Title: RNA sequencing identifies human placental *IL3RA* as a potential predictor of adverse cardiovascular outcomes in patients with severe preeclampsia

Authors: Omonigho Aisagbonhi, MD., Ph.D.\(^{1,2}\) Tony Bui, BS.\(^{1,3}\) Hailee St. Louis, MD\(^{1}\), Donald Pizzo, Ph.D\(^{1}\), Morgan Meads, BS.\(^{1-3}\) Megan Mulholland, BS.\(^{1-3}\) Robert Morey, Ph.D\(^{1,3}\), Celestine Magallanes, BS\(^{4}\) Leah Lamale-Smith, MD\(^{4}\) Louise C. Laurent, MD, Ph.D\(^{4}\), Marni B. Jacobs, Ph.D.\(^{2,4}\) Kathleen M. Fisch, Ph.D.\(^{2-5}\) and Mariko Horii, MD\(^{1-3}\)

Affiliations:

1. Department of Pathology, University of California, San Diego, La Jolla, California, USA
2. Center for Perinatal Discovery, University of California, San Diego, La Jolla, California, USA
3. Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, USA
4. Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, California, USA
5. Center for Computational Biology and Bioinformatics, University of California, San Diego, La Jolla, California, USA

*Corresponding author:

Address: 9444 Medical Center Drive (1-200) La Jolla, CA 92037

E-mail: oaisagbonhi@health.ucsd.edu

Phone: 858-657-5464

Fax: 858-657-5495

Short title: *IL3RA* may predict adverse preeclampsia outcomes

Word count: 8216

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Mortality from preeclampsia (PE) and PE-associated morbidities are 3-to 5-fold higher in persons of African ancestry than in those of Asian and European ancestries. The placenta is central to the etiology of PE. However, how and to what extent the placenta contributes to worse PE outcomes in persons of African ancestry is yet to be fully elucidated.

Objective: We aimed to identify molecular pathways that are unique or enriched in placentas of parturient persons of African ancestry with PE with severe features (sPE) compared to those of Asian and European ancestry with sPE.

Study design: Bulk RNA sequencing was performed on 50 placentas from parturient persons with sPE of African (n=9), Asian (n=18) and European (n=23) ancestries and 73 normotensive controls of African (n=9), Asian (n=15) and European (n=49) ancestries.

Results: Metabolism, hormone regulation and hypoxia/angiogenesis genes, previously described to be upregulated in PE, including: LEP, PAPPA2, INHA, FSTL3, FLT1, PHYHIP and ENG, were upregulated in sPE across ancestries, with high expression of FSTL3 being additionally associated with intrauterine growth restriction (p = .0047). Notably, the upregulation of, FLT1, LEP and PHYHIP was significantly higher in sPE placentas from parturient persons of African versus Asian ancestry (p = .0.35, .020 and .012 respectively). Genes associated with allograft rejection and adaptive immune response were upregulated in placentas from parturients of African ancestry but not in those of Asian and European ancestries. Among the allograft rejection/adaptive immune response genes, IL3RA was of particular interest because the patient with the highest placental IL3RA level, a woman of African ancestry with IL3RA levels 4.5-fold above the average for African ancestry parturients with sPE, developed postpartum cardiomyopathy, and was the only patient out of 123, that developed this condition. Interestingly,
the sPE patients with the highest IL3RA levels among parturients of Asian and European ancestries developed unexplained tachycardia peripartum, necessitating echocardiography in the European ancestry patient. The association between elevated placental IL3RA levels and unexplained tachycardia or peripartum cardiomyopathy was found to be significant in the 50 sPE patients (p = .0005).

Conclusions: Placentas from parturients of African ancestry express higher levels of metabolism (LEP) and hypoxia/angiogenesis (FLT1) genes, as well as allograft rejection/adaptive immune response genes, including IL3RA. High placental expression of IL3RA may predict worse maternal cardiovascular outcomes, including peripartum cardiomyopathy. Studies evaluating placental IL3RA levels in peripartum cardiomyopathy cohorts are therefore warranted, as are broader studies evaluating placental factors in maternal cardiovascular outcomes postpartum.

Introduction

Preeclampsia (PE) is a hypertensive disorder of pregnancy (HDP) that the WHO lists as one of the 5 major causes of maternal mortality worldwide\(^1\). Pregnant and parturient persons of African ancestry have 1.5 to 2.5-times higher rates of PE\(^2-5\) and are 3 to 5-times more likely to die of PE than pregnant and parturient persons of Asian or European ancestry\(^6-7\). PE-associated morbidities, such as, stroke, pulmonary edema and heart failure, are also significantly higher in pregnant and parturient persons of African ancestry\(^6-7\).

Underlying comorbidities and lower socioeconomic status (SES) do not entirely explain the higher PE rates and worse prognosis in persons of African ancestry. A population-based study of 718,604 Black and White pregnant and parturient persons from a California cohort of singleton births found that, although White persons of higher SES had a lower risk of PE than White
persons of lower SES, higher SES did not attenuate PE risk in Black persons. A review of the records of 1,355 pregnant persons with HDP found similar rates of underlying chronic hypertension in Black and White pregnant persons. However, among pregnant persons with HDP without underlying chronic hypertension, Black persons were significantly more likely to be diagnosed with PE than White persons. In their retrospective cohort study of California births in 2007, Snowden et al found that though obesity was a risk factor for PE and low birth weight in White pregnant persons, obesity did not confer significantly increased PE risk in Black persons. However, Black pregnant persons of normal weight had a higher risk of PE than White persons of normal weight.

