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ABSTRACT 
 

Rationale and Objectives: Small airways disease (SAD) and emphysema are significant 
components of COPD, a heterogenous disease where predicting progression is difficult. SAD, a 
principal cause of airflow obstruction in mild COPD, has been identified as a precursor to 
emphysema. Parametric Response Mapping (PRM) of chest computed tomography (CT) can help 
distinguish SAD from emphysema. Specifically, topologic PRM can define local patterns of both 
diseases to characterize how and in whom COPD progresses. We aimed to determine if 
distribution of CT-based PRM of functional SAD (fSAD) is associated with emphysema 
progression. 

Materials and Methods: We analyzed paired inspiratory-expiratory chest CT scans at baseline 
and 5-year follow up in 1495 COPDGene subjects using topological analyses of PRM 
classifications. By spatially aligning temporal scans, we mapped local emphysema at year 5 to 
baseline lobar PRM-derived topological readouts. K-means clustering was applied to all 
observations. Subjects were subtyped based on predominant PRM cluster assignments and 
assessed using non-parametric statistical tests to determine differences in PRM values, 
pulmonary function metrics and clinical measures.   

Results: We identified distinct lobar imaging patterns and classified subjects into three radiologic 
subtypes: emphysema-dominant (ED), fSAD-dominant (FD), and fSAD-transition (FT: transition 
from healthy lung to fSAD). Relative to year 5 emphysema, FT showed rapid local emphysema 
progression (-57.5% ± 1.1) compared to FD (-49.9% ± 0.5) and ED (-33.1% ± 0.4). FT consisted 
primarily of at-risk subjects (roughly 60%) with normal spirometry. 

Conclusion: The FT subtype of COPD may allow earlier identification of individuals without 
spirometrically-defined COPD at-risk for developing emphysema. 

Keywords: parametric response mapping, functional small airways disease, COPD 
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INTRODUCTION   
 

Emphysema, defined as alveolar destruction and airspace enlargement distal to the terminal 
bronchiole, is a characteristic pathologic process of COPD [1]. Numerous studies using computed 
tomography (CT) for quantifying emphysema have reported the association of emphysema with 
a decline in lung function [2, 3] and functional status, increased dyspnea [4, 5] and overall worse 
clinical outcomes [6, 7]. The significance of emphysema on patient health is evident in a study by 
Zulueta and colleagues [7], who found in a large cohort of asymptomatic smokers that 
emphysema, quantified using a scoring method on CT, predicts early death from COPD and lung 
cancer. This finding highlights the importance of early diagnosis of emphysema. Although 
quantitative emphysema detection methods exist [8-12], these techniques only identify the 
presence of emphysema and not its onset.    

Small airways disease (SAD), another major contributor to pulmonary obstruction in COPD, has 
been identified as a potential precursor to emphysema. Using microCT, McDonough and 
colleagues identified narrowing and destruction of smaller airways along the periphery of 
emphysematous regions of lung tissue. Based on these observations, they suggested that SAD 
is an early lesion that develops prior to emphysema [13]. Similar conclusions were proposed by 
Galban et al. using Parametric Response Mapping (PRM), a paired inspiratory and expiratory CT 
technique that indirectly measures SAD even in the presence of emphysema [14]. It has been 
previously demonstrated that PRM-derived SAD, referred to as functional small airways disease 
(PRMfSAD), is an independent predictor of lung function decline and that regions of PRMfSAD do 
transition to emphysema [14, 15].  

Due to the delay of symptoms in emphysema and SAD, these diseases are diagnosed late. As 
such, little is known about the local progression patterns in emphysema. In this study, we 
investigated how PRM-based readouts can identify areas of local lung parenchyma with 
progressive emphysema. Our quantitative CT method is an extension of our PRM approach, 
which can provide detailed local information on the distribution and arrangement of PRM-derived 
fSAD and normal parenchyma to identify distinct radiologic patterns associated with emphysema 
progression. 
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MATERIALS AND METHODS 

