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Abstract 51 

Deep learning approaches for clinical predictions based on magnetic resonance imaging data 52 

have shown great promise as a translational technology for diagnosis and prognosis in 53 

neurological disorders, but its clinical impact has been limited. This is partially attributed to the 54 

opaqueness of deep learning models, causing insufficient understanding of what underlies their 55 

decisions. To overcome this, we trained convolutional neural networks on structural brain scans 56 

to differentiate dementia patients from healthy controls, and applied layerwise relevance 57 

propagation to procure individual-level explanations of the model predictions. Through extensive 58 

validations we demonstrate that deviations recognized by the model corroborate existing 59 

knowledge of structural brain aberrations in dementia. By employing the explainable dementia 60 

classifier in a longitudinal dataset of patients with mild cognitive impairment, we show that the 61 

spatially rich explanations complement the model prediction when forecasting transition to 62 

dementia and help characterize the biological manifestation of disease in the individual brain. 63 

Overall, our work exemplifies the clinical potential of explainable artificial intelligence in 64 

precision medicine. 65 

Introduction 66 

Since its invention in the 1970s, magnetic resonance imaging (MRI) has provided an opportunity 67 

to non-invasively examine the inside of the body. In neuroscience, images acquired with MRI 68 

scanners have been used to identify how the brains of patients with various neurological 69 

disorders differ from their healthy counterparts. Stereotypically, this has been done by collecting 70 

data from a group of patients with a given disorder and a comparable group of healthy controls, 71 

on which traditional statistical inference is applied to identify spatial locations of the brain where 72 

the groups differ 1. Typically, these locations are not atomic locations identified by spatial 73 

coordinates, but rather morphological regions defined by an atlas, derived from empirical or 74 

theoretical insights of how the brain is structured. Differences between groups are described 75 

using morphometric properties like thickness or volume of these prespecified regions. A major 76 

benefit of this approach is the innate interpretability of the results: on average, patients with a 77 

given disorder deviate in a specific region of the brain in a comprehensible manner. Furthermore, 78 

the high degree of localization offered by modern brain scans allows for accurate 79 

characterization of where and how the brain of an individual deviates from an expected, typically 80 
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healthy, norm 2. However, the effects which are found are typically small 3 with limited 81 

predictive power at the individual level 4,5, which in turn has raised questions about whether 82 

these analytical methods are expressive enough to model complex mental or clinical phenomena 83 

6. As an alternative, new conceptual approaches are proposed, advocating modelling frameworks 84 

with increased expressive power that allow for group differences through complex, non-linear 85 

interactions between multiple, potentially distant, parts of the brain 7, with a focus on prediction 86 

8. Such modelling flexibility is naturally achieved with artificial neural networks (ANNs), a class 87 

of statistical learning methods that combines aspects of data at multiple levels of abstraction, to 88 

accurately solve a predictive task 9. However, while this often yields high predictive 89 

performance, e.g. by demonstrating clinically sufficient case-control classification accuracy for 90 

certain conditions, it comes at the cost of interpretation, as the models employ decision rules not 91 

trivially understandable by humans 10. When the goal of the analysis is clinical, supporting the 92 

diagnosis and treatment of someone affected by a potential disorder, this opaqueness presents a 93 

substantial limitation. Thus, development and empirical validation of new methods within 94 

clinical neuroimaging that combine predictive efficacy with individual-level interpretability is 95 

imperative, to facilitate trust in how the system is working, and to accurately describe inter-96 

individual heterogeneity. 97 

 98 

With more than 55 million individuals afflicted worldwide 11, over 25 million disability-adjusted 99 

life years lost 12,13 and a cost exceeding one trillion USD yearly 14, dementia is a prime example 100 

of a neurological disorders that incur a monumental global burden. Due to the global aging 101 

population the prevalence is expected to nearly triple by 2050 15, inciting a demand for 102 

technological solutions to facilitate handling the upcoming surge of patients. Dementia is a 103 

complex and progressive clinical condition 16 with multiple causal determinants and moderators. 104 

Alzheimer’s disease (AD) is the most common form and accounts for 60%-80% of all cases 11. 105 

However, the brain pathologies underlying different subtypes of dementia are not disjoint, but 106 

often co-occur 17–19, and have neuropathological commonalities 20. The most prominent is 107 

neurodegeneration, occurring in both specific regions like the hippocampus, and globally across 108 

the brain 21, and inter-individual variations in the localization of atrophy has been associated with 109 

impairments in specific cognitive domains 22,23. Thus, the biological manifestation of dementia in 110 

the brain is heterogeneous 24, resulting in distinctive cognitive and functional deficits 20, 111 
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highlighting the need for precise and personalized approaches to diagnosis. For patients with 112 

mild cognitive impairment (MCI), a potential clinical precursor to dementia, providing 113 

individualized characterizations of the underlying etiological disease at an early stage could 114 

widen the window for early interventions 25, alleviate uncertainty about the condition, and help 115 

with planning for the future 26.  116 

 117 

In dementia, ANNs, and particularly convolutional neural networks (CNNs), have been applied 118 

to brain MRIs to differentiate patients from controls 27,28, prognosticate outcomes 29, and 119 

differentially diagnose subtypes 30. However, while research utilizing this technology has been 120 

influential, clinical translations are scarce 31. Where techniques for segmenting brain tumours or 121 

detecting lesions typically produce segmentation masks that are innately interpretable, predicting 122 

a complex diagnosis would entail compressing all information contained in a high-dimensional 123 

brain scan into a single number. Using deep learning, the decisions underlying this immense 124 

reduction are obfuscated, both from the developer of the system, the clinical personnel using it, 125 

and the patient ultimately impacted by the decision. This black box nature is broadly credited for 126 

the low levels of adoption in safety-critical domains like medicine 32. Responding to this 127 

limitation, explainable artificial intelligence (XAI) provides methodology to explain the 128 

behaviour of ANNs 33. The nature of these explanations varies, e.g. by what type of model is to 129 

be explained, what conceptual level the explanation is at, and who it is tailored for 34,35. In 130 

computer vision, XAI typically aims for post-hoc explanations of individual decisions, 131 

explaining why a model arrived at a given prediction for a given image. Explanations are often 132 

provided in a visual format, as a heatmap indicating how different regions of the image 133 

contribute to the prediction 36. Layerwise Relevance Propagation (LRP) is a variant of such a 134 

method, based on propagating relevance from the prediction-space, backwards through all layers 135 

of the model to the image-space, to form a relevance map 37. A major advantage of LRP is its 136 

intuitive interpretation: by construction, the total amount of relevance which denotes contribution 137 

to the prediction is kept fixed between layers. Thus, the relevance propagated back to an input 138 

voxel is directly indicative of the influence of that exact voxel to the prediction. Recently, 139 

several studies have applied both LRP and other explainable AI methods to dementia 38, finding 140 

that the heatmaps generally highlight regions known to change in dementia 39–42. However, the 141 

possibility of utilizing the fine-grained, individual, heatmaps produced by LRP to accurately 142 
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characterize individualized disease manifestations has not been explored, despite its potential for 143 

supporting clinical decisions towards precision medicine 41,43. 144 

In the present study, we applied techniques from deep learning and XAI on MRI scans of the 145 

brain to make explainable and clinically relevant predictions for dementia at the individual level 146 