The placenta plays a central role in the pathology of PE, as PE only occurs in the context of pregnancy, and delivery of the placenta is often curative. However, how the placenta contributes to worse PE outcomes in pregnant and parturient persons of African ancestry, and which specific placental injury pathways may be dysregulated in this population (and therefore potential targets for therapy), are not well studied.

Molecular and clinical data point to multiple pathways leading to PE. Using unsupervised clustering of aggregate microarray datasets (first in 173 patient samples, including 77 with PE and 96 controls, and later in a larger dataset of 330 samples, including 157 PE and 173 non-PE samples), Leavey et al identified 3 molecular clusters/subclasses of PE which they termed maternal, canonical and immunologic. In the maternal PE group, infant birthweight and placental weight were appropriate for gestational age, and placental histology and gene expression patterns were not significantly different from normotensive controls. In the canonical PE group, birthweight and placental weight were small for gestational age, placental histology showed
evidence of maternal vascular malperfusion, and genes associated with hormone regulation and angiogenesis were overexpressed, with \textit{FSTL3} identified as the top differentially expressed gene. In the immunologic PE group, birthweight and placental weight were small for gestational age, placental histology showed massive/increased perivillous fibrin deposition, and genes associated with immune and inflammatory responses were overexpressed.

Recently, our group performed RNA sequencing on placentas from PE patients with evidence of maternal vascular malperfusion and found trophoblast defects and activation of pathways associated with hypoxia, inflammation and reduced cell proliferation in placentas with maternal vascular malperfusion16, thus demonstrating that placental tissue RNA sequencing reflects pathways associated with histologic evidence of placental injury in PE.

Therefore, we sought to elucidate the cellular and molecular underpinnings of the worse PE outcomes in pregnant and parturient persons of African ancestry by performing bulk RNA sequencing on placentas from persons affected by PE with severe features (sPE) and normotensive controls of African ancestry compared to persons of Asian and European ancestries. We hypothesized that molecular PE subclasses differ in placentas from parturient persons of African ancestry versus those of Asian and European ancestries.

\textbf{Materials and Methods}

\textit{Study cohort selection}

The study was approved by University of California, San Diego (UCSD) institutional review board, approval #181917. The study specimens were obtained from 2655 singleton parturitions at UCSD-affiliated hospitals between January 2010 and November 2020. The patients whose
samples were collected gave written informed consent for accessing their electronic medical records and collection of placental tissue. Demographic, clinical and placenta histology data were collected in a REDCap-based obstetric registry. For each pregnancy, the clinical diagnosis of preeclampsia with severe features (sPE) was adjudicated by 2 Board-Certified obstetricians. Of the 2655 parturitions, 1003 for which the maternal ethnicity was recorded as Hispanic-other were excluded, because Hispanic is a language group that can include people of diverse ancestries, ranging from African (e.g. Afro-Cubans) to North and South Americans (e.g. Mexicans and Brazilians), Asians (e.g. Spanish Filipinos) and Europeans (e.g. Spaniards). Categorization as Hispanic-other thus provided insufficient information about ancestry and had the potential to confound the study. 4 American Indian, 18 Native Hawaiian and 3 self-identified multiracial without further ancestry delineation were excluded because the numbers of patients in these categories were too few to gather generalizable information. There remained 142 parturitions with maternal African ancestry (self-identified as Black, African or African American), 265 with Asian ancestry (self-identified as Asian) and 1220 with European ancestry (self-identified as White, including Hispanic and non-Hispanic). Of these, RNA sequencing was performed on 9 sPE and 9 normotensive controls of African ancestry, 18 sPE and 15 normotensive controls of Asian ancestry and 23 sPE and 49 normotensive controls of European ancestry (Figure 1).

Obstetric Data

The demographic data collected included maternal ancestry, maternal age at delivery, gravidity, parity, gestational age at delivery, fetal sex, birth weight, mode of delivery, documented sPE, intrauterine growth restriction (IUGR), unexplained tachycardia, or peripartum cardiomyopathy.
Placenta disc villous tissue (avoiding the chorionic and basal plates) was collected and stored in RNAlater (ThermoFisher). Total RNA was isolated from RNAlater-preserved specimens with the mirVana RNA isolation kit using the manufacturer’s Total RNA protocol (ThermoFisher) and RNA concentration was measured using the QuBit RNA BR assay kit (ThermoFisher). RNA integrity was evaluated using RNA 6000 Nano chip read by a 2100 Bioanalyzer (Agilent). All samples had an RNA integrity number of >7.0. RNA sequencing libraries were prepared using the TruSeq Stranded Total RNA Sample preparation kit with Ribo-Zero Gold (Illumina) at the IGM Genomics Center, UCSD. The libraries were pooled and sequenced on the NovaSeq 6000 (Illumina) with PE100 to an average depth of 25,000,000 uniquely mapped reads. Quality control was performed using FastQC (version 0.11.3). Reads were mapped to GRCh38.89 (Ensembl) using STAR (version 2.7.9a) on the Extreme Science and Engineering Discovery Environment (XSEDE). The STAR parameters used were as follows: --runThreadN 24 --sjdbOverhang 99 --genomeDir ref_ensembl_GRCh38_89/star_index --sjdbGTFtagExonParentGeneGene_id --sjdbGTFfile ref_ensembl_GRCh38_89/ Homo_sapiens.GRCh38.89.gtf --outSAMtype BAM Unsorted SortedByCoordinate --outReadsUnmapped Fastx --quantMode Gene-Counts. Ensembl genes with at least 10 counts in 25% of the samples were filtered for the analysis. Normalization and the differential expression analysis (DEA) were performed using the R (version 4.2.1) package DESeq2 (version 1.36.0). Data were accounted for batch effect, gestational age, and gender, and adjusted p-value < .05 was considered differentially expressed. BiomaRt (version 2.42.1) was used to convert Ensembl gene identification numbers to Human Genome Organization gene names. Gene set enrichment analysis (GSEA) was performed using the R (version 4.2.1) package Fast Gene Set Enrichment Analysis (version 1.22.0). Gene ontology
analysis was performed using Enrichr21. Pathway analysis was performed using MsigDB Hallmark gene set pathway analysis22. Venn diagrams were constructed using BioVenn23.