Study Sample 

Our study was a secondary analysis of data from COPDGene (ClinicalTrials.gov: 
NCT00608764), a large NIH-funded prospective multi-center observational study. In Phase 1 
(2007-2012) of the original study, written and informed consent was obtained from all participants 
and the study was approved by local institutional review boards of all 21 centers. Ever-smokers 
with greater than or equal to 10 pack-year smoking history, with and without airflow obstruction, 
were enrolled between January 2008 and June 2011. For Phase 2 (2012-2017), participants were 
invited to return for a follow up evaluation. Approximately half of the Phase 1 cohort returned for 
the  5-year follow up visit (Phase 2). Participants were non-Hispanic white or African American. 
Participants underwent volumetric inspiratory and expiratory CT using standardized protocol; 
images were transferred to a central lab for protocol verification and quality control [16]. Exclusion 
criteria for COPDGene included a history of other lung disease (except asthma), prior surgical 
excision involving a lung lobe or greater, present cancer, metal in the chest, or history of chest 
radiation therapy. Participants were excluded from the present study due to inadequate CT for 
computing topologic parametric response mapping (tPRM), such as missing an 
inspiration/expiration scan, or failing quality control implemented specifically for the present study. 
Quality control protocol is described in Supplemental Figure 1. Data for participants evaluated 
here have been utilized in numerous previous studies, and a list of COPDGene publications can 
be found at http://www.copdgene.org/publications.htm. Our study is the first to report on tPRM 
analysis across the entire Phase 1 and Phase 2 cohorts of COPDGene participants. 

Subject Characteristics, Spirometry and CT Imaging 

Subject characteristics, spirometry and CT imaging were acquired from all subjects at 
Phase 1 and 2. Spirometry was performed in the COPDGene study before and after the 
administration of a bronchodilator, specifically 180 mcg of albuterol (Easy-One spirometer; NDD, 
Andover, MA). Post-bronchodilator values were used in our analyses. COPD was defined by a 
post-bronchodilator FEV1/FVC of less than 0.7 at the baseline visit, as specified in the GOLD 
guidelines [17]. GOLD grades 1-4 were used to define spirometric disease severity. GOLD 0 
classification was defined by a post-bronchodilator FEV1/FVC ≥ 0.7 at the baseline visit, alongside 
FEV1% predicted ≥ 80%. Participants with FEV1/FVC ≥ 0.7 with FEV1% predicted less than 80% 
were classified as having preserved ratio impaired spirometry (PRISm) [18]. In addition, 
demographics and smoking history were collected and 6-minute walking distance was measured. 
Health-related quality of life was assessed via St. George’s Respiratory Questionnaire (SGRQ) 
[19].  All CT data were obtained and analysis was performed as part of the COPDGene project. 
Whole-lung volumetric multidetector CT acquisition was performed at full inspiration (total lung 
capacity) and normal expiration (functional residual capacity) using a standardized previously 
published protocol [16]. Data reconstructed with the standard reconstruction kernel was used for 
quantitative analysis and all CT data were presented in Hounsfield units (HU) [16]. 

Parametric Response Map (PRM)  

Parametric Response Mapping was performed on all paired CT scans using Lung Density 
Analysis (LDA) software (Imbio, LLC, Minneapolis, MN) to generate PRM maps. In brief, LDA 
segmented the lungs and lobes with airways removed and inspiratory CT scans were spatially 
aligned to the expiratory images. Lung voxels were classified using pre-determined HU thresholds 
as: normal (PRMNorm, -950 < inspiration HU ≤ -810, and expiration HU ≥ -856), functional small 
airways disease (PRMfSAD, -950 < inspiration HU ≤ -810, expiration HU < -856), emphysema 
(PRMEmph, inspiration HU < -950, expiration HU < -856), or parenchymal disease (PRMPD, 
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inspiration HU > -810) [20]. Only voxels between -1,000 HU and -250 HU at both inspiration and 
expiration were used for PRM classification. 

Topology Analysis of PRM 

Topological analysis of PRM (tPRM) was performed using methods previously described 
[21]. tPRM metrics were defined through application of Minkowski measures on 3D binary voxel 
distributions: volume density (V), surface area (S), mean breadth (B), and Euler-Poincaré 
characteristic (𝜒𝜒) [22]. Maps of Minkowski measures (V, S, B, 𝜒𝜒) were computed for each PRM 
class map. Summary tPRM values for each participant were computed as the mean tPRM value 
of voxels over the entire lung volume. To indicate the PRM class associated with a Minkowski 
measure, the PRM class is presented as a superscript (e.g., VfSAD is the volume density of 
PRMfSAD). tPRM analysis was performed using open-source and in-house software developed in 
MATLAB R2019a (MATLAB, The MathWorks Inc., Natick, MA).  

Alignment of Regional Emphysema at Year 5 to Baseline tPRM 

To evaluate baseline tPRM values within regional emphysema defined at year 5, the 
following process was performed: 1. Volume density maps of PRMEmph were determined using 
year 5 paired CT scans (VEmph5); 2. Volumes of interest were defined as having a VEmph5 > 0.25, a 
volume at year 5 equivalent to a 10 mm diameter sphere, and VEmph0 in this volume that must be 
10% or more smaller than VEmph5 [=100*(VEmph0 - VEmph5)/VEmph5]. These constraints indicate that 
these lung regions had sufficient emphysema and progression over the 5-year period; 3. The 
VEmph5 segmentation map was spatially aligned to the baseline expiratory CT scan using LDA 
software; 4. The aligned VEmph5 segmentation map was multiplied to the baseline lobe 
segmentation map to generate a lobe-specific emphysema map. Detailed inclusion criteria for 
subjects are provided in Supplemental Figure 1. 

Data and Statistical Analysis 

Data are presented as mean and standard deviations unless stated otherwise. Statistical 
work was undertaken using MATLAB R2019a and IBM SPSS Statistics v27 (SPSS Software 
Products). In all tests, significance was defined by p < 0.05. 

Lobar Cluster Analysis of Emphysema Regions 

We assumed that the topology of PRMNorm and PRMfSAD at baseline provided sufficient 
information to represent all PRM classifications. As such, eight features (i.e., Vi, Si, Bi, and  χi, 
where i represents PRMNorm and PRMfSAD at baseline) were included in an unsupervised cluster 
analysis. This analysis was performed using a K-means algorithm. Individual lobes with 
emphysema involvement were treated as independent measures. The number of clusters was 
objectively determined using the Calinski-Harabasz method. The relative contributions of each 
cluster by lobe were determined and evaluated. Cluster differences in baseline tPRM measures, 
lesion volume, VEmph at year 5 and change in VEmph normalized to VEmph5 were determined using 
Kruskal-Wallis test.  

Subject Subtype Analyses 

As cluster analysis was performed at the lobe-level, an individual case may consist of all 
three clusters. Subjects were designated into three groups based on the following criteria: 
subjects with lobe-level cluster 2 (2, 12, 23, and 123) were designated emphysema-dominant 
(ED), remaining subclusters with lobe-level cluster 1 (1 and 13) were designated fSAD-dominant 
(FD), and the rest (3) were designated fSAD-transition (FT) (see Supplemental Figure 4). 
Differences in various continuous and categorical variables between subject groups were 
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determined using the Kruskal-Wallis non-parametric test with Bonferroni post-hoc testing and 
Pearson χ2 test, respectively.  

Institutional Review Board Approval Statement 

Our study was a secondary analysis of data from COPDGene (ClinicalTrials.gov: NCT00608764), 
a large NIH-funded prospective multi-center observational study. In Phase 1 (2007-2012) of the 
original study, written and informed consent was obtained from all participants and the study was 
approved by local institutional review boards of all 21 centers.  
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RESULTS 
 

Table 1 provides total subject characteristics at the time of Phase 1 accrual. This 
population (N=1495) was predominantly male with a mean age and BMI, with standard deviation 
(SD), of 62 ± 8 years and 27 ± 5 kg/m2, respectively. Most subjects had mild to moderate COPD 
(GOLD 1 and 2), with only 4% of the population diagnosed with very severe COPD (GOLD 4). At-
risk subjects with > 10 pack year smoking history and no COPD diagnosis made up a quarter of 
the cohort (N = 367). PRM classifications in the entire cohort were primarily normal (49 ± 16%) 
and fSAD (22 ± 12%). 

Lobar-Based Cluster Analysis of CT Regions 

As emphysema progression is a local event, each lobe with emphysema was treated as 
an independent observation. As such, a sole case may have up to 5 observations, representing 
emphysema involvement in all 5 lobes. We identified 3 well-defined clusters using only topology 
readouts from PRMNorm and PRMfSAD representing distinct imaging patterns. Additional details are 
provided on cluster methods and results in the Supplemental Results. 

