Abstract
Objective The challenge of irregular temporal data, which is particularly prominent for medication use in the critically ill, limits the performance of predictive models. The purpose of this evaluation was to pilot test integrating synthetic data within an existing dataset of complex medication data to improve machine learning model prediction of fluid overload.
Materials and Methods This retrospective cohort study evaluated patients admitted to an ICU ≥72 hours. Four machine learning algorithms to predict fluid overload after 48-72 hours of ICU admission were developed using the original dataset. Then, two distinct synthetic data generation methodologies (synthetic minority over-sampling technique (SMOTE) and conditional tabular generative adversarial network (CT-GAN)) were used to create synthetic data. Finally, a stacking ensemble technique designed to train a meta-learner was established. Models underwent training in three scenarios of varying qualities and quantities of datasets.
Results Training machine learning algorithms on the combined synthetic and original dataset overall increased the performance of the predictive models compared to training on the original dataset. The highest performing model was the metamodel trained on the combined dataset with 0.83 AUROC while it managed to significantly enhance the sensitivity across different training scenarios.
Discussion The integration of synthetically generated data is the first time such methods have been applied to ICU medication data and offers a promising solution to enhance the performance of machine learning models for fluid overload, which may be translated to other ICU outcomes. A meta-learner was able to make a trade-off between different performance metrics and improve the ability to identify the minority class.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
R Kamaleswaran was supported by the National Institutes of Health under Award Numbers R01GM139967 and UL1TR002378. Funding through the Agency of Healthcare Research and Quality for Drs. Sikora and Kamaleswaran were provided through R21HS028485 and R01HS029009.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Institutional Review Board (IRB) of record at the University of Georgia (approval number: (PROJECT00002652); approval date: October 2021)
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors