1 SARS-CoV-2 virologic rebound with nirmatrelvir-ritonavir therapy

- 2
- 3 Gregory E. Edelstein* B.A.,¹ Julie Boucau* Ph.D,² Rockib Uddin B.S.,³ Caitlin Marino B.S.,²
- 4 May Y. Liew B.A.,³ Mamadou Barry M.D.,³ Manish C. Choudhary Ph.D.,^{1,5} Rebecca F. Gilbert
- 5 B.A.,³ Zahra Reynolds M.P.H.,³ Yijia Li M.D.,^{1,3,4} Dessie Tien B.S.A.,³ Shruti Sagar B.A.,³
- 6 Tammy D. Vyas B.S.,³ Yumeko Kawano M.D.,¹ Jeffrey A. Sparks M.D. M.Msc.,¹ Sarah P.
- 7 Hammond M.D.,³ Zachary Wallace M.D. M.Sc.,³ Jatin M. Vyas M.D. Ph.D.,^{3,5} Amy K.
- 8 Barczak^ M.D.,^{2,3,5} Jacob E. Lemieux^ M.D. D.Phil.,^{3,5,6} Jonathan Z. Li^ M.D. M.Msc.,^{1,5} and
- 9 Mark J. Siedner^ M.D. M.P.H.^{3,5}
- 10

13

- 11 *Equal contributions
- 12 ^Equal contributions

14 Affiliations:

- ¹Brigham and Women's Hospital, Boston, MA, USA
- ²Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- ³Massachusetts General Hospital, Boston, MA, USA
- ⁴University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- ⁵Harvard Medical School, Boston, MA, USA
- ⁶Broad Institute, Cambridge, MA, USA
- 21

22 Corresponding author:

- 23 Mark J. Siedner, MD MPH
- 24 Medical Practice Evaluation Center, Massachusetts General Hospital
- 25 100 Cambridge Street, Suite 1600
- 26 Boston, MA 02114
- 27 msiedner@mgh.harvard.edu; +1-617-726-4686
- 28

29 Funding:

- 30 This work was supported by the National Institutes of Health (U19 AI110818), the
- 31 Massachusetts Consortium for Pathogen Readiness SARS-CoV-2 Variants Program and the
- 32 MGH Department of Medicine. Additional support was provided by the Ragon Institute BSL3
- core, which is supported by the NIH-funded Harvard University Center for AIDS Research (P30
- AI060354). Drs. Sparks and Wallace are supported by the National Institute of Arthritis and
- 35 Musculoskeletal and Skin Diseases (R01 AR080659). Dr. Sparks is also supported by the Llura
- 36 Gund Award for Rheumatoid Arthritis Research and Care. The funders had no role in study
- design; in the collection, analysis, and interpretation of data; in the writing of the manuscript; or
- in the decision to submit the manuscript for publication.
- 39

40 **Disclaimer:**

- 41 The contents of this publication are solely the responsibility of the authors and do not necessarily
- 42 represent the official views of the National Institutes of Health.
- 43
- 44
- 45
- 46

47 **Disclosures:**

- 48 AKB reports consulting for ICON Government and Public Health Solutions. JZL reports
- 49 consulting for Abbvie and research funding from Merck. SPH reports research funding from
- 50 GlaxoSmithKline and has served on an advisory board for Pfizer.
- 51
- 52 Word Count:
- 53 1197