Presented in Table 2 are the lobe-specific characteristics for each imaging cluster. It is 
important to note that the mean volume density is proportional to the percentage of PRM for a 
given volume (%PRMi = 100*Vi, where i indicates a PRM class). Sorted by total observations, 
clusters 1 and 2 had a similar number of observations, with roughly a third observed for cluster 3 
(Table 2). Cluster 2 was found to have the largest emphysema volume (0.13 ± 0.129 L) and 
volume density (VEmph) at year 5 (0.43 ± 0.1). Emphysema volume, volume density and change 
were found to be significantly different between all clusters (pair-wise p<0.0001). Cluster 3 
demonstrated the largest percentage difference in VEmph at baseline normalized to year 5 [defined 
as 100*(VEmph(yr0) – VEmph(yr5))/VEmph(yr5)]. No noticeable lobe preference for clusters was observed. 

Figure 1 shows the cluster results of topology readouts volume density (V) and Euler-
Poincaré Characteristic (χ) for all PRM classifications. In brief, V quantifies the amount of a PRM 
classification, whereas χ quantifies the consolidation of a PRM classification into small pockets 
(positive values) or a large mesh (negative values). As seen in Figure 1A, cluster 2 showed the 
highest VEmph (0.29 ± 0.11), which was accompanied by the highest levels of VfSAD (0.43 ± 0.11). 
Lobe Cluster 1 consisted of high levels of VfSAD (0.35 ± 0.09) and cluster 3 consisted mostly of 
VNorm (0.41 ± 0.16). In Figure 1B, Lobe Cluster 2 had the largest negative value in χfSAD (-0.008 ± 
0.008). In contrast, elevated levels in χ, associated with formation of pockets, were only observed 
for χfSAD (0.010 ± 0.007) in cluster 3 and χEmph (0.012 ± 0.007) in Lobe Cluster 1. Surface area (S) 
and mean breadth (B) also showed unique combinations in values for PRM-derived Norm and 
fSAD (Supplemental Figure 3). All topologies for PRMNorm and PRMfSAD were statistically 
different between clusters (p<0.0001). 

Subject Subtype Analyses 

We observed varying contributions of fSAD and emphysema in our imaging clusters. Lobe 
Cluster 2, which we identified as emphysema dominant, exhibited elevated VEmph and VfSAD. Lobe 
Cluster 1, fSAD dominant, had high VfSAD, low VEmph and elevated χEmph (emphysema pockets). 
Finally, Lobe Cluster 3, transition of normal parenchyma to fSAD, consisted of low VEmph and VfSAD 

but elevated χfSAD. Depending on lobe cluster involvement, we grouped individual subjects into 
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subtypes as follows:  fSAD-transition (FT), fSAD-dominant (FD), and emphysema-dominant (ED), 
(details are provided in Supplemental Figure 4). Figure 2 highlights three representative 
subjects, each from a different subtype. The subject designated as ED was diagnosed with GOLD 
3 COPD (FEV1% predicted of 31%) and had whole-lung percent volumes of PRMEmph and PRMfSAD 
of 26% and 41%, respectively. The FD subject was diagnosed with GOLD 1 COPD (FEV1% 
predicted of 84%) with percent volumes of PRMEmph and PRMfSAD of 2% and 32%, respectively. 
The subject designated as the FT subtype had a low symptom burden as measured by SGRQ 
score (GOLD 0, FEV1% predicted and FEV1/FVC of 105% and 0.75, respectively) with negligible 
PRMEmph (0.6%) and PRMfSAD (1%). At Phase 2, the FT subject progressed to GOLD 1 COPD 
(FEV1/FVC of 0.66). 

 Subject characteristics at baseline are presented in Table 1 by subtypes. All variables 
except sex were found to be significantly different between subtypes. With respect to pulmonary 
function measurements, ED had the lowest values in all measurements. FD had lower pulmonary 
function measurements than FT. However, subjects from every GOLD stage were seen in every 
subtype, suggesting these patient designations do not simply represent differences in disease 
severity. ED did show the highest prevalence of GOLD 3 and 4 subjects (41.2%), which accounted 
for elevated whole-lung PRMEmph (11 ± 10%). FD showed nearly three times as many at-risk 
subjects (29.6%) with nearly as many GOLD 2 (34.7%) as ED (11.9% and 35.6%, respectively). 
In contrast, FT consisted predominantly of at-risk subjects, which made up 60.3% compared to 
29.6% and 11.9% for FD and ED, respectively. Six-minute walk and SGRQ scores differed 
significantly between subsets except for FD and FT (p=0.056 and 0.215, respectively). As 
expected, whole-lung PRM values aligned with our subject subset designations. All PRM and CT 
lung volumes were significantly different between subtypes. 

