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Abstract  

In clinical studies, multi-state model (MSM) analysis is often used to describe the sequence 

of events that patients experience, enabling better understanding of disease progression. A 

complicating factor in many MSM studies is that the exact event times may not be known. 

Motivated by a real dataset of patients who received stem cell transplants, we considered the 

setting in which some event times were exactly observed and some were missing. In our 

setting, there was little information about the time intervals in which the missing event times 

occurred and missingness depended on the event type, given the analysis model covariates. 

These additional challenges limited the usefulness of some missing data methods (maximum 

likelihood, complete case analysis, and inverse probability weighting). We show, for the first 

time in the MSM context, that multiple imputation (MI) of event times can perform well in 

this setting. MI is a flexible method that can be used with any complete data analysis model. 
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Through an extensive simulation study, we show that MI by predictive mean matching 

(PMM), in which sampling is from a set of observed times without reliance on a specific 

parametric distribution, has little bias when event times are missing at random, conditional on 

the observed data. Applying PMM separately for each sub-group of patients with a different 

pathway through the MSM tends to further reduce bias and improve precision. We 

recommend MI using PMM methods when performing MSM analysis with Markov models 

and partially observed event times.  

 

1. Introduction 

In clinical studies, there is often interest in describing the sequence of events that each patient 

experiences, to enable better understanding of disease progression. Increasingly, multi-state 

model (MSM) analysis is used for this purpose. MSMs have been used in a wide variety of 

clinical contexts, such as organ and stem cell transplantation,1,2 studies of dementia3 and 

aging,4 and in cancer research.5 The advantage of the MSM approach is that the probability of 

multiple events can be modelled simultaneously. This allows the prediction of clinically-

relevant quantities, such as the probability of each event at any given time, and the average 

number of days spent in each state. This in turn enables more effective communication of risk 

to patients,6 particularly because these quantities can easily be illustrated graphically.  

 

A complicating factor in MSM studies is that the exact time of each event may not be known. 

In some settings, none of the event times are exactly observed (with the possible exception of 

time of death). For example, in HIV7 or dentistry,8 changes in the health of the patient are 

reported only at intermittent clinic visits. Formally, such events are “interval-censored”: the 

event time lies in the interval (L, R], where L represents the last known event-free time and R 

represents the first time at which the event is reported. In such settings, maximum likelihood 

(ML) methods for interval-censored data1,3,9 - in which the marginal likelihood of the 

observed data is maximised - are generally used. In other settings, exact event times are 

observed for some individuals but not others. For example, in a pregnancy study,10 

gestational age at delivery was recorded for some individuals but missing for others. In this 

type of setting, a wider choice of methods for missing data is available because some 

individuals have complete data. As well as ML, available methods include complete case 

analysis (CCA), inverse probability weighting (IPW), and multiple imputation (MI).11 Our 

motivating example is in this type of setting. We consider a previously analysed dataset of 

patients who received haematopoietic stem cell (HSC) transplants using cord blood (CB) 
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donated to the UK National Health Service (NHS) Cord Blood Bank (CBB).12 There were 

missing data in the NHS CBB dataset. In particular, the times of onset of acute graft-versus-

host disease13 (aGvHD, caused by an immune response of donor cells - the “graft” - against 

the patient’s tissues and organs - the “host” ) and relapse (i.e. signs and symptoms that the 

patient’s original blood disease has returned after treatment) were missing for approximately 

25% of patients who experienced aGvHD and/or relapse, respectively. Exact times of death 

or last follow-up were reported for all patients. Note that these missing times can still be 

considered interval-censored, with finite interval boundaries inferred from clinical criteria 

(e.g. the standard clinical definition of aGvHD13 assumes occurrence between day 0 and 100 

post-transplant) or the known length of the monitoring period for each patient.  

 

The NHS CBB dataset is an interesting test case because ML, CCA, and IPW have limited 

use, for the following reasons: 

(i) Our setting deviates from the assumptions of available ML methods in two ways:  

1. Our event times are a mixture of observed and missing (interval-censored) times. 

ML methods developed so far assume that all times are interval-censored.  