54 Abstract

- 55 <u>Objective:</u> To compare the frequency of replication-competent virologic rebound with and
- 56 without nirmatrelvir-ritonavir treatment for acute COVID-19. Secondary aims were to estimate
- 57 the validity of symptoms to detect rebound and the incidence of emergent nirmatrelvir-resistance
- 58 mutations after rebound.
- 59 <u>Design:</u> Observational cohort study.
- 60 <u>Setting:</u> Multicenter healthcare system in Boston, Massachusetts.
- Participants: We enrolled ambulatory adults with a positive COVID-19 test and/or a prescription
 for nirmatrelvir-ritonavir.
- 63 <u>Exposures:</u> Receipt of 5 days of nirmatrelvir-ritonavir treatment versus no COVID-19 therapy.
- 64 <u>Main Outcome and Measures:</u> The primary outcome was COVID-19 virologic rebound, defined
- as either (1) a positive SARS-CoV-2 viral culture following a prior negative culture or (2) two
- 66 consecutive viral loads $\geq 4.0 \log_{10}$ copies/milliliter after a prior reduction in viral load to <4.0
- \log_{10} copies/milliliter.
- 68 <u>Results:</u> Compared with untreated individuals (n=55), those taking nirmatrelvir-ritonavir (n=72)
- 69 were older, received more COVID-19 vaccinations, and were more commonly
- 70 immunosuppressed. Fifteen individuals (20.8%) taking nirmatrelvir-ritonavir experienced
- virologic rebound versus one (1.8%) of the untreated (absolute difference 19.0% [95%CI 9.0-
- 29.0%], P=0.001). In multivariable models, only N-R was associated with VR (AOR 10.02,
- 73 95%CI 1.13-88.74). VR occurred more commonly among those with earlier nirmatrelvir-
- ritonavir initiation (29.0%, 16.7% and 0% when initiated days 0, 1, and ≥ 2 after diagnosis,
- respectively, P=0.089). Among participants on N-R, those experiencing rebound had prolonged
- shedding of replication-competent virus compared to those that did not rebound (median: 14 vs 3
- days). Only 8/16 with virologic rebound reported worsening symptoms (50%, 95% CI 25%-
- 78 75%); 2 were completely asymptomatic. We detected no post-rebound nirmatrelvir-resistance
- 79 mutations in the NSP5 protease gene.
- 80 <u>Conclusions and Relevance</u>: Virologic rebound occurred in approximately one in five people
- 81 taking nirmatrelvir-ritonavir and often occurred without worsening symptoms. Because it is
- 82 associated with replication-competent viral shedding, close monitoring and potential isolation of
- those who rebound should be considered.

84

85

86 Introduction

Data are conflicting about whether nirmatrelvir-ritonavir (N-R) is associated with virologic
rebound (VR).¹⁻⁷ However, precise estimation of VR incidence with and without N-R use has
been limited by infrequent and short-term sampling, symptomatic reporting, and absence of
culture data.

91

92 Methods

93 The Post-vaccination Viral Characteristics Study (POSITIVES) is a prospective, observational

94 cohort of individuals with acute COVID-19 with longitudinal sampling for viral load, viral

95 culture, and symptom reporting (**supplementary appendix**).^{8,9} Participants are sampled from

96 automated medical record reports in the Mass General Brigham healthcare system on individuals

97 with positive testing or a prescription for COVID-19 therapeutics.

98

99 Participants self-collect anterior nasal swabs three times a week for two weeks and weekly

100 thereafter until SARS-CoV-2 viral load testing is persistently undetectable. Specimens are

analyzed for SARS-CoV-2 viral load, viral culture, and whole genome sequencing. Participants

102 complete 10-item COVID-19 symptom surveys, graded as absent (0), mild (1), moderate (2), or

severe (3), for a maximum total symptom score (TSS) of 30-points. Study physicians complete

104 chart reviews to determine COVID-19 vaccination and treatment history, and

105 immunosuppression status (**STable1**).

106

107 We sought to estimate the incidence of virologic rebound, which we defined in individuals with

either 1) positive SARS-CoV-2 viral culture following a negative culture or 2) a viral load ≥ 1.0

log₁₀ from a prior viral load and \geq 4.0 log₁₀ copies/mL for two consecutive timepoints after a

prior reduction in viral load to $<4.0 \log_{10}$ copies/mL. We selected this outcome as a surrogate for 110 putative transmission risk, based on data relating transmission to replication-competent virus 111 with viral loads >4.0 \log_{10} copies/mL.^{10,11} For a secondary outcome, we redefined VR as a viral 112 load at days 10 and $14 \ge 2.7 \log_{10}$ and at least 0.5 \log_{10} greater than the result at day 5, in order to 113 compare our estimates to the EPIC-HR study, which considered fewer time points and did not 114 115 incorporate culture methods.¹ 116 Our primary exposure of interest was exposure to N-R therapy. Therefore, we limited analysis to 117 ambulatory participants enrolled after March 2022, when we began recruiting individuals 118 initiating N-R. We also excluded participants without a nasal swab collected >11 days from their 119 120 first positive COVID-19 test, because approximately 90% of rebound phenomena occur by this time,⁸ and individuals who received N-R for more or less than 5 days. We compared the 121 122 frequency of VR by N-R use overall and stratified by potential confounders (i.e., 123 immunosuppression, age, sex, and prior COVID-19 vaccinations) using two-sided Fisher's exact tests, and after adjustment for confounders, in logistic regression models. We compared the 124 125 frequency of VR by timing of N-R initiation, using a non-parametric test of trend. We compared 126 our estimate of VR with the definition used in the EPIC-HR study.¹ We used the Kaplan-Meier 127 survival estimator to depict and compare days to initial and final viral culture negativity, 128 stratified by N-R use and VR, using log-rank testing. We assessed the validity of symptom 129 rebound, as defined by an increase in TSS by 3 or more points from a prior date, and the presence of any symptoms during the rebound period, to detect VR.⁶ Finally, we report the 130 proportion of sequenced viruses before and after VR with mutations in the NSP5 gene encoding 131

132	the main protease (M ^{pro}) of SARS-CoV-2. Statistical analyses and figure production were
133	conducted with Stata version 16.1 and GraphPad Prism version 9.5.
134	
135	Ethical Considerations
136	All study participants provided verbal informed consent. Written consent was waived by the
137	ethics committee, based on the involvement of participants with acute COVID-19 in a minimal
138	risk study. The study procedures were approved by Institutional Review Board and the
139	Institutional Biosafety Committee at Mass General Brigham.
140	
141	Results
142	Compared with untreated individuals (n=55), those taking N-R (n=72) were older (57 vs 39
143	years, P<0.001), received more COVID-19 vaccinations (median 4 vs 3, P<0.001) and were
144	more commonly immunosuppressed (32% vs 9%, P<0.001, SFig1/STable2). Fifteen individuals

145 (20.8%) taking N-R experienced VR versus one (1.8%) untreated individual (Figures 1&2,

absolute difference 19.0% [95% CI 9.0-29.0%], P=0.001). In sub-group analyses, VR was

147 numerically more frequent in all demographic and clinical sub-groups (Figure 2). In

148 multivariable logistic regression models including demographic and clinical characteristics, only

149 N-R use remained associated with VR (**STable 3**). There was a trend towards higher rates of VR

150 with earlier N-R initiation (29%, 16.7% and 0% when initiated days 0, 1, and ≥ 2 after diagnosis,

151 P=0.089, Figure 2). When we restricted analyses to three timepoints, as done in the EPIC-HR

- study, only 3/124 (2.4%) had rebound detected, and 13/16 (81.2%) rebound events were not
- 153 captured (Figure 1E-F). We detected no post-N-R drug resistance mutations in the NSP5
- 154 protease gene (**SFig2**).

1	5	5
т.	J	J

156	N-R recipients achieved initial culture conversion sooner than those not treated (Figure
157	3/STable4, P<0.001). However, days to final culture conversion was similar (Figure 3 , P=0.29)
158	because those experiencing VR had significantly prolonged shedding (median 14 [IQR13-20] vs
159	3 days [IQR2-4], Figure 3/STable4/STable5). Only 8/16 with VR reported symptom rebound
160	(50%, 95%CI 25-75%); 2 were totally asymptomatic. Only 8/27 with symptom rebound had VR
161	(30%, 95% CI 14-50%, SFig3/STable6).
162	
163	Discussion
164	VR with replication-competent viral shedding occurred in approximately 20% of those taking N-

R and 2% of those not on therapy. N-R use remained associated with VR after adjustment for 165 166 demographic and clinical characteristics, such as vaccination and immunosuppression status. Although N-R treated individuals took fewer days to achieve initial culture negativity, time to 167 168 final culture negativity was similar, due to prolonged shedding of replication-competent virus 169 among those experiencing VR (median 14 vs 3 days). These data support the presence of an N-R-associated virologic rebound phenomenon, which substantially increases the duration of 170 171 shedding of replication-competent virus and has implications for post-N-R monitoring and 172 isolation recommendations.