We further evaluated changes in PRM and pulmonary function testing (PFT) measures 
over the 5-year period within subjects identified in each subtype. Subjects designated as having 
FD and ED were found to demonstrate significant changes in all four PRM classifications (p<0.05; 
Figure 3). Subjects in the FT subtype were found to increase and decrease significantly only in 
PRMNorm (Figure 3A) and PRMfSAD (Figure 3B), respectively. Evaluating the percent change in 
PRM classifications between subtypes (Table 3) showed that subjects designated as ED 
demonstrated an increase in PRMEmph of 3.8%, which was significantly higher than the other 
subtypes. The largest change in fSAD was observed in FT (9.0 +/-13.7%), followed by FD (5.7 +- 
8.9%), which were statistically similar (p=0.536), but significantly larger than ED (p<0.0001 for 
both). No significant differences were observed between subtypes for changes in FEV1. Those 
cases designated as ED demonstrated the highest rates of change in FVC but were only found 
to be significant with FT (p=0.011). FD and FT subtypes showed rates of FEF25-75 (forced 
expiratory flow at 25-75% of FVC) decline that were significantly higher than ED (p=0.006 and 
p<0.0001, respectively), but these rates were not found to differ significantly (p=0.104).  
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DISCUSSION 
 

COPD is characterized by significant heterogeneity in the amount of airway disease and 
emphysema. PRM can distinguish between fSAD and emphysema, and as we demonstrate in 
this work, local emphysema progression can be identified by assessing the topology (i.e., amount 
and arrangement) of PRM-defined normal parenchyma (PRMNorm) and fSAD (PRMfSAD) [21] to 
better understand how and in whom COPD progresses. The focus on both lobar level and subject 
specific analyses reveals important overarching themes. Broadly, we have identified 3 unique 
radiologic patterns: fSAD-dominant (FD), emphysema-dominant (ED), and fSAD-transition (FT)—
the latter a group consisting of a unique transitional state from normal lung to fSAD that is 
associated with emphysema progression.   

Emphysema-dominant subjects had the lowest baseline pulmonary function 
measurements, an expected result given that these subjects had the highest degree of 
emphysema at study enrollment. This subtype also had the highest prevalence of severe COPD 
subjects with the greatest number of GOLD 3 and 4 subjects. Not surprisingly, ED subjects were 
more likely to have ever smoked and had the lowest functional class (with the lowest 6-minute 
walk distance) and highest degree of symptom burden (with the highest SGRQ score). These 
were all statistically significant differences among the three subtypes. ED subjects had the largest 
increase in whole-lung PRM-defined emphysema after 5 years, which was also statistically 
significantly different (Table 3). While many of these findings are expected in this group with 
advanced disease, it was interesting to note that these radiologic changes correlated to worsening 
symptoms and functional status, but not necessarily to large changes in lung function after 
accounting for aging. This lack of significance further emphasizes that spirometric changes cannot 
consistently account for the degree of radiologic changes identified by PRM in subjects at risk for 
or with COPD over a short follow up period [23]. These findings suggest that tPRM may provide 
earlier evidence of regional disease progression and reveal different clinical trajectories, and thus, 
represent a more sensitive tool than global PFTs alone.  

Lobes identified as fSAD-dominant showed nearly a 50% regional change in emphysema 
in the 5-year follow up period. This was greater than what was seen in the emphysema-dominant 
cluster 2, which only had a 33% increase in emphysema (Table 2). This is consistent with recent 
studies showing that in cigarette smokers without baseline emphysema, the presence of fSAD is 
associated with emphysema development [24]. Over half of the subjects in the FD group were 
GOLD 1 or 2; however, 30% of subjects in this group were at-risk subjects, or GOLD 0. This 
suggests that a significant number of subjects at risk for developing COPD and with mild-
moderate COPD all have some degree of fSAD. χEmph was high in the FD group, indicating the 
presence of small pockets of emphysema developing within larger regions of fSAD. As these 
subjects may not have yet progressed to end stage disease with a large amount of irreversible 
emphysema, they may fall into a separate group where novel therapies and close monitoring may 
further improve their quality of life and clinical outcomes. FD subjects also had the greatest 
change in FEV1 at nearly a 50 mL/year drop; however, this was not significantly different 
compared to the other groups. This indicates PFT metrics may not be able to capture overall 
global functional changes in a short interval, as emphysema develops locally from regions of fSAD 
and these regions of fSAD also evolve from healthy lung tissue.  

The discovery with the greatest potential clinical utility is arguably the FT subtype, cluster 
3. These clusters had even larger regional increases in emphysema over this 5-year follow up 
period—nearly 58%−the largest among all the groups (see Supplemental Results for cluster 
analysis). The FT subtype comprised of subjects with predominantly little emphysema or fSAD as 
measured using volume density. In contrast, χfSAD was found to be elevated, suggesting the 
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presence of fSAD pockets already present within healthy lung parenchyma at study enrollment 
[25]. Many prior studies have shown that GOLD 0 subjects consistently have both clinical and 
radiologic evidence of smoking-related disease [26]; however, it remains difficult to identify these 
changes with currently available tools. FT subjects’ pulmonary function testing revealed that their 
FEV1/FVC ratio and FEV1% predicted were largely preserved at baseline, again consistent with 
the at-risk label. FEF25-75% decline in the FT subtype was also the greatest of all the subtypes, 
supporting the theory that it may be an early marker of COPD development [25, 27]. These at-
risk subjects still have a significant symptom burden despite normal spirometry, which may be 
reflected in the pockets of abnormal airway remodeling we visualized in this study. 

This large-scale study was the first to use tPRM across Phases 1 and 2 of COPDGene, 
which was comprised of a cohort of diverse subjects across the country. One of the strengths of 
this work is our strategy to evaluate tPRM readouts in lung regions with confirmed emphysema 
progression over 5 years. This allowed us to identify new emphysema phenotypes, particularly 
our description of a unique transitional stage between healthy lung and development of fSAD (i.e., 
FT), which has not been previously discussed in the literature. Furthermore, we have shown that 
these different clinical phenotypes both correlate with and add insight to available PFT data that 
may allow clinicians to phenotype patients earlier in their disease courses. One of the intriguing 
possibilities of tPRM is the ability to quantify regional risk of emphysema progression over time in 
a way that global PFT metrics cannot do. Even in subjects with advanced COPD, resulting in 
severe obstruction and gas exchange impairment, there may be regions in the lung with reversible 
damage (such as in FT clusters with pockets of fSAD) that can be potential therapeutic targets 
for intervention. 

This current study has several limitations. We identified unique disease subtypes based 
on the topology of PRM classification maps generated from high-resolution CT data from a well-
controlled multi-center observational COPD trial. However, different reconstruction kernels and 
scanner systems are known to result in variations in HU values, which affect the PRM 
classification maps and resulting topology calculations [28]. In addition, image resolution is critical 
for topological comparisons, as lower resolution intrinsically appears more clustered, biasing the 
feature patterns in the CT image. Minimal variation in image resolution was found between data 
sets for this study. Nevertheless, care was taken to account for image noise and registration errors 
while assessing our metrics [28]. Despite these limitations, our results have physiologic and 
clinical correlates that still allow us to draw important conclusions. 

There remains more to be explored to extend this work. The FT subtype we described is 
not yet clinically well-defined and further characterization of whether this phenotype is truly on a 
spectrum of disease between healthy and development of fSAD and emphysema remains to be 
confirmed. While many of these FT GOLD 0 subjects may be at increased risk of developing 
COPD, the link between the pathophysiology of this disease progression as it relates to radiologic 
changes needs to be further studied. In addition to validating our results with pulmonary function 
testing, we hope to correlate these findings to other clinically meaningful outcomes, including risk 
of functional decline, morbidity metrics, COPD exacerbations (especially hospitalizations), and 
mortality. Studying outcomes beyond the 5-year follow up we look at here will allow us to better 
understand the longer-term implications of this novel subtype in a disease process that we are 
increasingly appreciating as heterogenous. 
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CONCLUSIONS 