Immunohistochemistry

Formalin-fixed paraffin-embedded placental tissue sections of 5 μm were stained with mouse anti-CD123 (clone BR4MS; 1:100; Ventana) antibody using a manual staining method. Briefly, slides were incubated at 60°C for 1 hour, deparaffinized through standard xylene and alcohol changes and hydrated in distilled water. Slides were pretreated in BioCare BORG decloaking chamber at 125°C, 123psi. Slides were rinsed in TBS (BioCare Medical), peroxidase block (3% hydrogen peroxide) was applied for 10 mins, after which slides were rinsed in TBS. Protein block with 0.5% casein (Vector) was performed for 10 mins, after which slides were rinsed in TBS and then incubated with the CD123 antibody for 30 mins, rinsed in TBS and incubated in post-primary reagent (rabbit anti-mouse Ig; Nvocastra) for 30 mins. Slides were again rinsed in TBS and then Novolink polymer (HRP-polumer-goat-anti-rabbit IG; Leica microsystems) was applied for 30 mins. Slides were rinsed in TBS and then DAB reagent (DAKO) was applied. Slides were rinsed in water, counterstained with hematoxylin, dehydrated, cleared with xylene and then coverslip applied, per standard protocols. Immunohistochemistry was performed at San Diego Pathologist Medical Group.

Immunohistochemistry quantification

CD123-stained placenta sections were evaluated to by a pathologist; cellular localization was evaluated and scores were assigned based on intensity (no staining = 0, weak staining = 1, moderate staining = 2 and strong staining = 3) and amount of staining (none = 0, focal = 1, patchy = 2 and diffuse = 3). The total score comprised the sum of the intensity and amount scores (lowest = 0 and highest = 6).
Peripartum cardiomyopathy sub-study

Electronic medical records of the 2655 singleton pregnancies with adjudicated diagnosis (described in the study cohort section above) were searched using the term “cardiomyopathy” and 4 patients with bona fide peripartum cardiomyopathy (PPCM) in the index pregnancy were identified (Figure 6A).

Statistical analysis

Statistical analyses were performed using GraphPad Prism (version 9.4.1). The Mann-Whitney U test was applied to all nonparametric data and student t test to all parametric data with continuous variables. The Pearson chi-square test was used for categorical variables. All statistical tests were 2-sided, with values <.05 considered statistically significant.

Results

Histopathologic analysis cohort

The histopathologic analysis cohort was comprised of 868 patients; 127 with sPE and 741 normotensive controls. Maternal age, gestational age at delivery, gravidity, parity, infant sex, infant birth weight and mode of delivery were evaluated in sPE patients African (n=15), Asian (n=23) and European (n=89) ancestries compared to normotensive controls of African (n=39), Asian (n=114) and European (n=588) ancestries. Gestational age at delivery and birth weight were significantly less in sPE patients than in normotensive controls across ancestries (Supplemental Table 1).

In patients with severe preeclampsia, African ancestry is associated with higher rates of maternal vascular malperfusion and perivillous fibrin deposition
We analyzed the 868 placentas using previously defined histopathologic criteria. We found maternal vascular malperfusion and perivillous fibrin deposition occurred at significantly higher rates in placentas from parturients of African ancestry with sPE compared to those of Asian or European ancestry, suggesting worse placental injury in the African ancestry sPE group (Supplemental Table 2).

RNA sequencing patient demographics

Maternal age, gestational age at delivery, gravidity, parity, infant sex, infant birth weight and mode of delivery were evaluated in sPE versus normotensive control patients of African, Asian and European ancestries whose placenta samples were RNA sequenced. In comparison to normotensive controls, infant birth weight was significantly lower in sPE parturitions across ancestries while gestational age at delivery, gravidity and parity were significantly less in African ancestry sPE parturitions (Supplemental Table 3).

Among the sPE patients, there was no significant difference in evaluated demographics – maternal age, gestational age at delivery, gravidity, parity, infant sex, birth weight and mode of delivery – across ancestries (Supplemental Table 4).