173

We found a higher incidence of VR with N-R use than prior studies. We believe this is due to use
of frequent sampling and culture methods to detect VR. When we restricted our analysis to three
PCR-based timepoints, as done in prior trials,¹ we detected a 2.4% rate of VR, which
approximates prior studies, but notably missed 80% of VR events.

178

179	VR appeared to be less common among those who delayed therapy by 1 or 2 days after their first
180	positive test. This finding, in conjunction with the lack of drug resistance-associated mutations
181	after VR events, promotes hypotheses that VR may occur due to incomplete viral eradication, ¹²
182	and supports studies to evaluate longer durations of N-R therapy. ¹³
183	
184	Finally, symptoms should not be relied upon to detect or exclude VR. Two individuals with VR
185	had a complete absence of symptoms during the VR period and less than half had symptom
186	rebound. Conversely, the majority of those who did have symptom rebound did not experience
187	VR.
188	
189	Our study was limited by an observational design, with expected differences between those
190	taking N-R and untreated individuals based on treatment guidelines for N-R ¹⁴ . Nonetheless, VR
191	remained associated with N-R, even after adjustment for potential confounders. We used viral
192	culture as a surrogate for transmission risk but did not measure contagiousness or transmission
193	events directly.
194	
195	These data support a relationship between N-R use and VR. Future work should elucidate the
196	mechanistic pathways of VR, determine if delays in initiating N-R or longer courses of N-R may
197	prevent VR among high-risk individuals, and evaluate larger samples to identify the risk factors

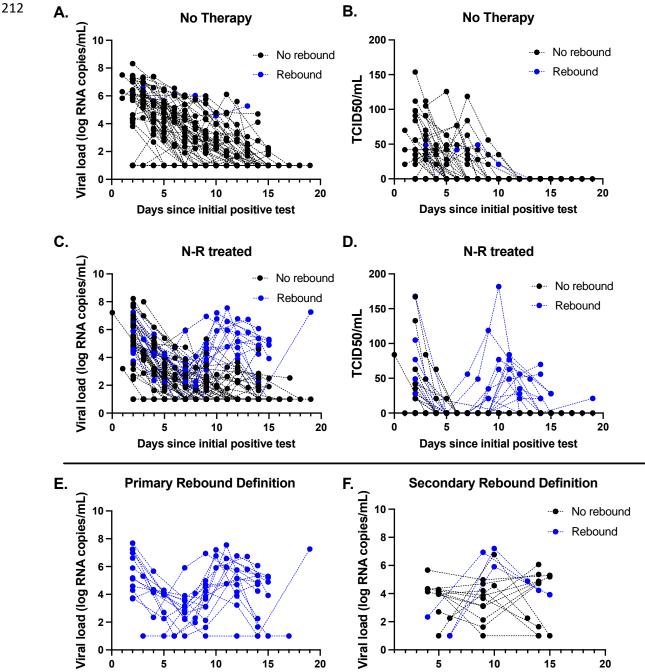
198 for N-R-associated VR.

199 Acknowledgments

- 200 We would like to thank the study participants for their time and considerable efforts to provide
- 201 specimens in the acute phase of illness as part of this project.

202

Figure 1. Virologic decay curves with semiquantitative viral cultures and quantitative viral load