2.  For our missing times, the associated interval boundaries are wide relative to the 

observed event times. In a review of ML methods for handling interval-censoring 

in MSM analysis, Machado et al. found that none of the available methods 

performed well when censoring intervals were wide, relative to the change in 

hazards.14  

(ii) CCA (in which only patients with observed values for all analysis model variables are 

included) will give biased estimates in our setting because missingness depends on the 

analysis model outcome.15 Note that CCA estimates would only be unbiased in this 

setting if the probability that event times were missing did not depend on the type of 

event nor the event times themselves (after conditioning on the analysis model 

covariates).   

(iii) IPW (in which the complete cases are weighted by the inverse of the estimated 

probability of being complete) is likely to perform poorly because the types of event 

experienced by each patient is strongly predictive of missingness of the event times, 

resulting in extreme weights for some individuals.16 In addition, like CCA, IPW 

estimates generally lack precision because the incomplete cases (which contain partial 

information about the outcome) are discarded.11   
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In contrast to approaches (i)-(iii), above, MI (assuming the missingness mechanism is 

ignorable and the imputation model is correctly specified17) utilises all available data, using 

observed data for the analysis model variables plus any additional variables that are 

predictive of the missing event times, from both patients with fully observed event times and 

those with partially observed event times. In addition, MI can accommodate a mixture of 

exactly observed and missing times, plus it allows flexibility when choosing the analysis 

model.   

 

The standard MI procedure consists of three steps:  

1. An imputation model is fitted to the observed data and missing values are replaced 

with draws from its predictive distribution. This is repeated multiple (M) times, to 

give M completed datasets.  

2. The analysis model is fitted to each of the M completed datasets.   

3. The M sets of results are combined using Rubin’s rules.18 

 

Using the NHS CBB dataset as motivation, Curnow et al.12 considered MI and ML strategies 

for handling missing event times in a competing risks analysis. They examined the extent to 

which interval boundaries, the data distribution, and analysis model should be accounted for 

in the imputation model. They found that MI by predictive mean matching19 (PMM) resulted 

in least biased estimates, and was robust to model mis-specification. PMM is a variation on 

the standard MI procedure described above, in which missing values are replaced with 

observed values from donors with a similar predicted mean. Therefore, in this paper, we also 

focus on MI, extending the work of Curnow et al. to multi-state Markov models. This is the 

first time that the performance of MI methods for missing event times has been assessed in 

the MSM context. Note that, in this paper, we generally refer to ‘event’ times rather than 

‘transition’ times. This is because it is more realistic to have missing times for a specific 

event - which may affect several transition times – rather than for a specific transition (e.g. a 

missing times of aGvHD will affect times of transition to and from aGvHD). 

 

In Section 2 we describe the motivating example. In Section 3 we describe MSM 

methodology in detail. In Section 4 we describe a simulation study comparing different MI 

strategies and present its results in Section 5. In Section 6 we apply our MI strategies to the 

motivating study dataset. We conclude with general discussion in Section 7. 
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2. Motivating Study 

The NHS CBB dataset contained information about 432 CB transplants. Individual-level data 

were available about baseline patient, donor, and transplant characteristics (see 

Supplementary Material Section S4 for further details) as well as about events experienced by 

each patient during the post-transplant monitoring period. Event types included aGvHD and 

chronic GvHD (cGvHD, GvHD occurring more than 100 days post-transplant), relapse, and 

death. The median follow-up time was 3 years (Kaplan-Meier estimate, censoring follow-up 

time at death) and at least one post-transplant event was reported for each patient. For each 

type of event, both an indicator of whether the event was experienced and the associated time 

of onset were reported (censoring at the earliest of the time of a competing event or last 

follow-up). The time of onset of aGvHD was missing for 57 (24%) of 241 patients who 

experienced aGvHD, and the time of onset of relapse was missing for 22 (25%) of 89 patients 

who experienced relapse.  

 

3. Multi-state models 

Formally, we consider a stochastic process {Y(t), t ∈ T} with a finite state space Z = {0, ..., 

N} and process history up to time s, Hs = {Y(u); 0 ≤ u ≤ s}.2 Then P(Y(t) = b | Y(s) = a, Hs) 

represents the probability that a patient in state a at time s moves to state b at time t, given the 

process history up to time s, where a, b ∈ Z. Analogous to the hazard rate in standard survival 

analysis, the transition intensity, αab(t), is defined as the instantaneous probability of moving 

from state a to state b at time t. The set of transition intensities fully characterises the multi-

state process.     