(Figure 1). Using a state-of-the-art architecture for neuroimaging data, we trained CNNs to 147 

differentiate patients diagnosed with dementia from healthy controls based on T1-weighted 148 

structural MRIs. We implemented LRP on top of the trained models to form a computational 149 

pipeline producing individual-level explanations in the form of relevance maps alongside the 150 

model predictions. The relevance maps were validated in a subset of dementia patients, both in a 151 

qualitative comparison with existing knowledge of the anatomical distribution of structural 152 

aberrations, and in a quantitative, predictive context. Next, we applied the pipeline to a large, 153 

longitudinal dataset of MCI patients to create individual morphological records, a proposed data 154 

format for tracking and visualizing disease progression. Finally, we investigated the clinical 155 

utility of these records for stratifying patients, both in terms of their specific clinical profile, and 156 

progression of the disease. To facilitate reproducibility and improve the translational value of our 157 

work, the trained models and the complete explainable pipeline is made accessible on GitHub.  158 
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 159 

Figure 1: Overview of the modelling process. The modelling process consisted of four 160 

sequential steps. First, we fit multiple Simple Fully Convolutional Networks to classify dementia 161 

7
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patients and healthy controls based on structural MRIs. Then we applied the best models to 162 

generate out-of-sample predictions and relevance maps for all participants. Next, we validated 163 

the relevance maps against existing knowledge using a meta-analysis to generate a statistical 164 

reference map. Finally, we employed the full pipeline in an exploratory analysis to stratify 165 

patients with mild cognitive impairment (MCI).   166 

Results  167 

We compiled MRI data from multiple sources (Supplementary Table 1) into a dataset of 168 

heterogeneous dementia patients (n=854, age range=47-95, 47% females, Table 1) based on 169 

various diagnoses (Probable AD, vascular dementia, other/unspecified dementia) and diagnostic 170 

criteria for inclusion (Supplementary Table 2), and a set of controls strictly matched on site, age, 171 

and sex of equal size. We trained multiple CNNs to differentiate between the groups, employing 172 

a cross-validation approach utilizing all available timepoints for participants in three training 173 

folds and a single randomly selected timepoint for participants in separate validation and test 174 

folds. When stacking the out-of-sample predictions for all participants from all folds together 175 

(n=1708), for each fold using the model with the best validation performance, we observed 176 

satisfactory discrimination with a combined area under the receiver operating characteristics 177 

curve (AUC) of 0.908 (0.904-0.920 split across folds, Supplementary Figure 1), and an accuracy 178 

of 84.95% (83.04%-87.13%, Supplementary Table 3). This is slightly below with what is 179 

commonly achieved in similar studies classifying a specific subtype (typically AD) in a single 180 

dataset 28.  181 

 182 

CNN training and cross-validation 

Cohort Participants Mean age (�std) Sex (F/M) 

Healthy controls 854 75.13�7.81 401/453 

Dementia patients 854 74.82�7.84 401/453 

Total 1708 74.98�7.82 802/906 

Downstream prognostic and correlational analyses 

Improved MCI 80 71.18�8.14 37/43 

Stable MCI 754 74.63�7.66 324/430 

Progressive MCI 304 75.60�7.46 124/180 

Total 1138 74.67�7.73 485/653 
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Table 1: Cohorts. Key characteristics of the cohorts used for training and testing the models, 183 

and further exploratory analyses. 184 

 185 

Relevance maps highlight predictive brain regions in individuals with dementia 186 

Based on the classifiers with the highest AUCs in the validation sets, we built an explainable 187 

pipeline for dementia prediction, �����������, using composite LRP 44, and a strategy to 188 

prioritize regions of the brain that contributed positively towards a prediction of dementia in the 189 

explanations. Using this pipeline, we computed out-of-sample relevance maps for all participants 190 

by applying the model for which the participant was unseen. Qualitatively, these maps 191 

corroborated known anatomical locations with structural aberrations in dementia, while still 192 

allowing for inter-individual variation (Supplementary Figure 2). We confirmed this apparent 193 

corroboration quantitatively by comparing a voxel-wise average map ��������� (Supplementary 194 

Figure 3), containing positive relevance from all correctly predicted dementia patients, with a 195 

statistical reference map � (Supplementary Figure 4) from an activation likelihood estimation 196 

(ALE) meta-analysis 45, methodology established by an earlier study 40. For sanity checks, we 197 

also computed average maps from three alternative pipelines, ���	 , �
���������
������� and  198 

�
���������
������. The comparisons with the reference map were done by binarizing the maps 199 

on both sides of the comparison at various thresholds and measuring the Dice overlap (Figure 200 

2a). For the three alternative pipelines the amount of overlap decreased monotonically as the 201 

binarization threshold rose (Figure 2b), whereas for ��������� it stabilized as the maps grew 202 

sparser, indicating its higher similarity with �. This effect was reaffirmed by a normalized cross-203 

correlation 46 of 0.64 for ���������, compared to 0.41, 0.40 and 0.12 of ���	, 204 

�
���������
������� and �
���������
������ respectively. In addition, we performed a region-205 

wise, qualitative comparison of ��������� and �, also yielding general agreement (Figure 2c), 206 

with the most important regions in both maps being the nucleus accumbens, the amygdala, and 207 

the parahippocampal gyrus. Next, we tested the importance of the detected regions in a 208 

predictive context, by applying an iterative mask-and-predict procedure. For each participant, we 209 

produced a baseline dementia-prediction y�� and relevance map ����� for each pipeline �������. 210 

We then iteratively masked out the most important regions of the image according to the 211 

relevance map and recorded how the prediction changed as a function of the occlusion (Figure 212 
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2d). Using only true positives, the predictions should ideally start out at approximately 1.0 213 

(empirically found to be 0.89 on average) and trend towards 0.5 (random prediction) as a larger 214 

proportion of the image is occluded. The rate of decline is indicative of whether the masked 215 

regions contain information essential for the classifier to classify the image correctly. Over 20 216 

iterations we observed that the predictions based on maps from both �����������, �����	 and 217 ���
���������
������� decreased, but ����������� at a distinctly steeper rate than the rest 218 

(Figure 2d). To quantify this observation we calculated an area over the perturbation curve 219 

(AOPC) of 0.231, 0.009, -0.001 and 0.002 for �����������, �����	, ���
���������
������, 220 

���
���������
������� respectively. Taken together, these results demonstrate that our pipeline 221 

generates maps with relevance in brain regions associated with changes in dementia. 222 

 223 

  224 
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225 

Figure 2: Validation of relevance maps from the dementia pipeline compared with three226 

alternative pipelines. a Visualization of the comparison between the binarized average relevance227 

11
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map 	�������� from the dementia-pipeline and the binarized statistical reference map 
 from 228 

GingerALE, at different thresholds for binarization. b Overlap between the four average 229 

relevance maps 	 from our four pipelines and 
 as a function of the binarization threshold. The 230 

numbers in the legend denote the normalized Cross Correlation (nCC) for each pipeline c Mean 231 

voxel-wise activation in 	�������� and 
, grouped by brain region. d Average participant-wise 232 

prediction from the dementia model after iteratively masking out regions of the image according 233 

to relevance maps from the four pipelines. Area over the permutation curve (AOPC) for the 234 

dementia map is indicated by the shaded area and denoted in the legend for all pipelines. 235 

 236 

Output from the explainable dementia pipeline has prognostic value for MCI 237 

patients 238 

For the MCI patients (n=1256, timepoints=6448), previously unseen by all models, we built an 239 

averaging ensemble to procure a singular out-of-sample prediction and relevance map per patient 240 

per timepoint. Put together, we let this represent a morphological record (illustrated in Figure 4) 241 

visualizing the absolute quantity (indicated by the prediction) and location (indicated by the 242 

relevance map) of dementia-related pathology detected by the models over time. Qualitatively, 243 

both predictions and maps were relatively stable within a participant over time, while allowing 244 

enough variation to compose what resembled a trajectory. To investigate the prognostic value of 245 

our proposed morphological records we divided the MCI patients into three subgroups based on 246 

their trajectories in the follow-up period: those who saw improvement of their condition (n=80), 247 

those with a stable diagnosis throughout (sMCI, n=754), and those who progressed into dementia 248 

(pMCI, n=304). The remaining (n=118) had either a non-MCI diagnosis at the first timepoint, or 249 

a more complex diagnostic trajectory (e.g MCI -> AD -> CN) and were excluded from 250 

subsequent analyses. We observed that the predictions in the first group were generally very low 251 

(mean �� = 0.13, Supplementary Figure 5a), indicating that the models detected little, if any, 252 

evidence of dementia in these participants. For the stable patients the mean prediction was higher 253 

(mean �� � 0.33), but still below the classification threshold of 0.5, whereas in the progressive 254 

group the model predicted the average patient to already have dementia (mean �� � 0.72). 255 

Importantly, this was also true when considering only timepoints before these patients received 256 

the clinical diagnosis (mean �� � 0.65, Supplementary Figure 5b), suggesting that the model 257 
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found evidence of the disorder before the clinical symptoms surpassed the diagnostic threshold. 258 

To formally delineate the differences in predictions leading up to the potential diagnosis, we 259 

combined the improving and stable patients into a non-progressive group (nMCI, n=834), and 260 

sampled patients to match the progressive group based on their visiting histories, leading up to a 261 

terminal diagnosis timepoint (or a constructed non-diagnosis timepoint in the non-progressive 262 

group). In this matched dataset (n=550) we applied a linear mixed model controlling for age and 263 

sex and observed that the group difference was even greater than what we previously observed (β 264 

= 0.47, p = 6.05 � 10���, Figure 3a, Supplementary Table 4). Furthermore, we observed a 265 

significant difference in longitudinal slopes (β = 0.05 increase in prediction per year, p = 266 8.14 � 10���) indicating a greater rate of brain change detected by the model in those who 267 

would be diagnosed with dementia at a later point in time.  268 

 269 

The large group differences in the dementia predictions leading up to a potential diagnosis 270 

suggests this as a biomarker with innate prognostic value, yet the most salient part of our 271 

morphological records were the relevance maps. Thus, we performed exploratory analyses based 272 

on these to further differentiate the non-progressive and progressive groups and characterize both 273 

inter- and intra-group heterogeneity. However, given the high dimensionality of the maps and the 274 

relatively small number of patients, we first applied a principal component analysis (PCA) to 275 

relevance maps from all MCI patients, effectively compressing their information content into a 276 

smaller set of characteristic variables encoding facets of the maps, enabling the subsequent 277 

analyses. We retained the 64 components that explained the largest amount of variance and 278 

observed that they qualitatively clustered into three overarching categories. The first component 279 

was a generic component detecting general presence of relevance, resembling the average map 280 

from dementia patients, and thus made up a cluster by itself. The next cluster was comprised of 281 

the subsequent three components that captured high level, abstract patterns of relevance, namely 282 

differences in lateralization, along the sagittal axis and in subcortical regions (Figure 3b). The 283 

final cluster consisted of the remaining 60 components that captured specific, intricate patterns of 284 

presence/non-presence of relevance in regions revealed in the preceding analyses 285 

(Supplementary Figure 6). To investigate the potential of using the relevance maps for prognosis, 286 

we first performed a survival analysis using a Cox proportional hazards model where getting a 287 

diagnosis was considered the terminal event.  288 
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 289 

 290 

Figure 3: Utility of the dementia pipeline for predicting progression and characterizing 291 

individual-level deviations in the mild cognitive impairment cohort. a Group-wise mean 292 

predictions from the dementia-model in the progressive and non-progressive groups in the years 293 

before a diagnosis was given. b The four first voxel-wise components of the principal component 294 

analysis plotted in MNI152-space. c Survival curves for the average MCI patient (blue) and 295 

fictitious patients at the extreme percentiles of the span for each component. The second 296 

component was not significant and is not shown. d Predictive performance of the three models 297 

predicting progression in the years following the MRI examination. The baseline model ( ) 298 

included only sex and age as covariates, the next model  included the prediction from the 299 

dementia classifier as a predictor, while the final model  also added the component 300 

vectors representing the relevance maps.  e Significance levels of correlations between the each 301 

of the four PCA components and various cognitive measures. The six annotated measures are 302 
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composite language (PHC_LAN) and executive function (PHC_EXF) scores from the ADSP 303 

Phenotype Harmonization Consortium, total score from the Functional Activities Questionnaire 304 

(FAQTOTAL), composite executive function score from UW – Neuropsych Summary Scores 305 

(ADNI_EF), clinical evaluation of impairment related to judgement and problem solving 306 

(CDJUDGE) from the Clinical Dementia Rating, and an overall measure of cognition from the 307 

Mini-Mental State Examination (MMSCORE, commonly referred to as MMSE). 308 

Specifically, we modelled the fraction of the population without a diagnosis as a function of age 309 

and used the subject-wise loadings of �� as predictors. After Benjamini-Hochberg correction, 37 310 

of these components were significantly associated with staying undiagnosed (Figure 3c and 311 

Supplementary Table 5). However, we observed a correlation between the singular dementia 312 

prediction  �� and the absolute magnitudes of these components (Supplementary Figure 7), 313 

indicating that the associations in the survival analysis could be induced by differences in the 314 

prediction rather than variability in the relevance maps. To mitigate this concern, we fit an 315 

equivalent model while stratifying on ��, observing that 29 associations remained significant, and 316 

that all coefficients had the same sign. Nonetheless, this analysis did not account for the 317 

predictions and relevance maps changing within a participant over time, so we reframed the 318 

question in a purely predictive setting, constructed to bear resemblance to a clinical scenario, 319 

using the same participants (nMCI=834, pMCI=304, total n=1138). For each MCI patient � at 320 

each timepoint � we asked whether we were able to predict, at yearly intervals � up to five years 321 

into the future, whether �  had progressed into dementia, using information from ����������� 322 

available at �. Importantly, all timepoints for all these participants were unseen by the dementia-323 

model, yielding out of sample predictions and relevance maps from �����������, and we 324 

employed nested cross-validation to ensure the progression predictions were also out-of-sample. 325 

First, we fit a baseline model ����� with age and sex as predictors, showing no predictive 326 

efficacy at any timepoint (all AUCs ≈ 0.5, Supplementary Table 6), indicating that the dataset 327 

was not biased with respect to these variables. When adding the prediction from the dementia 328 

model y��  as a predictor in model ��
�� we saw large improvements in prognostic efficacy at all 329 

yearly intervals, culminating with a fold-wise mean AUC of 0.889 after five years (Figure 3d). In 330 

the final model, �����, also including the component vector �  as predictors, we saw further 331 

improvements for all years, peaking at 0.903 after five years (p = 0.035 when compared to 332 
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��
��  in a Wilcoxon signed-rank test across the outer folds). Overall, our best performing 333 

model predicted progression to dementia after five years with an AUC of 0.903, an accuracy of 334 

84.1%, a positive predicted value of 0.92, a sensitivity of 0.82 and a specificity of 0.86 (Table 2). 335 

 336 

Model AUC Balanced 

accuracy 

PPV Sensitivity Specificity 

����� 0.515 51.05% 0.14 0.09 0.93 

����� 0.889 83.61% 0.91 0.83 0.84 

��	
� 0.903 84.1% 0.92 0.82 0.86 

Table 2: Predictive performance of the three models predicting progression five years into the 337 

future. The baseline model ����� used only age and sex as covariates. ��
�� also added the 338 

prediction from the dementia model at the current timepoint as a predictor, while ����� 339 

additionally included the component vector  �� encoding information from the relevance maps. 340 

 341 

Facets of the relevance maps are associated with cognitive impairments in 342 

distinct domains 343 

Finally, we tested whether common features found in the relevance maps, represented by the 344 

PCA component, were correlated with impairments in distinct cognitive and functional domains. 345 