Canonical preeclampsia genes and pathways are upregulated in placentas from patients of all ancestries with sPE

We first performed differential expression analysis of sPE vs. normotensive controls within each ancestry, and found 146 genes upregulated in African-sPE, 129 genes in Asian-sPE, and 637 genes in European-sPE placentas. 54 genes were upregulated in common in sPE placentas of all 3 ancestries (Figure 2A; Supplemental Tables 5-7). The relatively small number of differentially
expressed genes did not show enrichment of ontology terms using hypergeometric statistical
tests. We therefore used our ranked gene list to perform gene set enrichment analysis (GSEA) to
look for enriched pathways in our dataset. The leading edge analysis identified the most highly
upregulated genes and pathways including those involved in metabolism (LEP, HK2), hormone
regulation (INHA, PAPPA2), and hypoxia/angiogenesis (FLT1, FSTL3, ENG, HTRA4), which
have been previously reported to be upregulated in PE14-15, 26-32 (Figure 2B-C; Supplemental
Tables 8-10). Based on review of prior publications showing evidence of associations with
preeclampsia, 9 of the leading edge genes we identified as upregulated in sPE patients across all
 ancestries were chosen for further analyses (bolded in Figure 2A, arrows in Figure 2C).

African ancestry is associated with higher upregulation of PHYHIP and the canonical PE genes,
FLT1 and LEP

In evaluating the 9 selected genes upregulated in placentas of sPE patients vs. normotensive
controls of all ancestries, we noticed African ancestry sPE placentas showed higher fold-change
compared to fold-change from other ancestry groups (Table 1). Therefore, we further investigated which of the 9 genes were specifically upregulated in sPE placentas of African ancestry versus sPE placentas of Asian and European ancestries (excluding
normotensive controls). We found FLT1, LEP and PHYHIP were more highly upregulated in
placentas from African ancestry sPE patients (Figure 3A; Supplemental Figure 1).

High placental upregulation of FSTL3 is associated with intrauterine growth restriction

We reviewed electronic medical records of all 123 study patients for intrauterine growth
restriction (IUGR), a known PE-associated pregnancy complication. IUGR was present in 28 of
123 patients (6 of 9 sPE African ancestry, 8 of 18 sPE Asian ancestry, 11 of 23 sPE European ancestry, 0 of 9 normotensive African, 0 of 15 normotensive Asian and 3 of 49 normotensive European patients). We evaluated IUGR in relation with DESeq2 normalized gene expression levels of our 9 selected genes. We found that all 9 genes were significantly associated with IUGR when sPE and normotensive IUGR patients were combined. However, only FSTL3, FLT1, ENG and HTRA4 were associated with IUGR independently of preeclampsia; with FSTL3 being the most highly upregulated gene (15.4-fold) in normotensive patients with IUGR (Figure 3B; Supplemental Figure 2).

Allograft rejection and adaptive immune response genes and pathways are selectively upregulated in placentas from patients of African ancestry with sPE

In comparison to placentas from normotensive patients, 26 genes and 7 pathways were uniquely upregulated in placentas from sPE patients of African ancestry and not in Asian or European ancestry sPE placentas (Figure 4A-B). Allograft rejection and adaptive immune response (interleukin-JAK-STAT signaling) pathways were among those uniquely upregulated in placentas from African ancestry sPE patients. Interestingly, leading edge gene analysis identified interleukin receptor, IL3RA, which is known for allograft rejection through interleukin signaling33-35, to be selectively upregulated in placentas of sPE patients of African ancestry. Therefore, IL3RA was chosen for further investigation in our study. We performed regression analysis of IL3RA levels in placentas of sPE patients of African, Asian and European ancestries delivered at various gestational ages and found IL3RA levels to be elevated in African ancestry sPE placentas, regardless of gestational age at delivery (Supplemental Figure 3A). In African ancestry parturients, individual placentas showed upregulation of both canonical (exemplified by
FLT1 and LEP) and allograft rejection/adaptive immune response genes (exemplified by IL3RA) (Supplemental Figure 3B).

High placental upregulation of IL3RA is associated with unexplained tachycardia and peripartum cardiomyopathy

We performed a detailed review of the electronic medical records of the sPE patients with the highest placental IL3RA expression levels for their ancestry and found they developed either peripartum cardiomyopathy (PPCM; African ancestry) or unexplained tachycardia (UET; Asian and European ancestries) (Table 2; Figure 4C). Tachycardia in the absence of clinically explained causes such as chorioamnionitis, urinary tract infection, viral infection, post-partum hemorrhage/anemia, dehydration, sleep apnea and bulimia was classified as UET. We thus searched for UET and PPCM in the medical records of all 50 sPE study patients and found elevated IL3RA levels to be significantly associated with UET or PPCM (Fisher’s exact test p value .0005) (Table 3).

Placental syncytiotrophoblast CD123 expression by immunohistochemistry correlates with placental IL3RA levels by RNA-seq

We evaluated the localization and expression pattern of CD123, the protein product of IL3RA by immunohistochemistry on formalin-fixed paraffin-embedded (FFPE) sections from sPE patient placenta with the highest and lowest placental IL3RA levels for their ancestry (i.e. the 2 highest and 2 lowest IL3RA-expressing sPE placentas of each ancestry; N =12). There was variable CD123 expression in chorionic plate vessel endothelial cells, stem villous vessel endothelial cells, decidual vessel endothelial cells and syncytiotrophoblasts (Figure 5A-D). CD123
expression in syncytiotrophoblasts correlated with IL3RA levels (simple linear regression p = .0027), but expression in stem villous vessels did not (p = .1782) (Figure 5E-F).

