  

(0.62-0.73) 

0.76  

(0.71-0.81) 

2-Year 
AUC 

0.58  
(0.55-0.60) 

0.69  
(0.64-0.75) 

0.61  
(0.57-0.65) 

0.62  
(0.58-0.66) 

0.64  
(0.60-0.67) 

0.67  
(0.63-0.70) 

0.75  

(0.71-0.78) 

0.66  
(0.62-0.70) 

0.75  
(0.72-0.79) 

3-Year 

AUC 

0.55  

(0.54-0.58) 

0.70  

(0.65-0.74) 

0.62  

(0.59-0.65) 

0.65  

(0.62-0.68) 

0.65  

(0.62-0.68) 

0.66  

(0.63-0.69) 

0.75  

(0.72-0.77) 

0.66  

(0.63-0.69) 

0.74  

(0.71-0.77) 
4-Year 

AUC 

0.54  

(0.53-0.56) 

0.70  

(0.65-0.74) 

0.63  

(0.60-0.65) 

0.64  

(0.62-0.67) 

0.65  

(0.62-0.68) 

0.66  

(0.63-0.68) 

0.74  

(0.71-0.76) 

0.66  

(0.63-0.68) 

0.72  

(0.70-0.75) 

5-Year 
AUC 

0.54  
(0.52-0.55) 

0.70  
(0.65-0.74) 

0.62  
(0.60-0.65) 

0.65  
(0.63-0.68) 

0.66  
(0.63-0.68) 

0.66  
(0.63-0.68) 

0.73  

(0.71-0.76) 

0.66  
(0.63-0.68) 

0.72  
(0.69-0.74) 

6-Year 

AUC 

0.53  

(0.52-0.55) 

0.71  

(0.67-0.74) 

0.63  

(0.60-0.65) 

0.65  

(0.63-0.68) 

0.67  

(0.65-0.70) 

0.66  

(0.64-0.69) 

0.74  

(0.71-0.76) 

0.66  

(0.64-0.68) 

0.72  

(0.69-0.74) 
7-Year 

AUC 

0.53  

(0.52-0.54) 

0.71  

(0.68-0.75) 

0.63  

(0.60-0.65) 

0.66  

(0.63-0.68) 

0.67  

(0.65-0.70) 

0.67  

(0.64-0.69) 

0.74  

(0.72-0.76) 

0.66  

(0.64-0.68) 

0.71  

(0.69-0.73) 

8-Year 
AUC 

0.53  
(0.51-0.54) 

0.72  
(0.69-0.75) 

0.62  
(0.60-0.64) 

0.65  
(0.62-0.67) 

0.68  
(0.65-0.70) 

0.67  
(0.65-0.69) 

0.73  

(0.71-0.75) 

0.67  
(0.64-0.69) 

0.70  
(0.68-0.72) 

9-Year 

AUC 

0.52  

(0.51-0.53) 

0.73  

(0.69-0.76) 

0.62  

(0.60-0.65) 

0.64  

(0.61-0.66) 

0.68  

(0.65-0.70) 

0.68  

(0.65-0.70) 

0.73  

(0.70-0.75) 

0.67  

(0.65-0.69) 

0.69  

(0.67-0.71) 
10-Year 

AUC 

0.52  

(0.51-0.53) 

0.74  

(0.70-0.77) 

0.63  

(0.60-0.66) 

0.63  

(0.60-0.66) 

0.68  

(0.66-0.71) 

0.70  

(0.67-0.72) 

0.73  

(0.71-0.75) 

0.68  

(0.66-0.70) 

0.69  

(0.67-0.72) 

Inhouse Normal BI-RADS Screening Test set: 5,139 exams, 102 followed by cancer diagnosis within 1 years; 404 diagnosis within 5 years; 
612 diagnosis within 10 years. 

5-Year  

C-index 

0.51  

(0.50-0.51) 

0.68  

(0.64-0.72) 

0.61  

(0.59-0.64) 

0.62  

(0.60-0.65) 

0.62  

(0.59-0.64) 

0.64  

(0.62-0.67) 

0.73  

(0.71-0.75) 

0.65  

(0.63-0.68) 

0.73  

(0.71-0.75) 

10-Year  
C-index 

0.50  
(0.50-0.51) 

0.69  
(0.66-0.72) 

0.61  
(0.59-0.64) 

0.62  
(0.60-0.64) 

0.62  
(0.60-0.65) 

0.64  
(0.62-0.67) 

0.73  

(0.71-0.75) 

0.65  
(0.63-0.67) 

0.73  
(0.71-0.75) 

1-Year 

AUC 

0.53  

(0.50-0.55) 

0.70  

(0.63-0.77) 

0.61  

(0.54-0.67) 

0.62  

(0.57-0.68) 

0.63  

(0.57-0.68) 

0.66  

(0.60-0.71) 

0.74  

(0.69-0.79) 

0.68  

(0.63-0.73) 

0.77  

(0.72-0.81) 
2-Year 

AUC 

0.51  

(0.50-0.53) 

0.69  

(0.63-0.75) 

0.60  

(0.56-0.65) 

0.62  

(0.58-0.66) 

0.61  

(0.57-0.65) 

0.64  

(0.60-0.68) 

0.73  

(0.69-0.76) 

0.67  

(0.63-0.71) 

0.75  

(0.72-0.79) 

3-Year 
AUC 

0.51  
(0.50-0.52) 

0.70  
(0.64-0.74) 

0.62  
(0.58-0.66) 

0.65  
(0.61-0.68) 

0.63  
(0.59-0.66) 

0.64  
(0.61-0.68) 

0.73  

(0.70-0.76) 

0.66  
(0.62-0.69) 

0.74  
(0.71-0.77) 

4-Year 

AUC 

0.51  

(0.50-0.51) 

0.69  

(0.65-0.74) 

0.63  

(0.60-0.66) 

0.64  

(0.61-0.67) 

0.63  

(0.60-0.66) 

0.64  

(0.62-0.67) 

0.72  

(0.70-0.75) 

0.66  

(0.63-0.68) 

0.73  

(0.70-0.75) 
5-Year 

AUC 

0.51  

(0.50-0.51) 

0.70  

(0.65-0.74) 

0.62  

(0.59-0.65) 

0.65  

(0.62-0.68) 

0.64  

(0.61-0.67) 

0.65  

(0.62-0.67) 

0.72  

(0.70-0.75) 

0.66  

(0.63-0.68) 

0.72  

(0.69-0.74) 

6-Year 

AUC 

0.50  

(0.50-0.51) 

0.71  

(0.66-0.75) 

0.63  

(0.60-0.65) 

0.66  

(0.63-0.68) 

0.66  

(0.63-0.68) 

0.65  

(0.63-0.68) 

0.73  

(0.71-0.76) 

0.66  

(0.63-0.68) 

0.72  

(0.70-0.74) 
7-Year 

AUC 

0.50  

(0.50-0.51) 

0.71  

(0.67-0.75) 

0.63  

(0.60-0.66) 

0.66  

(0.63-0.69) 

0.66  

(0.64-0.69) 

0.66  

(0.63-0.68) 

0.73  

(0.71-0.76) 

0.66  

(0.64-0.68) 

0.71  

(0.69-0.73) 

8-Year 
AUC 

0.50  
(0.50-0.51) 

0.72  
(0.68-0.76) 

0.63  
(0.60-0.65) 

0.66  
(0.63-0.68) 

0.67  
(0.65-0.70) 

0.67  
(0.64-0.69) 

0.73  

(0.71-0.75) 

0.67  
(0.64-0.69) 

0.71  
(0.68-0.73) 

9-Year 
AUC 

0.50  
(0.50-0.51) 

0.73  
(0.69-0.76) 

0.63  
(0.60-0.66) 

0.65  
(0.62-0.68) 

0.67  
(0.64-0.70) 

0.67  
(0.65-0.70) 

0.73  

(0.70-0.75) 

0.67  
(0.65-0.69) 

0.70  
(0.67-0.72) 

10-Year 

AUC 

0.50  

(0.50-0.51) 

0.74  

(0.70-0.77) 

0.63  

(0.60-0.66) 

0.64  

(0.61-0.67) 

0.67  

(0.65-0.70) 

0.69  

(0.67-0.72) 

0.73  

(0.71-0.76) 

0.68  

(0.66-0.70) 

0.70  

(0.67-0.72) 

  872 
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Table 4. Comparison of future risk predictions. AUC results are presented with 95% 873 

Confidence Interval. BCSC: Breast Cancer Surveillance Consortium; GMIC: Globally-Aware 874 