We extracted 17 summary measures from 7 neuropsychological tests (Supplementary Table 7 346 

and 8), performed approximately at the same time as an MRI examination, and tested for 347 

associations with the subject-wise loadings of �� in 733 MCI patients using linear models. After 348 

FDR correction, while correcting for age, sex and ��, we found 48 significant correlations 349 

between 18 unique components and 14 of the cognitive measures (Figure 3e). Component 30 and 350 

the aggregate score from the Functional Activities Questionnaire (FAQTOTAL) had the highest 351 

number of significant hits among the components and measures respectively, both with six 352 

passing the threshold. Most importantly, the components showed distinct patterns of associations 353 

with the different cognitive measures. To ensure the significant associations were not driven by 354 

collinearity between components ��  and ��, we ran an equivalent analysis without including �� as a 355 

predictor, observing that only 5/48 of the previously significant hits had coefficients with the 356 

opposite sign. To summarize, the spatial features captured in our relevance maps, and 357 

subsequently in our component vectors, were associated with distinct patterns of performance on 358 
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neuropsychological tests relevant for characterizing phenotypic heterogeneity in dementia 359 

patients (Supplementary Figure 8). 360 

  361 
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362 

Figure 4: A visualization of the proposed morphological record for a randomly selected 363 

progressive MCI patient that was held out of all models and analyses. a The top half shows the 364 

prediction from the dementia model at each visit, while the bottom part displays the relevance 365 

map underlying the prediction. The opaque sections (including c, d, and e) contain information 366 

accessible at the imagined current timepoint (22.02.07) to support a clinician in a diagnostic 367 

procedure. The angle ( ) represents the change in dementia prediction per year based on the 368 

first two visits. b Translucent regions reveal the morphological record for the remaining follow 369 

ups in the dataset, thus depicting the future. The ground truth diagnostic trajectory is encoded by 370 

18
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the colour of the markers. c Predicted probabilities of progression at future follow-ups based on 371 

the prediction and relevance map at the current timepoint. d Survival curve of the patient 372 

compared to the average MCI patient calculated from the prediction and relevance map. The 373 

marker indicates the location of the patient at the current timepoint. e A list of cognitive domains 374 

where the patient is predicted to significantly differ from the average based on the prediction 375 

and relevance map. 376 

  377 
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Discussion  378 

Given the huge burden of disease and expected increase in prevalence, innovative technological 379 

solutions for clinical decision making in dementia diagnostics and prognostics is urgently 380 

needed. Although commonly referred to as a homogenous condition or split into a few subtypes 381 

based on aetiology or pathophysiology 17, dementia patients exhibit unique and complex 382 

deficiencies, disease trajectories, and cognitive deficits. To explore the potential of brain MRI 383 

and XAI to characterize heterogeneity in the brain underpinnings of dementia, we trained neural 384 

networks to differentiate dementia patients from healthy individuals, and derived relevance maps 385 

using Layerwise Relevance Propagation to explain the individual-level decisions of the classifier. 386 

The relevance maps were specific to the individual, spanned regions that were predictive of 387 

dementia and corroborated existing knowledge of the anatomical distribution of structural 388 

aberrations. In a cohort of MCI patients, it enabled characterization and differentiation of 389 

individual-level disease manifestations and trajectories linked to cognitive performance in 390 

multiple domains. While further validations in clinical contexts are needed, our XAI pipeline for 391 

dementia demonstrates how advanced predictive technology can be employed by clinicians to 392 

monitor and characterize disease development for individual patients. 393 

 394 

There is a multitude of XAI techniques available for explaining the decisions of an image 395 

classifier, many of which have yielded promising results for dementia classification 38. We 396 

employed LRP due to its straightforward interpretation as well as earlier studies indicating 397 

robustness 47 and specificity 42, properties we consider integral in a clinical decision support 398 

system. But while procuring explanations that are ipso facto meaningful is an important step 399 

towards adoption of AI in clinical neuroimaging, it is not in itself sufficient. There is a host of 400 

predictive models that are trivially explainable, but not understandable 48, and there is genuine 401 

concern that XAI will lead to another level of systems that are formally well-defined, but opaque 402 

and obscure, and thus practically useless 49. Thus, empirical explorations are imperative to 403 

investigate the nature of these explanations, examine how they may be useful and build essential 404 

trust 50. In our validation, we observed that the explanatory maps produced by the dementia 405 

pipeline were more predictive and showed distinctly more agreement with existing knowledge of 406 

pathology than those produced by the three alternative pipelines. Given limitations that have 407 

been exposed in such methods earlier 51,52 these validations are crucial, and observing that our 408 
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results both corroborate earlier evidence 40 and extend upon it, provides confidence that the 409 

explanations derived from the model are meaningful. However, we emphasize that the ultimate 410 

validation should happen in actual implementations of the technology in end-user systems, with 411 

clinical personnel applying it in clinical scenarios on realistic data. 412 

 413 

We continued beyond validating the relevance maps by proposing them as a potential epistemic 414 

and clinical tool to characterize individual facets of dementia. To this end, we explored if the 415 

maps contributed to predicting imminent progression from MCI to dementia, and correlated them 416 

with different cognitive measures, extending upon the current literature 38. In both analyses we 417 

found evidence, although modest, that the maps are informative beyond the predictions of the 418 

model. To illustrate the potential of the pipeline for clinical decision making we compiled its 419 

output into a proposed morphological record (visualized for a single patient in Figure 4) that can 420 

help clinicians localize morphological abnormalities during a diagnostic process. Identifying 421 

subtle pathophysiology through deep phenotyping could have a huge potential for charting the 422 

heterogeneity of dementia, providing precise biological targets to guide future research. 423 

Furthermore, for the individual patient, it can support personalized diagnosis to identify 424 

appropriate disease-modifying treatments, and in the future, hopefully, accurate therapeutic 425 

interventions. 426 

 427 

The regions with the highest density of relevance in our maps were the nucleus accumbens, 428 

amygdala and the parahippocampal gyrus, all of which are strongly affected in dementia 53–55. 429 

While the two latter corroborate the established involvement of the medial temporal lobe 56 it is 430 

surprising that the hippocampus does not appear in our analyses, as it has frequently in similar 431 

studies 38,41,42. While this could be caused by actual localization of pathology 57 we consider it 432 

more likely to be related to the internal machinery of the model. Specifically, the CNN relies on 433 

spatial context to identify brain regions before assessing their integrity, utilizing filters that span 434 

areas of the image larger than those containing the region itself. In the backwards pass, LRP uses 435 

these filters, and thus the localization of relevance is not necessarily voxel precise. Furthermore, 436 

we believe the model broadly can be seen as an atrophy detector, which necessarily entails 437 

looking for gaps surrounding regions instead of directly at the regions themselves. Therefore, 438 
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while the relevance maps provide important information, they depend on contextual information 439 

and thus rely on interpretation from clinicians to maximize their utility in clinical practice. 440 

 441 

We focused our analyses mainly on the relevance maps, but the results with largest, immediate, 442 

potential for clinical utility were the predictions from the dementia classifier. Other studies have 443 

shown the efficacy of machine learning models in differentiating dementia patients and healthy 444 

controls 28, but it is intriguing that we see a large discrepancy in the predictions of the 445 

progressive and non-progressive MCI patients many years before the dementia diagnosis is 446 

given. This corroborates findings from theory-driven studies 58 and a recent deep learning study 447 

27, implying detectable structural brain changes many years before the clinical diagnosis is given. 448 

This gives hope for advanced technology to contribute to early detection and diagnosis through 449 