 

MSMs are often represented using diagrams, such as Figure 1 below, which depicts the 

classic “illness-death” model. In Figure 1, states are represented by rectangles, and possible 

transitions by arrows. The transition intensity, αab(t), is shown for each transition. In Figure 

1, there is a single initial state (0. Alive), and we assume that all patients are in this state at 

the time origin, t = 0. There is a single “absorbing” state (2. Death), that is, a state from 

which further transitions cannot occur. There is also an “intermediate” state (1. Illness) 

between initial and absorbing states. There are two possible pathways through this MSM: 

either 0-1-2 (patient i is alive without illness at t = 0, becomes ill at time t1i, and dies at time 

t2i, with 0 < t1i < t2i), or 0-2 (patient j is alive without illness at t = 0, and is still without 

illness at time of death t2j, with t2j > 0).  Patients can be right-censored at any time-point 
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along their pathway. More complex MSMs may have mutiple initial, intermediate or 

absorbing states, and bi-directional arrows, but these types of MSM are out of scope for this 

paper.  

 

The calculation of transition intensities and related probabilities is most straight-forward for 

MSMs with the Markov property.20 This property states that the transition probability 

depends only on the current state occupied but not the amount of time spent in the current 

state nor the past history prior to entry into the current state. Hence, in this case, the transition 

probability can be simplified to P(Y(t) = b | Y(s) = a), hereafter denoted by Pab(s,t). For a 

Markov model, the matrix of transition probabilities, P(s,t), is calculated from the transition 

intensities as follows: P(s,t) = ∏ ((s,t] I + dH(u)) where H(u) is the matrix of cumulative 

transition intensities.21 This paper only considers Markov models. We include a test for the 

Markov property in the simulation and real data analysis. 

 

4. Simulation study  

We conducted a simulation study to assess the performance of MI methods when applied to a 

MSM analysis, when some event times were missing. The aim of the simulation study was to 

quantify the bias and precision of estimates from a MSM analysis in various missing data 

scenarios. The design of the simulation study is summarised below. Further details are 

provided in Supplementary Material Section S1. 

 

4.1. Data generation 

We first generated complete data for the event times and associated states using the method 

described by Beyersmann et al.22 applied to a Markov uni-directional three-state model 

(similar to Figure 1 above). We used 1000 simulations and each simulated dataset contained 

500 patients (similar to the size of the real dataset). In our model, transplant was the initial 

state for all patients (state 0), aGvHD the single intermediate state (state 1), and relapse or 

death (a composite outcome which is of clinical interest in many HSC transplant studies23-25) 

was the single absorbing state (state 2). Note that here, for simplicity, we generated a single 

time of relapse/death for each patient (rather than separately generating a time of relapse and 

a time of death as in the real data). 

We assumed that each transition intensity model, αab(t), had a proportional hazards (PH) 

structure, defined as follows: 
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α01(t) = (
1.5

36
) (

t

36
)

0.5

exp{-0.8z1}   

α02(t) = (
0.9

120
) (

t

120
)

-0.1

exp{1.2z1}  

α12(t) = (
0.8

160
) (

t

160
)

-0.2

exp{1.2z1 – z2} 

where t represents the time in days since transplant, z1 ~ Bernoulli(0.2) represents whether a 

patient is in relapse at time of transplant (assuming patients in relapse at the time of transplant 

are relapse-free immediately post-transplant), z2 ~ Bernoulli(0.45) represents whether a 

patient receives a double cord transplant (vs. single cord), and z1 and z2 are independent. The 

magnitude of the model parameters and choice of covariates were based on the real data. 

Censoring times were randomly generated between one and five years post-transplant, to 

represent administrative (non-informative) censoring at study end.  

 

In a subsequent step, missing event times were generated using 12 different missing data 

mechanisms (MDMs). Firstly, we considered event times missing completely at random 

(MCAR, i.e. missingness was independent of both the observed and missing data) by setting 

a random 30% of event times to missing, regardless of the event type. Next, we considered 11 

different MDMs (see Supplementary Material Table S1). We assumed that event times to 

acute GvHD and/or relapse/death were either (i) missing at random (MAR), conditional on 

the observed data (missingness depended on the event type and covariates but not on the 

missing data itself), or (ii) missing not at random (MNAR, missingness depended on the 

missing data itself). Although our chosen MI methods assumed data were MAR, MNAR 

MDMs allowed us to assess the impact on bias and precision when the MAR assumption was 

violated. Approximately 30% of event times were missing in each MDM, to reflect the 

percentage of missing times in the real data.  