Multiple Instance Classifier. Note that results of the BCSC model are based on part of the full 875 

inhouse test set, as they are out of the age range of 35-74 or with prior BC history. For fair 876 

comparison we also impended the comparison experiments excluding the women that did not score 877 

across the BCSC model. Bold: P < 0.05, the AUCs of our methods are significantly higher than all 878 

other model for the same time horizon. 879 

  
 

BI-RADS BCSC GMIC  
MIRAI  

Test 
MIRAI  

Finetune 
MTP-BCR (Ours)  

Patient Level 
MTP-BCR (Ours)  

Unilateral Breast Level 

Use Risk 
Factors  - Yes No - - No Yes No Yes 

 Full test set     

2-5 Year 

AUC 

0.51  

(0.50-0.52) 
- 

0.63  

(0.60-0.66) 

0.64 

(0.61-0.67) 

0.60  

(0.57-0.63) 

0.64  

(0.61-0.66) 

0.72  

(0.69-0.74) 

0.65  

(0.62-0.67) 

0.71  

(0.68-0.73) 
4-5 Year 

AUC 

0.50  

(0.49-0.52) 
- 

0.61  

(0.57-0.65) 

0.62  

(0.58-0.66) 

0.58  

(0.53-0.63) 

0.63  

(0.59-0.66) 

0.72  

(0.68-0.75) 

0.63  

(0.59-0.67) 

0.69  

(0.66-0.73) 

2-10 Year 

AUC 

0.50  

(0.49-0.51) 
- 

0.63  

(0.60-0.65) 

0.62  

(0.59-0.65) 

0.60 

(0.57-0.62) 

0.68  

(0.66-0.71) 

0.73  

(0.70-0.75) 

0.67  

(0.65-0.69) 

0.69  

(0.66-0.71) 

4-10 Year 

AUC 

0.50  

(0.49-0.51) 
- 

0.61  

(0.58-0.64) 

0.60  

(0.57-0.63) 

0.59  

(0.56-0.62) 

0.67  

(0.64-0.70) 

0.73  

(0.70-0.75) 

0.66  

(0.64-0.68) 

0.68  

(0.66-0.71) 

6-10 Year 
AUC 

0.50  
(0.49-0.52) 

- 
0.60  

(0.57-0.64) 
0.58  

(0.55-0.62) 
0.60  

(0.56-0.63) 
0.67  

(0.63-0.70) 

0.73  

(0.70-0.76) 

0.65  
(0.62-0.68) 

0.69  
(0.66-0.72) 

Part of  Full test set: only women who completed scored across the BCSC model     

2-5 Year 

AUC 

0.52  

(0.49-0.55) 

0.69  

(0.64-0.74) 

0.66  

(0.61-0.71) 

0.67  

(0.62-0.71) 

0.59  

(0.54-0.65) 

0.69  

(0.64-0.74) 

0.76  

(0.72-0.80) 

0.69  

(0.65-0.74) 

0.74  

(0.70-0.78) 
4-5 Year 

AUC 

0.50  

(0.47-0.53) 

0.67  

(0.60-0.74) 

0.64  

(0.58-0.71) 

0.64  

(0.57-0.70) 

0.57  

(0.49-0.64) 

0.68  

(0.61-0.74) 

0.76  

(0.71-0.81) 

0.66  

(0.60-0.73) 

0.73  

(0.68-0.78) 

2-10 Year 
AUC 

0.52  
(0.50-0.54) 

0.73  
(0.69-0.77) 

0.63  
(0.59-0.67) 

0.64  
(0.60-0.69) 

0.57  
(0.53-0.62) 

0.73  
(0.69-0.77) 

0.79  

(0.75-0.82) 

0.72  
(0.68-0.75) 

0.72  
(0.68-0.75) 

4-10 Year 

AUC 

0.51  

(0.49-0.53) 

0.72  

(0.67-0.76) 

0.62  

(0.57-0.67) 

0.62  

(0.57-0.67) 

0.56  

(0.51-0.61) 

0.72  

(0.68-0.76) 

0.79  

(0.75-0.82) 

0.70  

(0.66-0.74) 

0.72  

(0.68-0.75) 
6-10 Year 

AUC 

0.51  

(0.49-0.54) 

0.71  

(0.66-0.76) 

0.61  

(0.55-0.67) 

0.61  

(0.55-0.66) 

0.56  

(0.50-0.63) 

0.70  

(0.65-0.75) 

0.79  

(0.75-0.83) 

0.68  

(0.64-0.73) 

0.73  

(0.68-0.77) 
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