MRI based risk scores, in our case supported by a visual explanation. If curative treatments 450 

prove efficacious and become accessible, early identification of eligible patients could be 451 

imperative 59. Furthermore, timely access to interventions have shown efficiency in slowing the 452 

progress of cognitive decline 60, in addition to improving the quality of life for those afflicted and 453 

their caregivers 26,61. Widely accessible technology that allows for early detection with high 454 

precision could play a key role in the collective response to the impending surge of patients and 455 

provide an early window of opportunity for more effective treatments. 456 

 457 

While our results show a great potential for explainable AI, and particularly LRP, as a 458 

translational technology to detect and characterize dementia, there are limitations to our study. 459 

First, there are technical caveats to be aware of. Most importantly, there is an absolute 460 

dependence between the predictions of our model and the relevance maps. In our case, when we 461 

qualitatively assessed the relevance maps of the false negatives, they were indistinguishable from 462 

the true negatives. This emphasizes the fact that when the model is wrong, this is not evident 463 

from the explanations. Next, while the maps contain information sufficient to explain the 464 

prediction, they are not necessarily complete. Thus, they don’t contain all evidence in the MRI 465 

pointing towards a diagnosis, a property which could prove essential for personalization. We 466 

have addressed this problem through pragmatic solutions, namely ensembling and targeted 467 

augmentations, but theoretical development of the core methodology might be necessary to 468 

theoretically guarantee complete maps. Beyond the fundamental aspects of LRP, there are 469 
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weaknesses to the present study that should be acknowledged. First, the dataset with dementia 470 

patients portrayed as heterogeneous mostly consists of ADNI and OASIS data, and thus patients 471 

with a probable AD diagnosis (although clinically determined). Thus, while we consider it likely, 472 

it is not necessarily true that the dimension of variability spanning from healthy controls to 473 

dementia patients portrayed by our model has the expressive power to extrapolate to other 474 

aetiologies. To overcome this in actual clinical implementations, we encourage the use of 475 

datasets that are organically collected from subsets of the population that are experiencing early 476 

cognitive impairments, for instance from memory clinics. Furthermore, it is not trivial to 477 

determine whether a clinical, broad, dementia-label is an ideal predictive target for models in 478 

clinical scenarios. Both ADNI and AIBL contain rich biomarker information with multiple 479 

variables known to be associated with dementia, such as amyloid positivity. It would be 480 

intriguing to see studies methodologically similar to ours with a biological predictive target, and 481 

we encourage investigations into whether this supports and complements the results we have 482 

observed here. Another limitation with the present study is out-of-sample generalization, 483 

especially related to scanners and acquisition protocols. Although we utilize data from many 484 

sites, which we have earlier shown to somewhat address this problem 62, in combination with 485 

transfer learning, we did not explicitly test this by e.g., leaving sites out for validation. Again, we 486 

advise that clinical implementations should be based on realistic data, and thus at least be 487 

finetuned towards data coming from the relevant site, scanner, and protocol implemented in the 488 

clinic 63. This also includes training models with class frequencies matching those observed in 489 

clinical settings, instead of naively balancing classes as we have done here. Next, we want to 490 

explicitly mention the cyclicality of our mask-and-predict validation. In a sense it trivially 491 

follows that regions that are considered important by a model are also the ones that are driving 492 

the predictions, and thus it is no surprise that the relevance maps coming from the dementia 493 

model are more important to the dementia model than the maps coming from e.g., the sex model. 494 

We addressed this by alternating the models for test and validation, but fully avoiding this 495 

circularity would require disjunct datasets, and more and larger cohorts. Finally, we highlight the 496 

potential drawbacks of including the improving MCI patients alongside the stable in the 497 

progression models. We believe this accurately depicts a realistic clinical scenario, where 498 

diagnostic and prognostic procedures happen based on currently available clinical information. 499 

However, that these patients improve could indicate that their condition is not caused by stable 500 
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biological aberrations. This could oversimplify the subsequent predictive task, inflating our 501 

performance measures. In summary, the predictive value we observed for the individual patient 502 

must be interpreted with caution. However, our extensive validation approach as well as our 503 

thorough explanation of the method and its limitations, and training on large datasets, provide a 504 

first step towards making explainable AI relevant for clinical decision support in neurological 505 

disorders. Nonetheless, it also reveals a complicated balance between validating against existing 506 

knowledge and allowing for new discoveries. In our case, confirming whether small details 507 

revealed in the relevance maps are important aspects of individualization or simply intra-508 

individual noise requires datasets with a label-resolution beyond what currently exists. Thus, we 509 

reiterate our belief that the continuation of our work should happen at the intersection between 510 

clinical practice and research 64, by continuously collecting and labelling data to develop and 511 

validate technology in realistic settings.  512 

 513 

To conclude, while there are still challenges to overcome, our study provides an empirical 514 

foundation and a roadmap for implementations of brain MRI based explainable AI in 515 

personalized clinical decision support systems. Specifically, we show that deep neural networks 516 

trained on a heterogenous set of brain MRI scans can predict dementia, and that their predictions 517 

can be made human interpretable. Furthermore, our pipeline allows us to reason about structural 518 

brain aberrations in individuals showing early signs of cognitive impairment by providing 519 

personalized characterizations which can subsequently be used for precise phenotyping and 520 

prognosis, thus fulfilling a realistic clinical purpose. 521 

Materials and Methods 522 

Data 523 

All data used in the present study have been obtained from previously published studies which 524 

have been approved by their respective institutional review board or relevant research ethics 525 

committee.  526 

 527 

To train the dementia models we compiled a case-control dataset from seven different sources 528 

(Supplementary Table 1), consisting of patients with a dementia diagnosis and healthy controls 529 

from the same scanning sites. Because of the different diagnostic criteria used in the original 530 
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datasets we applied different rules to achieve a singular, heterogeneous dementia label 531 

(Supplementary Table 2). We extracted all participants with a dementia-diagnosis at all 532 

timepoints to comprise the patient group (n=854). Then, for each unique proxy site (In ADNI, 533 

due to the large number of scanners and acquisition protocols, and the work put into unifying 534 

them, we used field strength as a proxy for site), sex, and age-bin spanning 10 years, we sampled 535 

an equal number of healthy controls to form the matched control set (total n=1708, Table 1). 536 

Lastly, before modelling, we split the data into five equally sized folds stratified on diagnosis, 537 

site, sex, and age, such that all timepoints for a single participant resided in the same fold.  538 

 539 

For the MCI dataset we started with all participants from all ADNI waves with an MCI diagnosis 540 

(subjective memory complaint, MMSE between 24 and 30, CDR>0.5 with memory box>0.5, 541 

Weschler Memory Scale-Revised <9 for 16 years of education, <5 for 8-15 years of education 542 

and <3 for 0-7 years of education) 65, on at least one timepoint. These were 12661 images from 543 

6448 visits for 1256 participants, none of which were used for model training. This selection 544 

criterion ensured all participants had an MCI diagnosis at one point in time, though it did not 545 

limit us to only those timepoints. Thus, in addition to those with a consistent, stable, MCI 546 

diagnosis (sMCI), we had a variety of diagnostic trajectories, including those transitioning from 547 

normal cognition to MCI, MCI to AD (pMCI) and various other combinations. Before the 548 

subsequent analyses we discarded all participants without an MCI diagnosis initially, and 549 

everyone with ambiguous trajectories (e.g. MCI->CN->AD), leaving 5607 visits from 1138 550 

participants.  551 

 552 

From these two datasets we extracted T1-weighted structural MRI data for each participant at 553 

each timepoint to use as inputs for the subsequent predictive models. Prior to modelling, the raw 554 

images were minimally processed using a previously developed pipeline 2/21/2024 12:12:00 PM 555 

relying on FreeSurfer v5.3 and FSL v6.0 66 to perform skullstripping 67 and linear registration to 556 