Placental syncytiotrophoblast CD123 expression was detectable in only one of four peripartum cardiomyopathy patients.

We reviewed our database of 2655 singleton parturitions to identify patients who developed peripartum cardiomyopathy (Figure 6A; Table 4).

We subsequently evaluated placental CD123 expression in the 4 PPCM patients by immunohistochemistry on FFPE tissue sections. Syncytiotrophoblast CD123 expression was present only in the African ancestry PPCM patient (Figure 6B-E).

Discussion

Factors underlying increased PE risk and worse PE outcomes in African ancestry pregnancies and parturitions are incompletely understood. In the current study, we evaluated placental gene expression by RNA sequencing in patients with sPE of African, Asian and European ancestries and found upregulation of canonical PE genes in sPE patients of all ancestries, with follistatin-like 3 (FSTL3) being associated with IUGR. FSTL3 is an activin antagonist that Mukherjee et al. found to be involved in glucose and fat metabolism\(^36\). In their unsupervised placental gene expression profiling, Leavey et al.\(^{14-15}\) found FSTL3 to be the top gene associated with canonical PE and IUGR. A 2021 study found elevated maternal serum levels of FSTL3 during pregnancy to be predictive of fetal growth restriction\(^37\). Our findings are in concordance with these studies.
Among the genes upregulated in PE across ancestries, we found higher expression of, Fms-related receptor tyrosine kinase 1 (FLT1), leptin (LEP) and phatonyl-CoA 2-hydroxylase interacting protein (PHYHIP) in African ancestry sPE placentas. FLT1 is probably the most widely recognized PE-associated gene, having been found to be upregulated in PE in multiple studies\(^{26-28,38}\). The ratio of soluble FLT-1 (sFlt-1) to placental growth factor (PIGF) has been validated as a test to predict impending PE\(^{39}\). LEP plays a major role in the regulation of energy homeostasis and body weight\(^{40}\). Elevated LEP has been previously described in preeclampsia in multiple studies and leptin infusion in mice induces clinical characteristics of preeclampsia\(^{29-31}\). Longitudinal measurement of leptin/ceramide ratio outperformed sFlt-1/PIGF ratio in predicting impending PE\(^{31}\). PHYHIP has been described to be involved in protein localization and has been suggested to be involved in the development of Refsum disease, a neurologic disorder caused by the toxic accumulation of phytanic acid in brain and peripheral neurons\(^{41}\). A few studies have identified PHYHIP as one of the placenta genes associated with early-onset preeclampsia\(^{42-43}\). Higher upregulation of FLT1, LEP and PHYHIP in placentas from pregnancies and parturitions of maternal African ancestry may partly explain worse PE outcomes in this patient population.

We found genes and pathways involved in allograft rejection and adaptive immune responses to be selectively upregulated in placentas from parturient persons of African ancestry with sPE and not in those of Asian and European ancestries. Notably, individual placentas from patients of African ancestry with sPE had upregulation of both canonical PE genes and allograft rejection/adaptive immune response genes. This raises the possibility that rather than being indicative of distinct PE etiologies (i.e. canonical versus immunologic), activation of allograft
rejection/adaptive immune response genes may be a marker of worse placental injury and
harbinger of worse PE outcomes.

Among the allograft rejection and adaptive immune response genes, we found high placental
expression of interleukin 3 receptor alpha \((IL3RA)\) to be associated with unexplained tachycardia
and peripartum cardiomyopathy in sPE patients. IL3RA is a cell surface receptor for IL3.

Binding of IL3 to IL3RA causes heterodimerization with the beta subunit, IL3RB, and
downstream JAK2-STAT5 signaling\(^{44}\). IL5 and GM-CSF share the beta subunit with IL3 and can
activate signal transduction upon binding\(^{45}\). High levels of IL3 and GM-CSF have been observed
in various models of heart failure. Vistnes et al.\(^{46}\) found IL3 and GM-CSF among the cytokines
increased upon inducing heart failure in a mouse cardiomyopathy model. IL3 caused allograft
fibrosis and chronic rejection of mouse heart transplants\(^{35}\). IL3 impaired the cardioprotective
effects of endothelial cell-derived extracellular vesicles in a rat cardiac ischemia/reperfusion
model\(^{47}\). In humans, Oren et al.\(^{48}\) found CRP, GM-CSF and IL3 to be significantly upregulated
in the first 12 hours of patients presenting to the emergency department with acute myocardial
infarctions.

We found placental endothelial cells and syncytiotrophoblasts express CD123, the protein
product of \(IL3RA\), with syncytiotrophoblast CD123 expression being a better correlate of \(IL3RA\)
levels by RNA-sequencing. Syncytiotrophoblasts and decidual endothelial cells interact with the
maternal systemic circulation at the intervillous space and decidua respectively\(^{49-50}\).