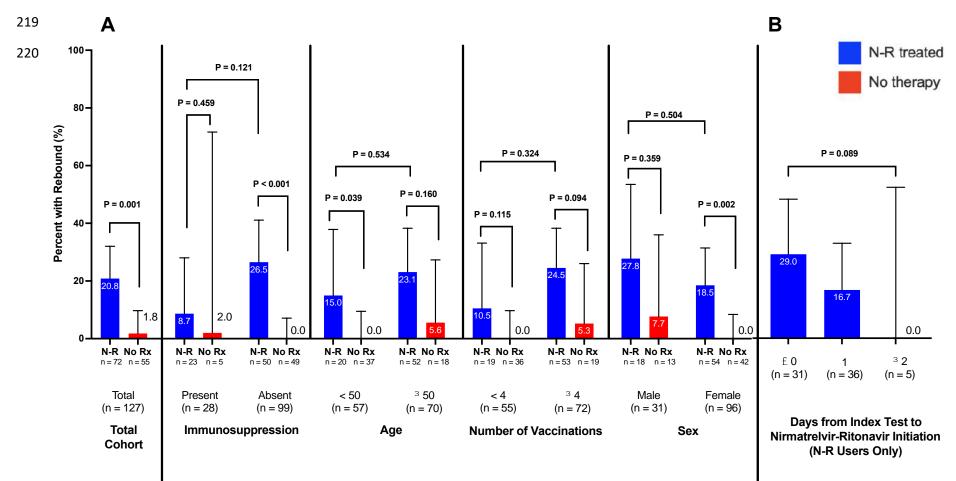

among individuals with acute COVID-19 taking no therapy or nirmatrelvir-ritonavir (N-R).

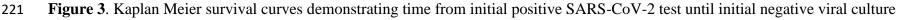
205 Black lines indicate individuals without rebound, whereas blue lines indicate individuals with

virologic rebound. Panels A (viral load) and B (viral culture) depict decay curves for those not

207 receiving therapy. Panels C (viral load) and D (viral culture) depict individuals who received N-

- 208 R. Panels E and F compare our primary outcome with all available time points (E) or restricted to
- 209 days 5, 10 and 14 only (Panel F) as defined in prior studies [1]. Using only three timepoints to
- 210 detect rebound resulted in missing 81% of the observed virologic rebound events of replication-
- 211 competent virus.

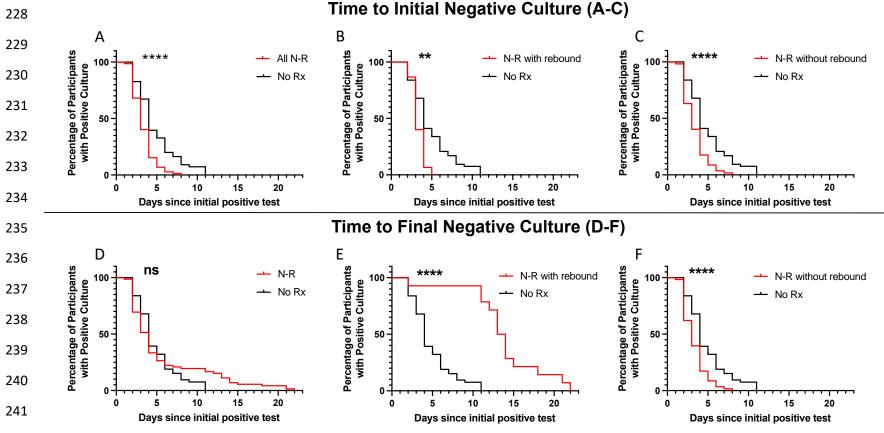



Days since initial positive test

213 Figure 2. Comparative frequency of virologic rebound by nirmatrelvir-ritonavir use, stratified by demographics and clinical

- characteristics (A), and by number of days between the first positive SARS-CoV-2 test and initiation of nirmatrelvir-ritonavir therapy
- 215 (B). For the sub-group comparisons, the bottom P-values represent Fisher's exact tests comparing rebound rates between those taking
- 216 versus those not taking nirmatrelvir-ritonavir. The upper P-values represent Fisher's exact tests comparing rebound rates among those
- taking nirmatrelvir-ritonavir across the sub-groups, for example comparing those taking nirmatrelvir-ritonavir with
- 218 immunosuppression present versus those taking nirmatrelvir-ritonavir with immunosuppression absent.

(A-C) and final negative culture (D-F). In Panel A, we demonstrate that there is a faster time to first negative culture in those receiving


nirmatrelvir-ritonavir (N-R) versus no therapy (No Rx). In Panels B and C, we find similar patterns in time to initial negative culture,

when dividing the N-R group into those who rebounded (B) and those who did not (C). However, as shown in Panel D, there is no

difference in time to final negative culture between N-R and No Rx groups. This appears to be due to the prolonged time to final

226 negative culture among N-R users who rebound (Panel E), because the time to final negative culture remains shorter in N-R users who

did not rebound compared to the No Rx group (Panel F).