MNI152-space 68 with six degrees of freedom. Consequently, the processed images consisted of 557 

normalized voxel values from the raw images, registered to a common spatial template and 558 

contained minimal non-brain tissue. 559 

 560 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 22, 2024. ; https://doi.org/10.1101/2023.06.22.23291592doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.22.23291592
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 26

Modelling 561 

All dementia models were variants of the PAC2019-winning simple fully convolutional network 562 

(SFCN) architecture 69,70, modified to have a single output neuron with a sigmoid activation. The 563 

architecture is a simple, VGG-like convolutional neural network with 6 convolutional blocks and 564 

approximately 3 million parameters. We initialized the model with weights from a publicly 565 

accessible brain age model previously shown to have superior generalization capabilities when 566 

dealing with unseen scanning sites and protocols 62. The models were trained on a single Nvidia 567 

A100 GPU with 40GB of memory, Tensorflow 2.6 71 through the Keras interface 72. We used a 568 

vanilla stochastic gradient descent (SGD) optimizer with a learning rate defined by the 569 

hyperparameter settings (see next section), optimizing the binary cross-entropy loss. All models 570 

ran for 160 epochs with a batch size of 6, and for each run the epoch with the lowest validation 571 

loss was chosen. Varying slightly depending on the hyperparameters, a single model trained in 572 

approximately 4 hours.  573 

 574 

For each hold-out test fold we trained models on three of the remaining folds and validated on 575 

the fourth, akin to a cross-validation with an additional out-of-sample test set, to achieve out-of-576 

sample predictions for all 1708 participants while allowing for hyperparameter tuning. The 577 

hyperparameters we optimized were dropout �� �  0.25, �0.5! and weight decay "� �578  10�!, �10�"!. Additionally, we tested stepwise, one-cycle and multi-cycle learning rate 579 

schedules and a light and a heavy augmenter. Initial values for the learning rate were set 580 

manually based on a learning rate sweep 73, though kept conservative to preserve the learned 581 

features from the pretraining. The hyperparameter search was implemented as a naive grid-582 

search over the total 24 different configurations (Supplementary Figure 9). We selected the 583 

model procuring the best AUC in the validation set to produce out-of-sample predictions for the 584 

outer hold-out fold. In the final evaluation of the models, we compiled predictions for all 585 

participants, for each using the model where they belonged to the hold-out test set. Our main 586 

method for measuring performance was the AUC, but we also report accuracy, which, due to our 587 

matching procedure, is equivalent to balanced accuracy.  588 

 589 
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Relevance maps 590 

We built a pipeline ����������� for generating relevance maps by implementing LRP (Bach et 591 

al., 2015) on top of the trained classifier. LRP is a technique for explaining single decisions 592 

made by the model, and thus, when running the pipeline on input #  a relevance map �  is 593 

generated alongside the prediction ��. � is a three-dimensional volume, representing a visual 594 

explanation for �� , where each voxel $�,$,�� � � has a spatial position %, &, ' corresponding to the 595 

location of an input voxel (�,$,� � � #. Furthermore, the intensity of $�,$,� can be directly 596 

interpreted as how much voxel (�,$,�  contributes to ��, such that ∑ $
%& � ���. In the original LRP-597 

formulation, relevance $ is propagated backwards between subsequent layers *' and *'(� 598 

according to the relative contribution of one artificial neuron +� � *' in the first layer on 599 

relevance in all artificial neurons +� � *'(� in the following layer, 600 

 601 

$,+�- � ∑ �����

∑ �
�
�


$,+�-$ , 602 

 603 

where "�� denotes the weight between +� and +�. We controlled the influence of different 604 

aspects of the explanations using a composite LRP strategy 44, combining different formulations 605 

of the LRP-formula for the different layers in the model to enhance specific aspects of the 606 

relevance maps. Specifically, we employed a combination of alpha-beta and epsilon rules that 607 

have previously shown to produce meaningful results for dementia-classifiers 41,42, described in 608 

detail in the Supplementary Methods. The resulting relevance maps produced by the pipeline 609 

were full brain volumes with the same dimensionality as the MRI data (167x212x160 voxels) 610 

containing mostly (see below) positive relevance.  611 

 612 

Notation-wise we generally consider the relevance map �,#- for an image # to be a function of 613 

the model  .���� , where �+/' indicates which task the model was trained for, the LRP strategy 614 

LRPcomposite and the image #, 615 

 616 �,#- � 01.���� , �LRPcomposite, #2. 617 

 618 
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Because the composite LRP strategy described above is kept fixed in our pipeline, we contract 619 

this to  620 

 621 �,#- � 0,.����, �#-. 622 

 623 

Furthermore, we let the model-specifier task annotate the map for a further simplification,  624 

 625 �����,#- � 0,#-. 626 

 627 

Thus, ������� is used to annotate the full pipeline for a given task, while �����,#- denotes a 628 

single relevance map generated by this pipeline for image #. When the task is given by the 629 

context, we sometimes simplify this further to �,#-, and when a general image is considered, we 630 

simply use �  to denote its relevance map. 631 

 632 

While we generally discuss our pipeline as a singular one, there were in reality five 633 

approximately equivalent pipelines (corresponding to the models trained for the five test folds), 634 

and which one is used depends on what image was used as input. Specifically, for each 635 

participant diagnosed with dementia, the pipeline is chosen where the participant was part of the 636 

hold-out test set while training the model, and both the relevance maps and the predictions are 637 

thus always out-of-sample. For participants used in the MCI analysis, which are all out-of-638 

sample for all models, we created an ensemble by averaging the predictions and the voxel-wise 639 

relevance across all models.  640 

 641 

Before implementing the LRP procedure we made two slight modifications to the models to 642 

facilitate the backwards relevance propagation, both leaving the functional interface of the model 643 

unchanged. First, we removed the sigmoid activation in the final layer, so that the output of the 644 

model changed from a bounded continuous variable ��� � 30, �14 to an unbounded prediction 645 y�* � � 35∞, �∞4. In this space a raw prediction of y�* � � 0 is equivalent to a sigmoid-transformed 646 

prediction of �� � 0.5, and thus y�* � 7 �0 means that the model predicts control status for the 647 

given participant, and oppositely y�*� 8 �0 implies that the model predicts a dementia diagnosis. 648 

Furthermore, this means that all positive relevance $� � �, �$� 8 �0 can be interpreted as visual 649 
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evidence in favour of a dementia diagnosis. Secondly, we modified the model by fusing all batch 650 

normalization layers with their preceding convolutional layers, adjusting their weights and biases 651 

to match the shift and scaling previously performed by the normalization layer 74,75.  652 

 653 

After generation, the relevance maps are in the same stereotaxic space as their corresponding, 654 

linearly registered, input MRIs. To ensure intra-individual comparisons were done in the same 655 

space we non-linearly registered the maps to MNI152- space before subsequent statistical 656 

analyses were run. First, we registered the preprocessed MRIs # used as inputs to the 1mm 657 

MNI152 template packaged with FSL using fnirt with splineorder=2. We then applied the 658 

transformation computed for # to �,#- using applywarp. We also restrained our relevance maps 659 

to contain strictly positive relevance, evidence in favour of a dementia prediction, by clipping 660 

them to a minimum value of 0. Furthermore, to remove edge-effects from our analyses, we 661 

enforce that there is no relevance in non-brain tissue by nullifying all relevance outside the brain: 662 

 663 9,%, &, '-:(�,$,� � 0� ; �$�,$,� � 0<. 664 

 665 

All visualized relevance maps are plotted after non-linear registration, overlayed on the MNI152-666 

template. As the maps are three-dimensional, we generally plot a collection of distributed axial 667 

slices. The relevance is coloured by the nibabel v3.2.2 76 cold_hot colourmap. Since the absolute 668 

relevance values vary between maps, all maps are normalized to the intensity range [0, 1] in the 669 

visualizations.  670 

 671 

Validating the relevance maps 672 

Earlier studies have shown that interpretability techniques in general are prone to generate visual 673 

explanations that do not capture salient parts of the input 51,52. To investigate the extent of this for 674 

our pipeline �����������  we employed two analyses to assess the sanity of the relevance maps. 675 