CD123/IL3RA localization to these cell types suggests \(IL3RA\) may exert its adverse
cardiovascular effects via interactions with the maternal systemic circulation and circulating
immune cells. In support of this theory is the finding by Anzai et al.51 that T-cell derived IL3 acted on \textit{IL3RA}-expressing cardiac macrophages and fibroblasts to amplify autoimmune inflammation in a mouse experimental myocarditis model. Furthermore, Pistulli et al.52 found accumulation of CD123+ dendritic cells in hearts of humans with acute myocarditis, and that dendritic cell accumulation caused adverse left ventricular remodeling in murine model of experimental myocarditis. IL5, which shares the signal transducing beta subunit with IL3-IL3RA, is a contributor to the pathogenesis of eosinophilic myocarditis53-56. All together, the upregulation of placental \textit{IL3RA} in patients with sPE who develop unexplained tachycardia and/or peripartum cardiomyopathy suggest that this marker may be a predictor and/or cause of cardiac dysfunction, perhaps via interaction with circulating immune cells that then accumulate in, and cause damage to, the heart. Studies of the crosstalk between syncytiotrophoblasts, immune cells, and cardiomyocytes may yield further mechanistic insights into how the placenta may cause cardiovascular damage in susceptible patients.

The patient with the highest placental \textit{IL3RA} expression level in our RNA sequenced cohort of 123 patients developed peripartum cardiomyopathy (PPCM). PPCM is a non-ischemic dilated reduced ejection fraction (LVEF <45%) cardiomyopathy that typically presents towards the end of pregnancy and in the months following delivery57. The incidence of PPCM varies by ancestry, being highest among people of African ancestry, with incidence rates reaching 1:100 in Nigeria58, and lowest among people of Asian ancestry, with rates as low as 1:20,000 in Japan59. Currently, the etiology of PPCM is thought to be multifactorial, with proposed causes that include genetic predisposition in 15% of PPCM patients60, vasculotoxicity of a 16kDa cleaved
prolactin fragment61, and inflammation62. There is an increased association of PPCM with hypertensive disorders of pregnancy, with the association being strongest with sPE63.

A 2018 study showed a higher prevalence of loss of function variants in cardiomyopathy genes among patients with PE; with \textit{TTN} mutations being most common64. Interestingly, the African ancestry sPE patient in our study who had the highest placental \textit{IL3RA} level and developed PPCM also had a c.83401T>C variant of uncertain significance (VUS) in \textit{TTN}.

We subsequently performed a review of our database of 2655 singleton parturitions and identified 3 additional PPCM patients (4 total, including the African ancestry patient whose placenta had been RNA sequenced). Of the 4 patients, syncytiotrophoblast CD123 expression, our surrogate marker for high placental \textit{IL3RA}, was identified in 1 and absent in 3. A possible explanation for this finding includes differing PPCM etiologies in the 4 patients. The 3 patients without evidence of elevated \textit{IL3RA} were older at delivery (age range 31-39 years), and recovered cardiac function with normalization of their LVEF by 1-2 years postpartum. In contrast, the patient with elevated \textit{IL3RA} and \textit{TTN} c.83401T>C was age 19 at delivery and still has decreased LVEF and an implanted ICD 7 years postpartum. Though assessment for cardiomyopathy-associated mutations were not performed in the 3 PPCM patients whose placentas were CD123-negative (due to lack of available preserved RNA), their recovery of cardiac function/normalization of LVEF suggests decreased likelihood of underlying cardiomyopathy-associated genetic mutations. In the IPAC (Investigations of Pregnancy-associated Cardiomyopathy) cohort, the presence of TTN truncating variants significantly correlated with lower LVEF at 1 year follow up60.
Using a genomics-first approach to evaluate for heart disease associated with titin-truncating variants, dilated cardiomyopathy was identified in only 7.5% of people with TTN truncating variants. As >90% of patients with TTN truncating variants do not develop dilated cardiomyopathy or PPCM, our findings of elevated placental IL3RA in an African ancestry PPCM patient with TTN c.83401T>C raises the possibility that high placental IL3RA precipitates PPCM in genetically susceptible patients.

Our study was retrospective and limited by the small number of PPCM patients. Prospective studies of placental IL3RA expression relative to cardiomyopathy-associated mutation status in large PPCM cohorts are thus warranted.

Conclusion

We sought to identify placental factors that may explain worse PE outcomes in pregnancies and parturitions with maternal African ancestry and found higher upregulation of canonical PE genes (FLT1, LEP and PHYHIP) and selective upregulation of allograft rejection/adaptive immune response genes (IL3RA) in placentas from sPE patients of African ancestry versus sPE patients of Asian and European ancestries. Furthermore, we found high placental IL3RA to be associated with UET and PPCM in a subset of sPE patients. The higher expression of LEP, FLT1, PHYHIP and IL3RA in placentas from patients of African ancestry with sPE likely contributes to the worse PE outcomes in this patient population. As pregnancy is a semi-allogeneic state and HLA diversity is higher in people of African ancestry, the possibility that the higher upregulation of canonical PE genes, and selective upregulation of allograft rejection-associated genes in pregnancies and parturitions with maternal African ancestry may be related to higher rates of maternal-fetal HLA mismatches in this population, is an intriguing concept for future studies.
Acknowledgement

The authors are very grateful to all patients who consented and donated placental tissues to our Perinatal Biorepository. We also thank Dr. Mana Parast for constructive critiques on the research and manuscript.