Local topological parametric response maps identified three distinctive radiologic tissue 
patterns that can be used to identify corresponding individual subjects characterized by unique 
clinical features. This work highlights the discovery of the fSAD transition (FT) subtype, 
characterized by high χ of fSAD, which may help identify individuals without spirometrically-
defined COPD who remain at-risk. Further work is needed to better understand this novel 
phenotype and its clinical implications in the context of emphysema development and 
progression. 
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TABLES 
 

Table 1: Subject Characteristics 

   Total COPD Subtype  
    FT FD ED P-Value 
Patient Characteristics      
 Population (n) 1495 189 551 755  
 Age (years) 62 (8) 59 (9) 62 (8) 64 (8) <0.0001  Sex (male)  903 (60) 105 (56) 323 (59) 475 (63) 0.101  BMI (kg/m2) 27 (5) 27 (5) 29 (6) 26 (5) <0.0001 
Pulmonary Function      
 FEV1% predicted (%) 70.4 (24.4) 88.9 (18.1) 78.2 (20.6) 60 (23.5) <0.0001  FEV1 (L)  2.1 (0.9) 2.7 (0.8) 2.4 (0.8) 1.8 (0.8) <0.0001  FVC (L)  3.5 (1) 3.7 (1) 3.6 (1) 3.3 (1) <0.0001  FEV1/FVC 0.59 (0.14) 0.72 (0.09) 0.65 (0.11) 0.53 (0.14) <0.0001  FEF25-75 (L) 1.21 (0.95) 2.01 (1.05) 1.41 (0.92) 0.86 (0.77) <0.0001 
GOLD       
 PRISm  78 (5) 21 (11.1) 35 (6.4) 22 (2.9) 

<0.0001 

 At-Risk  367 (25) 114 (60.3) 163 (29.6) 90 (11.9)  1  189 (13) 22 (11.6) 104 (18.9) 63 (8.3)  2  488 (33) 28 (14.8) 191 (34.7) 269 (35.6)  3  317 (21) 4 (2.1) 52 (9.4) 261 (34.6)  4  56 (4) 0 (0) 6 (1.1) 50 (6.6) 
Clinical Measures      
 Smoking Status (former) 852 (57) 81 (43) 306 (56) 465 (62) <0.0001  6 min Walk Distance (ft) 1412 (378) 1525 (370) 1449 (373) 1357 (375) <0.0001  SGRQ Score 26.8 (21) 19.3 (18.6) 22.2 (20) 32 (21) <0.0001 
                  
 TLC (L)  6.2 (1.4) 5.7 (1.4) 6 (1.4) 6.4 (1.4) <0.0001  FRC (L)  3.7 (1) 2.9 (0.8) 3.3 (0.8) 4.1 (1.1) <0.0001 
PRM       
 Normal  49 (16) 63 (14) 57 (10) 41 (14) <0.0001  fSAD  22 (12) 8 (7) 17 (8) 29 (10) <0.0001  Emph  7 (9) 3 (7) 3 (4) 11 (10) <0.0001  PD  19 (7) 24 (11) 20 (7) 17 (6) <0.0001 
 
Note: Subject characteristics separated total and subsets of those designated fSAD-transition 
(FT), fSAD-dominant (FD) and emphysema-dominant (ED). Values are displayed as mean 
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(standard deviation). BMI, body mass index; FEV1, forced expiratory volume in one second; FVC, 
forced vital capacity; FEF25-75, forced expiratory flow at 25-75% of FVC; GOLD, Global Initiative 
for Chronic Obstructive Lung Disease; PRISm, preserved ratio impaired spirometry; At-risk, at-
risk smokers with normal spirometry; TLC, total lung capacity; FRC, functional residual capacity; 
SGRQ, St. George’s Respiratory Questionnaire; PRM, parametric response map; Norm, Normal; 
fSAD, functional small airways disease; Emph, emphysema; PD, parenchymal disease. 
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Table 2: Lobar-Based Cluster Analysis of CT Regions to Identify Unique Imaging Patterns   

  Clusters  

  1 2 3 P-Values 

Total (N) 1761 1711 631  

Emphysema     

 Volume (L) at year 5 0.05 (0.07) 0.13 (0.13) 0.02 (0.05) <0.0001 

 V
Emph

 at year 5 0.35 (0.06) 0.43 (0.1) 0.36 (0.08) <0.0001 

 ∆VEmph relative to 
VEmph at 5 (%) 