The first was an established task-specific technique comparing the relevance maps to existing 676 

knowledge of the pathology of dementia 40. The second was a purely quantitative analysis 677 

examining how important the regions found by the pipeline are for the dementia prediction ��. In 678 

both cases we contrasted the relevance maps generated from the main pipeline with three 679 
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alternative pipelines representing variants of a null hypothesis, all expected to produce relevance 680 

maps with no significant association to dementia.  681 

 682 ���
�����
������ represents the simplest alternative pipeline, and is built around the dementia-683 

model, but with an additional preprocessing step scrambling the input,  684 

 685 �
�����
������,#-� � ����������,=-, where 686 

= � >,#?, �@+-. 687 

 688 ���
�����
������ is expected to generated relevance maps where the relevance is evenly 689 

distributed across the entire image. In the next pipeline ���
�����
������� we replaced the 690 

dementia-model with a model with random weights,  691 

 692 �
�����
�������,#- � �,.,, �#-. 693 

 694 ., has not been trained for any task, and thus has random weights initialized by the default 695 

Keras ”Glorot Uniform” weight-initializer. This pipeline is expected to produce relevance maps 696 

which correlate with the raw voxel intensities, e.g. high intensity in the input should entail more 697 

(absolute) relevance, thereby reflecting aspects of morphology. The final and most realistic 698 

alternative pipeline was �����	, where we replaced the dementia-model with a binary sex-699 

classifier,  700 

 701 ���	,#- � �,.��	, �#-. 702 

 703 

The sex-classifier was trained to differentiate males from females in one of the splits from the 704 

dementia-dataset, achieving an out-of-sample AUC of 0.956 and a balanced accuracy of 89.40%. 705 

We did not do any hyperparameter optimization for this model but used the best configuration 706 

from the dementia cross-validation in the same fold. The heatmaps from this pipeline should 707 

reflect regions where there is intra-individual variation in morphology, which are predictive of 708 

sex but with minimal association with dementia.  709 

 710 
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As a proxy for existing knowledge in the literature we performed an ALE meta-analysis using 711 

Sleuth v3.0.4 77 and GingerALE v3.0.2 45. We used Sleuth to search for relevant articles with the 712 

query 713 

 714 

Imaging Modality is MRI 715 

 AND 716 

 Context is disease 717 

 AND 718 

 Diagnosis is Dementia OR Alzheimer’s Disease OR Lewy Body Dementia OR Frontotemporal 719 

Dementia OR Non-Aphasic Frontotemporal Dementia  720 

 721 

in the Voxel-based morphometry database, yielding 394 experiments from 124 articles. These 722 

experiments contained 3972 foci, 280 of which were outside the MNI152 mask, leaving 3692 to 723 

be loaded into GingerALE. Then the reference map �, with voxels A�,$,� , was generated by an 724 

ALE meta-analysis using the default parameters: Cluster-level FWE=0.01, Threshold 725 

Permutations=1000, P Value=0.001. The reference map is visualized in Supplementary Figure 4.  726 

 727 

We performed four pairwise comparisons to estimate the amount of overlap between each of the 728 

pipelines and �. For each pipeline the comparison was performed by computing an average map 729 �?, binarizing both it and �, and computing the Dice overlap between the two. The employed 730 

approach closely resembles the method of Wang et al. 40, but with multiple thresholds of 731 

binarization also for �, and allowed us to plot similarity as a function of the threshold. The full 732 

details of the procedure is described in the Supplementary Methods. Additionally, to have a 733 

singular numerical basis for comparison, we computed the normalized cross-correlation 46 734 

between the (non-binarized) average maps � and the reference map � , 735 

 736 

  737 

BCC,�?, �- �  ∑ ,$�,$,� 5 $D�,$,� -,A�,$,� 5 AD- E∑ ,$�,$,� 5 $D-! F  ∑ ,A�,$,� 5 AD-!
�,$,��,$,�

, $ � �?, A � �.  
 738 
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To facilitate an intuitive understanding of what parts of the brain the dementia-model is focusing 739 

on, we also performed a similar, region-wise comparison. This was done by extracting a subset 740 

of voxels from the average relevance map ���������,  741 

 742 

�-� � �G$�,$,��I ,%, �&, �'-� � HI, 743 

 744 

where H is one of 69 regions defined in the Harvard-Oxford cortical and subcortical atlases 78. 745 

We did the same for � and let the mean activation per region for both constitute a tuple 746 

 747 

J∑ $
%&�|�-| , ∑ A�%.�|�-| L  
 748 

plotted Figure 2c. However, since it is non-trivial to determine which aggregation method 749 

corresponds to the most understandable and intuitive interpretation, we also created plots for 750 

tuples of sums, 751 

 752 

M N $

%&�

, N A
�%.�

O 

 753 

and maximum values 754 

 755 

Pmax

%&�

$ , max
�%.�

AT 

 756 

per region in Supplementary Figure 10.  757 

To quantify the importance of the spatial locations captured by the various LRP pipelines for 758 

predicting dementia, we implemented a procedure for iteratively occluding parts of the image 759 

based on the relevance maps and observing how the prediction from the dementia model changed 760 

79. Still using the true positives, for each pipeline ������� for each MRI #� we generated a 761 

baseline dementia-prediction y�� and relevance map �����. Then we located the voxel with the 762 

highest amount of relevance in ����� and replaced a 15x15x15 cube centred around the voxel 763 
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with random uniform noise U,0, �1-, effectively concealing all information contained in this 764 

region. Next, we ran the modified image #����
�  through the dementia-model to see how the 765 

prediction ������
�  changed as a function of the occlusion. Note that injecting a box of random 766 

noise into the image is not trivially equivalent to removing information, however we specifically 767 

applied the same modification in the random box-augmentation during training and are thus 768 

hopeful that the model is invariant to the injection beyond the information removal. We 769 

iteratively applied this modify-and-predict procedure, also masking out the regions from the 770 

relevant maps between each iteration to minimize overlap of occlusion windows, for 20 771 

iterations, producing a list of predictions 3y��, �������
� , ������

! , … , ������
�/ 4 plotted for each pipeline in 772 

Figure 2d (averaged across all true positives). The rate of decline in these traces indicate the 773 

importance of the regions found in the respective relevance maps. We quantified the differences 774 

between the pipelines ������� by calculating the area over the area over their perturbation 775 

curves 79,  776 

 777 

WX�C���� �  �

!�
 1∑ ��� 5  ������

�!�
�0� 2. 778 

 779 

Exploratory analyses in the MCI cohort 780 

In the exploratory MCI analyses we used ����������� to generate predictions and relevance 781 

maps for participants from ADNI who were given an MCI diagnosis at inclusion. We first 782 

compiled the predictions and relevance maps (and the corresponding timestamps) for each 783 

participant at all timepoints into a single data structure we called a morphological record. We 784 

then tried to utilize this data structure to differentiate three groups: stable MCI patients (sMCI), 785 

progressive MCI patients (pMCI), and those who saw improvement in their cognition throughout 786 

the data collection phase. The remaining participants, e.g. those who either passed through all 787 

three diagnostic stages, or bounced between diagnoses, were excluded. Furthermore, we 788 

combined the stable and improving cohorts into a non-progressive group (nMCI) to facilitate 789 

binary group comparisons in the subsequent analyses. 790 

 791 

For the first analysis comparing predictions in the two groups, due to variability in the total 792 

number and the frequency of visits between participants, we aimed to create a matched dataset 793 

based on visit history from the nMCI and pMCI cohorts to compare the predictions in the two 794 
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groups with reference to a specific timepoint. We first started with all the progressive patients 795 ��� � �YCZ who got a diagnosis at timepoint ��(�, and, for each patient individually, compiled 796 

all previous visits ��, �.� [ �B into a vector \� representing the time of the visits. The entries 797 