 

4.2. Analysis model, estimands and performance measures 

Consistent with the data-generating mechanism (DGM), we fitted PH regression models for 

each transition intensity i.e. we fitted models of the form: αab(t) = αab
0 (t) exp(β

ab

′
 zi), where 

αab
0 (t) represents the baseline intensity at time t when moving from state a to state b, β

ab
 is the 

vector of regression parameters, and zi  are the set of (time-fixed) covariates for patient i. 

 

We fitted both Cox and Weibull models. We fitted Cox models because they are commonly 

used in practice. In case of bias due to mis-specification of the baseline intensity function 
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(because it is estimated non-parametrically in the Cox model), we also fitted Weibull PH 

models (i.e. using the same form for the baseline intensity as the DGM). 

 

In our analysis, the estimands of interest were:  

(i) The vector of transition intensity regression parameters βab for all possible states a and 

b.   

(ii) The restricted expected length of stay (RELOS) in each state,4 restricted to the time 

period between transplant and two years post-transplant, was used as a summary of 

the transition probability distributions.   

   

RELOS from time 0 to time t for state b is defined as:  

eb(t) = ∫ Pb(u) du
t

0
  

where the state occupation probability, Pb
 (t), denotes the probability of being in state 

b at time t.4 If all patients are in state 0 initially, Pb
 (t) is equivalent to the transition 

probability from state 0 to state b at time t, i.e. Pb
 (t) = P0b(0,t).20 

We calculated eb(t) using the consistent estimator4: 

êb(t) = ∑ P̂𝑏(tm) . (tm+1 - tm)
M

m=0
  

where P̂𝑏(tm) is the estimated state occupation probability for state b at time t and t0< 

t1 < … < tM ≤ tM+1 are the set of ordered times from time 0 up to time t, across all 

transitions. For Cox models, the set of times was the set of all simulated times for the 

kth simulation. For Weibull models, the set of times was specified as the set of all 

values of t from time 0 up to time t, in increments of 0.1 days.  

(iii) The final estimand of interest, regression parameter γ
12

, was used to test whether our 

MI approach led to conclusions about the Markov assumption that were consistent 

with the DGM.26 In this test, time from transplant until aGvHD, denoted by d, was 

included as an additional covariate in the model for α12 (for the transition from 

aGvHD to relapse/death), i.e. we fitted the model: α12(t) = α12
0 (t) exp(γ

12
d + β

12

′
 zi). 

Since our model is Markovian, in truth, γ
12

 equals zero. 

 

Performance measures for regression parameters βab and RELOS were standardised bias 

(defined as bias/SD of the per-simulation estimates) and average model-based SE. The 

performance measure of interest for the regression parameter γ
12 was the coverage of the 95% 
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confidence interval i.e. the percentage of within-simulation 95% confidence intervals for γ̂
12

 

that included the true value.   

 

Model-based SE of the regression parameter estimates was calculated using standard 

methods.27,28 We calculated the model-based SE of RELOS for Cox models using a non-

parametric bootstrap estimator,29 with 50 bootstraps per simulated dataset, and the model-

based SE of RELOS for Weibull models using the delta method. Further details of a separate 

simulation study to identify the best estimator of model-based SE for Cox and Weibull 

models are provided in the Supplementary Material (Section S2). The true values of the 

regression parameters were as per the DGM.  The true values of RELOS were calculated 

using numerical integration. 

 

4.3. MI approaches  

We considered four MI approaches in this study. Approaches (i) – (iii) did not explicitly 

account for the ordered nature of the event times. Approaches (ii) - (iv) allowed for different 

distributions of event times for those who experienced aGvHD compared with those who did 

not experience aGvHD before relapse/death: 

(i) “Type 1”19 predictive mean matching (PMM), fitting a single imputation model for all 

patients.   

(ii) PMM, applying separate imputation models for patients who did and did not 

experience aGvHD before relapse/death (PMMSUBGP).   

(iii) MI using draws from a linear imputation model, applying separate imputation models 

for patients who did and did not experience aGvHD before relapse/death (LINMI). 

Any negative imputed times were replaced by the value 0.0001 post-imputation.   