Funding

This work was supported by funds from the University of California San Diego (UCSD) Academic Senate grant #RG103465, the Health Resources and Services Administration of the U.S Department of Health and Human Services Award Number D34HP31027 (Faculty Development PIs Drs. JoAnn Trejo and Vivian Reznik), the UCSD Department of Obstetrics, Gynecology, and Reproductive Sciences, the UCSD Department of Pathology and the UCSD Stem Cell Program. Computational analysis was performed on the Extreme Science and Engineering Discovery Environment (XSEDE) Expanse, which is supported by the National Science Foundation grant #1548562 (allocation ID: MED210023). This research was partially supported by the Altman Clinical & Translational Research Institute (ACTRI) at the University of California, San Diego. The ACTRI is funded from awards issued by the National Center for Advancing Translational Sciences, NIH UL1TR001442. This work includes data generated at the UC San Diego IGM Genomics Center utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929).

Author contributions

OA and MH designed the research; CM and MM recruited patients and collected clinical information; MBJ and MM collected and managed database; LLS, and LCL were involved in review of data within the obstetrics registry and adjudication of hypertensive disorders of
pregnancy; OA and HSL adjudicated adverse outcomes; TB performed RNA isolation; OA and DP performed immunohistochemistry analysis; OA, KMF, RM and MH performed RNAseq analysis; OA, MBJ, KMF, LCL and MH wrote the manuscript text. All the authors reviewed the final version of the manuscript.

Data and code availability

RNA-seq data have been deposited to the Gene Expression Omnibus database under the accession number GSE234729 and GSE186257.

References

Tables

<table>
<thead>
<tr>
<th>Gene</th>
<th>African ancestry</th>
<th>Asian ancestry</th>
<th>European ancestry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fold change</td>
<td>padj</td>
<td>Fold change</td>
</tr>
<tr>
<td>LEP</td>
<td>35.33</td>
<td>.0047</td>
<td>25.81</td>
</tr>
<tr>
<td>FSTL3</td>
<td>34.03</td>
<td>.0017</td>
<td>11.14</td>
</tr>
<tr>
<td>HK2</td>
<td>9.25</td>
<td>.0047</td>
<td>6.30</td>
</tr>
</tbody>
</table>
Table 1: Fold changes in select genes significantly upregulated in severe PE (versus normotensive controls) per ancestry. p values represent adjusted p values calculated using DESeq2.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Fold Change</th>
<th>p Value</th>
<th>Fold Change</th>
<th>p Value</th>
<th>Fold Change</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPPA2</td>
<td>4.42</td>
<td>.02</td>
<td>4.25</td>
<td>.0021</td>
<td>2.96</td>
<td>.00015</td>
</tr>
<tr>
<td>FLT-1</td>
<td>7.54</td>
<td>.0032</td>
<td>5.88</td>
<td>.0011</td>
<td>5.04</td>
<td>1.21E-06</td>
</tr>
<tr>
<td>ENG</td>
<td>4.09</td>
<td>.0047</td>
<td>3.06</td>
<td>.0095</td>
<td>2.66</td>
<td>2.48E-05</td>
</tr>
<tr>
<td>HTRA4</td>
<td>13.56</td>
<td>.0076</td>
<td>6.15</td>
<td>.027</td>
<td>4.96</td>
<td>7.49E-06</td>
</tr>
<tr>
<td>INHA</td>
<td>6.52</td>
<td>.0367</td>
<td>3.38</td>
<td>.0041</td>
<td>2.38</td>
<td>.00024</td>
</tr>
<tr>
<td>PHYHIP</td>
<td>6.69</td>
<td>.0094</td>
<td>2.53</td>
<td>NS</td>
<td>2.60</td>
<td>.00038</td>
</tr>
</tbody>
</table>

Table 2: Peripartum cardiac symptoms and recurrent preeclampsia in the severe preeclampsia with the highest placental IL3RA levels for their ancestry. Abbreviations: PE: preeclampsia, SOB: shortness of breath, IUGR: intrauterine growth restriction, LVEF: left ventricular ejection fraction, LV: left ventricle; EF: ejection fraction.
Table 3: Frequency of unexplained tachycardia or peripartum cardiomyopathy and their relationship with \textit{IL3RA} levels in parturitions complicated by preeclampsia with severe features (sPE) per ancestry (N=50). Comparison placental \textit{IL3RA} levels were set to 2-fold greater than average of the levels in sPE patients per ancestry.

<table>
<thead>
<tr>
<th>Ancestry/Language</th>
<th>Age</th>
<th>Smoking history</th>
<th>BMI</th>
<th>GA</th>
<th>Preceding diagnosis</th>
<th>PPCM presentation</th>
<th>Genetics</th>
</tr>
</thead>
</table>

African sPE: 1/9 (11.1%)
- \textit{IL3RA} 2-fold greater than PE average for ancestry
- \text{PPCM} - 1
- \text{No PPCM} - 0

Asian sPE: 1/18 (5.5%)
- \text{PPCM} - 0
- \text{No PPCM} - 0

European sPE: 3/23 (13%)
- \textit{IL3RA} less than 2-fold of PE average for ancestry
- \text{PPCM} - 0
- \text{No PPCM} - 0