-49.9 (21.2) -33.1 (17.8) -57.5 (27) <0.0001 

      

Percentage of Lobe Observations per 
Cluster (%) 

   

 RUL 18 21 22  

 RLL 21 16 22  

 RML 20 24 14  

 LUL 21 23 23  

 LLL 19 16 19  

 
Note: Lobar-based cluster results are presented as counts or means (SD). Each lobe was 
considered an independent observation such that each individual may have up to 5 observations.  
Continuous variables include VEmph, volume density of PRMEmph; ∆VEmph relative to VEmph at 5 (%), 
difference of VEmph from baseline to year 5 normalized to year 5 values [100*(VEmph baseline – 
VEmph at year 5)/ VEmph at year 5]; and Percentage of Lobe Observations per Cluster, the sum of a 
cluster in a lobe normalized to the sum of the same cluster in all lobes*100. RUL, right upper lung; 
RLL, right lower lung; RML, right middle lung; LUL, left upper lung; and LLL, left lower lung. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 20, 2023. ; https://doi.org/10.1101/2023.06.16.23291508doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.16.23291508
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Change in Whole-Lung PRM and Pulmonary Function Measurements 

    Subtypes  

   FT FD ED P-Value 

Parametric Response Map [%]  

 

  

 Norm  -8.4 (14.6) -5.2 (10) -4.3 (8.3) 0.027 

 fSAD  9 (13.7) 5.7 (8.9) 1.4 (7.8) <0.0001 

 Emph  1.2 (2.4) 1.8 (3.2) 3.8 (4.9) <0.0001 

 PD  -1.6 (7.8) -1.9 (5.1) -0.7 (3.7) <0.0001 

Pulmonary Function [mL/yr]  

 

  

 FEV1  -45.2 (61.2) -50.7 (60.6) -47.7 (58.5) 0.101 

 FVC  -45.6 (84.7) -62.1 (85.1) -67.9 (104) 0.014 

 FEF25-75 -54.9 (116.5) -36.1 (98.1) -23.3 (68.1) <0.0001 
 
Note: Change in whole-lung PRM and pulmonary function measurements separated by subsets 
of those designated fSAD-transition (FT), fSAD-dominant (FD) and emphysema-dominant (ED). 
Values are displayed as mean (standard deviation). Norm, Normal; fSAD, functional small airways 
disease; Emph, emphysema; PD, parenchymal disease; FEV1, forced expiratory volume in one 
second; FVC, forced vital capacity; FEF25-75, forced expiratory flow at 25-75% of FVC. 
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FIGURE LEGENDS 
 

Figure 1: Bar plots for (A) Volume Density (V) and (B) Euler-Poincaré Characteristic (χ) of all 
PRM classifications across all clusters. Data are presented as mean and SD. PRM classifications 
include Norm, normal lung parenchyma (green); fSAD, functional small airways disease (yellow); 
Emph, emphysema (red); and PD, parenchymal disease (magenta). 

Figure 2: Volume Density (V) and Euler-Poincaré Characteristic (χ) for PRMNorm and PRMfSAD in 
all determined subtypes. For each subtype, representative coronal slices are provided for the 
aligned inspiration CT scan acquired at baseline with overlays of PRM, VNorm, VfSAD, χNorm and 
χfSAD. The fSAD-transition (FT) case is a female, 51-55 years of age at enrollment with FEV1% 
predicted of 105% identified as at-risk (i.e., GOLD 0). The fSAD-dominant (FD) case is a female 
(51-55 years old) with FEV1% predicted of 84% diagnosed with GOLD 1 COPD. The emphysema-
dominant (ED) case is a male (56-60 years old) with FEV1% predicted of 31% diagnosed with 
GOLD 3. 

Figure 3: Box and whisker plots for Phase 1 and 2 measurements of the percent volume of PRM 
classifications (A) Norm (normal parenchyma; color coded green), (B) fSAD (functional small 
airways disease, color coded yellow), (C) emphysema (color coded red) and (D) PD (parenchymal 
disease; color coded magenta). Box represents the 25th and 75th percentiles, line represents 
median, and whiskers represent minimum and maximum values. Circles and stars represent 
outliers and extreme values. * indicates significant difference between time intervals at p<0.05. 
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