242 ns: non-significant; **: P<0.01; ****: P<0.0001

243 **REFERENCES CITED**

- Anderson AS, Caubel P, Rusnak JM. Nirmatrelvir–ritonavir and viral load rebound in COVID-19. *New England Journal of Medicine*. 2022;387(11):1047-1049.
- Charness ME, Gupta K, Stack G, et al. Rebound of SARS-CoV-2 Infection after Nirmatrelvir-Ritonavir Treatment. *N Engl J Med.* 2022;387(11):1045-1047. doi:10.1056/NEJMc2206449
- Epling BP, Rocco JM, Boswell KL, et al. Clinical, Virologic, and Immunologic Evaluation of Symptomatic Coronavirus Disease 2019 Rebound Following Nirmatrelvir/Ritonavir Treatment. *Clin Infect Dis*. 2023;76(4):573-581. doi:10.1093/cid/ciac663
- Pandit JA, Radin JM, Chiang D, et al. The COVID-19 Rebound Study: A Prospective Cohort Study to Evaluate Viral and Symptom Rebound Differences in Participants Treated with Nirmatrelvir Plus Ritonavir Versus Untreated Controls. *Clin Infect Dis*. Published online February 22, 2023:ciad102. doi:10.1093/cid/ciad102
- 5. Wong GLH, Yip TCF, Lai MSM, Wong VWS, Hui DSC, Lui GCY. Incidence of Viral
 Rebound After Treatment With Nirmatrelvir-Ritonavir and Molnupiravir. *JAMA Netw Open*.
 2022;5(12):e2245086. doi:10.1001/jamanetworkopen.2022.45086
- Deo R, Choudhary MC, Moser C, et al. Symptom and Viral Rebound in Untreated SARS-CoV-2 Infection. *Ann Intern Med.* 2023;176(3):348-354. doi:10.7326/M22-2381
- Wong CKH, Lau KTK, Au ICH, et al. Viral burden rebound in hospitalised patients with
 COVID-19 receiving oral antivirals in Hong Kong: a population-wide retrospective cohort
 study. *Lancet Infect Dis.* Published online February 13, 2023:S1473-3099(22)00873-8.
 doi:10.1016/S1473-3099(22)00873-8
- Boucau J, Uddin R, Marino C, et al. Characterization of Virologic Rebound Following
 Nirmatrelvir-Ritonavir Treatment for Coronavirus Disease 2019 (COVID-19). *Clin Infect Dis*. 2023;76(3):e526-e529. doi:10.1093/cid/ciac512
- North CM, Barczak A, Goldstein RH, et al. Determining the Incidence of Asymptomatic
 SARS-CoV-2 Among Early Recipients of COVID-19 Vaccines (DISCOVER-COVID-19):
 A Prospective Cohort Study of Healthcare Workers Before, During and After Vaccination.
 Clin Infect Dis. 2022;74(7):1275-1278. doi:10.1093/cid/ciab643
- 10. Goyal A, Reeves DB, Cardozo-Ojeda EF, Schiffer JT, Mayer BT. Viral load and contact
 heterogeneity predict SARS-CoV-2 transmission and super-spreading events. Walczak AM,
 Childs L, Forde J, eds. *eLife*. 2021;10:e63537. doi:10.7554/eLife.63537
- 11. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients
 with COVID-2019. *Nature*. 2020;581(7809):465-469. doi:10.1038/s41586-020-2196-x
- Perelson AS, Ribeiro RM, Phan T. An Explanation for SARS-CoV-2 Rebound after Paxlovid
 Treatment. Infectious Diseases (except HIV/AIDS); 2023. doi:10.1101/2023.05.30.23290747

- 13. National Institutes of Health. A Study to Learn About the Study Medicines (Nirmatrelvir
 Plus Ritonavir) in People Aged 12 Years or Older With COVID-19 and a Compromised
 Immune System (NCT05438602). Published April 11, 2023. Accessed April 20, 2023.
- https://clinicaltrials.gov/ct2/show/NCT05438602
- 14. National Institutes of Health. Therapeutic Management of Nonhospitalized Adults With
- 284 COVID-19. COVID-19 Treatment Guidelines. Published April 20, 2023. Accessed April 21,
- 285 2023. https://www.covid19treatmentguidelines.nih.gov/management/clinical-management-
- 286 of-adults/nonhospitalized-adults--therapeutic-management/

287

288