���
of the vector were the number of days until the diagnosis was given, ��(� 5 ��. For 798 

simplicity we also appended �����
� 0 to \�, such that for a single patient 799 

 800 \� � :���
, ����

, � … , ����
, �0<. 801 

 802 

Then, for each of the non-progressive patients ��� � BYCZ who didn’t have a time of diagnosis 803 

(e.g. ��(� is not given) we compiled a set ]� of all possible history vectors \� by varying which 804 

visit was chosen as �� and a terminal non-diagnosis timepoint ��(�. Next, we defined a cost-805 

criterion for matching two histories (with an equal number of visits) as the sum of absolute 806 

pairwise differences between the vectors, 807 

 808 

�^/�,\�, \!- � ∑ |���

�� 5 ���

�� |�
�0� . 809 

 810 

For each pair of progressive and non-progressive patients 1��, ��2 this allowed us to calculate a 811 

best possible match, given that the stable patient had a total number of visits equal to or larger 812 

than the number of visits for the progressive patient: 813 

 814 

.+��\1��, ��2 �  _min�%1��
�^/� b\��

, \c   d\ � ]��
b|\| � e\��

ec∞                                   fg/f                                   h. 815 

 816 

 817 

Finally, we compiled the cost of the optimal match from all pairs into a matrix and found the best 818 

complete matching by minimizing the total cost across this matrix using the Hungarian algorithm 819 

implemented in scipy v1.6.3 80, such that each patient occurs in at most one pair.  820 

 821 

We estimated differences in predictions �� between the two groups using a linear mixed model. 822 

Specifically, we modelled �� at all timepoints before the terminal timepoint ��(� as a function of 823 
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age, sex (as controlling variables), years to diagnosis, categorical group membership (nMCI, 824 

pMCI), and an interaction between years to diagnosis and group. In addition, we had an 825 

independent intercept and slope per participant. The model was fit the formula API of 826 

statsmodels v0.13.2 81 using the formula 827 

 828 � i +Af j /f( j �f+$/ �^ �%+AB^/%/ j C,A$^k�- j �f+$/ �^ �%+AB^/%/: C,A$^k�-j ,1 j �f+$/ �^ �%+AB^/%/ | /km&f��- 

 829 

on the matched dataset. A full overview of coefficients and p-values can be found in 830 

Supplementary Table 4.  831 

 832 

Due to the high dimensionality of the relevance maps, we decomposed them with a principal 833 

component analysis (PCA) before the final analyses. To fit the PCA we used the non-linearly 834 

registered relevance maps from a randomly selected timepoint for all MCI patients. Before fitting 835 

the model, all relevance maps were smoothed with a constant 3x3x3 blurring kernel using the 836 

convolution operation from Tensorflow 2.6 to strengthen the signal-to-noise ratio. The PCA was 837 

computed using scikit-learn v1.0.2 82, retaining 64 components (out of 1137 maximally possible) 838 

in a component vector �� � �3��, ���, � … , ��2"4. An axial slice from each of the 64 components 839 

visualized in MNI152-space is shown in Supplementary Figure 6. 840 

 841 

We fit Cox proportional hazard models using the component vectors as predictors to assess the 842 

association between the relevance maps and progression as a function of age. In addition to the 843 

components, representing the maps, we controlled for sex in the model. The p-values and 844 

coefficients can be found in Supplementary Table 5. To account for covariance between the 845 

components and the dementia-prediction �� we ran an additional model where we divided the 846 

patients into ten strata based on ��. Both models were fit using lifelines v0.27.1 83. 847 

 848 

To further explore the prognostic efficacy of our pipeline we set up a predictive analysis for 849 

predicting progression at multiple, fixed timepoints a given number of months in the future. For 850 

each participant � with visits at timepoints ��, we denoted the last timepoint with an MCI 851 
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diagnosis ����
�  and the first timepoint with a dementia diagnosis (if present) ����

� . Using a fixed 852 

set of years into the future, �� �  1, �2, �3, �4, �5!, we constructed a target variable n3,��- such that  853 

 854 

n3,��- � o1      �� j � p ����
�

0      �� j � [ ����
�

qW  fg/f                  
h 

 855 

 856 

where the NAs allow for exclusion of all patients where the status at timepoint �� j � is 857 

unknown. For each � we constructed the target vector n3
 across all timepoints for all participants 858 

with n3
 r qW and split the constituent patients � into five folds stratified on n3 , sex and age, 859 

such that all timepoints from a participant resided in the same fold. Using these folds, we fit 860 

logistic regression models to predict n3  with an g�-penalty in a nested cross-validation loop, 861 

allowing us to both tune the regularization parameter s and have out-of-sample predictions for 862 

all participants. For eligible participants we used all timepoints for training the models, but 863 

during testing we sampled a random timepoint per participant to ensure independence between 864 

datapoints in the final evaluation. For each � we fit three models: a baseline model 865 

 866 ������ t �n3 �~�+Af�� j /f( j +Af�� � /f( 

 867 

to assess the bias in the dataset with respect to age at the given timepoint �� and sex, a model 868 

using the prediction  ���� from the dementia classifier at �� as a predictor  869 

 870 ��
��� t �n3 �~�+Af�� j /f( j +Af�� � /f(� j ����� � j �+Af�� � ���� 

 871 

and a model including the relevance maps from ��, represented by the component vector ��� ,  872 

 873 ������ t �n3�~�+Af�� j /f( j +Af�� � /f(� j ����� � j �+Af�� � ���� � j ����. 874 

 875 

All models were fit and tuned using the LogisticRegressionCV interface of sklearn v1.0.2 82. We 876 

compared models by measuring the mean AUC across the five folds (Supplementary Table 6). 877 
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To evaluate clinical applicability we also report accuracy, positive predictive value, sensitivity, 878 

and specificity (Table 2). To determine whether the more complex models represented 879 

significant improvements we employed a one-sided Wilcoxon signed-rank test from scipy v1.9.3 880 

80 to do pairwise comparisons between ����� and ��
��, and ��
��,  and ����� across the 881 

five out-of-sample AUCs independently. 882 

 883 

To assess whether the relevance maps were associated with specific cognitive functions we 884 

associated aspects of them with performance on various cognitive tests. We first extracted test 885 

results from seven neuropsychological batteries which spanned all ADNI waves and contained 886 

high-level summary scores from the ADNI website (Supplementary Table 7). We then manually 887 

extracted 17 summary scores spanning different, but overlapping, cognitive domains 888 

(Supplementary Table 8). The component vectors � were used as proxies for the relevance maps, 889 

where each ��  represented a template for localization of pathology. We matched 2402 component 890 

vectors with test results from 733 MCI patients, forming a basis for the comparison. We then 891 

calculated the univariate association between cognitive performance according to each of the 17 892 

with each of the dimensions �� � � �, while including age and sex as covariates for correction. To 893 

isolate the effect of the localization we also corrected for dementia-prediction, ��. When a patient 894 

had multiple potential matches, a random timepoint was selected, and the final number of 895 

datapoints used in the analyses varied from 518 to 675. Correction for multiple testing was done 896 

with the Benjamini-Hochberg procedure. To ensure the associations were not confounded by 897 

collinearities between � and ��, we also performed an equivalent analysis without correction to 898 

observe whether the sign of the coefficients changed. 899 

 900 
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