Total: 5/50 (10%)
- Fisher’s exact test p-value **.0005**
<table>
<thead>
<tr>
<th></th>
<th>Ethnicity</th>
<th>Age</th>
<th>Height</th>
<th>BMI</th>
<th>Diagnosis</th>
<th>Symptoms</th>
<th>Genetic Finding</th>
<th>Follow-Up Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>African</td>
<td>19</td>
<td>NS</td>
<td>45.09</td>
<td>26.6 sPE</td>
<td>Cough, SOB and abdominal distension 5 months postpartum. Found to have severe LV dilatation without LVH; LVEF 10%; developed LV thrombus. Was initially considered for transplant, but LVEF improved to 40% 2 years later; but then dropped to 27% again after another 2 years (post-second pregnancy) – currently has an ICD</td>
<td>TTN c.83401T>C VUS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Hispanic</td>
<td>34</td>
<td>NS</td>
<td>26.85</td>
<td>33.1 sPE</td>
<td>Developed tachycardia, SOB, hypoxia and pulmonary edema soon after completion of emergency C-section for severe PE. Found to have normal LV size but LVEF 10-15%; improved to 28% 2 days later; then 48% 1 month later; fully (63%) 3 months later</td>
<td>Not performed</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Hispanic</td>
<td>31</td>
<td>NS</td>
<td>31.83</td>
<td>36.4 sisPE</td>
<td>h/o poorly controlled DM2; found to have mildly decreased LVEF (49%) at 15w GA- followed by cardiology; C/S at 36w4d for sisPE; found to have moderate LV dilatation and LVEF 35-40% 3 months</td>
<td>Not performed</td>
<td></td>
</tr>
<tr>
<td>4 European</td>
<td>39 NS</td>
<td>21.28</td>
<td>34.5 sisPE with HELLP</td>
<td>postpartum; no subsequent records in our system</td>
<td>SOB and O2 sats 80s 1 month postpartum.</td>
<td>Found to have mild LV dilatation without LVH; LVEF 30-35%; improved to 48% 3 months later and fully (63%) 2 years later.</td>
<td>Not performed</td>
<td></td>
</tr>
</tbody>
</table>

| Table 4: Clinical profile of the 4 patients with peripartum cardiomyopathy (PPCM) in our database of 2655 singleton parturitions. Abbreviations: NS: never-smoker; BMI: body mass index; GA: gestational age; sPE: preeclampsia with severe features; sisPE: superimposed preeclampsia (i.e. preeclampsia with a history of underlying chronic hypertension) with severe features; HELLP: hemolysis, elevated liver enzymes and low platelets; SOB: shortness of breath; LV: left ventricle; LVH: left ventricular hypertrophy; LVEF: left ventricular ejection fraction; ICD: implantable cardioverter defibrillator; DM2: type II diabetes mellitus; VUS: variant of uncertain significance.

Figure legends

Figure 1: RNA sequencing study design. Abbreviations sPE: preeclampsia with severe features; GA: gestational age

Figure 2: Genes and pathways upregulated in common in placentas from severe PE versus normotensive patients of all ancestries. A. Genes upregulated in severe PE versus normotensive placentas – genes in bold have been identified in multiple studies. B. Hallmark signaling pathways upregulated in severe PE versus normotensive placentas. C. Heat map of top 50 genes upregulated in severe preeclampsia versus normotensive controls. Arrows point to genes chosen for further analysis in this study.

Figure 3: A. DEseq2 normalized expression of FLT1, LEP and PHYHIP which are more highly upregulated in placentas from African ancestry patients with severe preeclampsia versus Asian
ancestry patients with severe preeclampsia. B. Evaluation of intrauterine growth restriction (IUGR) in relation to DESeq2 normalized gene expression.

Figure 4: Genes and pathways uniquely upregulated in placentas from severe PE patients of African ancestry and not in Asian or European ancestry severe PE patients. A. Genes uniquely upregulated in placentas from severe PE patients of African ancestry - IL3RA is bolded due to its significance in this study. B. Hallmark signaling pathways uniquely upregulated in placentas from severe PE patients of African ancestry. C. Patients with the highest placental IL3RA levels for their ancestry developed cardiac symptoms.

Figure 5: CD123 localization in placenta sections; in placentas with CD123 expression, variable expression was seen in chorionic plate vessels (A), stem villous vessels (B), decidual vessels (C) and syncytiotrophoblasts (D) (top panels are from a patient without PPCM; bottom panels are from the patient with PPCM). CD123 expression in syncytiotrophoblasts correlated better with IL3RA levels than expression in stem villous vessels (E and F). Abbreviations: PPCM peripartum cardiomyopathy; UET: unexplained tachycardia.

Figure 6: Evaluating the relationship between placental CD123 expression and peripartum cardiomyopathy. A. Study design. CD123 immunohistochemical stains were performed on the PPCM patients of African ancestry (B), European ancestry (C) and Hispanic language group (D-E). Only the African ancestry patient had detectable syncytiotrophoblast CD123 expression.
A. Study design

2655 singleton pregnancies with adjudicated diagnoses

EMR search "cardiomyopathy"

31 patients with mention of cardiomyopathy of any sort

4 patients diagnosed with bona fide peripartum cardiomyopathy in index pregnancy. Ancestry breakdown: 1 African (self-identified as African-American), 1 European (self-identified NHW) and 2 self-identified as Hispanic – 1 Hispanic, other and 1 Hispanic Mexican

Peripartum cardiomyopathy rates per ancestry in our study population of 2655 singleton pregnancies:
1/142 African ancestry
2/1003 Hispanic, self-identified as non-white
1/1220 European ancestry
0/265 Asian ancestry

B

All 4 with available placenta blocks for CD123 IHC/RNAseq was not performed because RNAlater-preserved specimen was only available for 2 of the 4 cases

C

D

E