(iv) PMM, compatible with the ordered nature of the event times as specified in the 

analysis model (PMMCOMP). In this method, PMM was applied using separate 

imputation models for patients who did and did not experience aGvHD before 

relapse/death.  This method proceeds as follows: 

a. Impute the first event time, i.e. impute event times to relapse/death for the 

subgroup of patients who did not experience aGvHD, and event times to aGvHD 

for the subgroup who did. 

b. For the latter group, also impute the (calculated) time from aGvHD to 

relapse/death, including the time to aGvHD and time from aGvHD to 
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relapse/death in the imputation model, but not the time to relapse/death. Post-

imputation, calculate any missing times to relapse/death as the sum of the 

(observed or imputed) time to aGvHD and the (observed or imputed) time from 

aGvHD to relapse/death.   

 

Methods (iii) and (iv) were applied in the MCAR scenario. Due to their relatively poor 

performance, we did not apply these methods in other scenarios. For comparison purposes, 

we also performed CCA because this method is often used in practice (and is the default 

method when there are missing values in most statistical software).     

Following current guidelines,30 each imputation model included all analysis model variables, 

i.e. an indicator of the associated transition (whether times were missing for 0 → 1, 0 → 2, 

and/or 1 → 2 transitions), both analysis model covariates, indicators of the other events 

experienced, and associated event times. We used default settings for the number of 

imputations, iterations, and size of the donor pool for PMM (five in each case) because we 

wanted to assess the application of MI as routinely used in practice. We concluded that 

default settings would not unduly influence our results, because we were repeating the 

analysis for 1000 simulated datasets (which controlled the overall Monte Carlo error even 

when using a small number of imputations). In addition, in missing data scenarios in which 

only one variable (the time of aGvHD or relapse/death) was incomplete, no iteration was 

required. In scenarios in which times to both aGvHD and relapse/death were incomplete, we 

confirmed that convergence was achieved within five iterations by examining trace plots31 for 

a randomly chosen simulated dataset for each MI method and MDM. 

 

4.4. Computer software 

Regression parameter estimates and SEs for Cox and Weibull models were calculated using 

‘survival’27 and ‘flexsurv’28 R packages, respectively; state occupation probability estimates 

were calculated using the ‘mstate’ R package;32 MI methods were implemented using the 

‘mice’ R package31. R code to perform the simulation study is provided in Supplementary 

Material Section S5.  

 

5. Simulation study results 

Simulation study results are illustrated in Figures 2 and 3 using “lollipop” plots and all results 

are included in the Supplementary Material Tables S3a-b. Figures 2 and 3 show the 

standardised bias of transition intensity regression parameters βab for each transition, and 
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RELOS within two years, eb(2), for each state, fitted using a Cox model. Results are 

illustrated for CCA and the two main MI methods (that is, the methods that were applied in 

all scenarios): PMM and PMMSUBGP. Bias and model-based SE are not illustrated because 

these could not be shown on the same scale for all estimands, and because model-based SE 

was similar for all MI methods and MDMs (and always larger for CCA than for MI 

methods). Similarly, coverage of the Markov test parameter, γ
12

, is not illustrated because 

with one exception, discussed later, it was similar for all MI methods and MDMs. Figure 2 

shows results for scenarios in which MI was expected to work well, that is, when all event 

times were either MCAR or MAR. Conversely, Figure 3 shows results for scenarios in which 

MI was not expected to work well, that is, when some or all transition times were MNAR. 

For comparison, CCA estimates are also illustrated.     

 

As expected, CCA gave unbiased estimates only when event times were MCAR. When event 

times were either MCAR or MAR (Figure 2), PMM resulted in a small amount of bias for all 

estimands (that is, the magnitude of the standardised bias was <0.5), except for e2(2) (RELOS 

for the relapse/death state) and the regression parameter β
12

1
 (for the covariate “in relapse or 

not at time of transplant” in the transition intensity model from aGvHD to relapse/death). The 

bias in the RELOS estimate, e2(2), remained for all imputation methods and MDMs when 

fitting a Cox model, so is not further discussed here. Bias for regression parameter β
12

1
 was 

large in scenarios when event times to relapse/death after aGvHD were missing and small 

when only event times to aGvHD or relapse/death without aGvHD were missing.  

 

Applying PMM separately for patients who did and did not experience aGvHD before 

relapse/death (PMMSUBGP) or accounting for the ordered nature of the event times as 

specified in the analysis model (PMMCOMP) reduced the bias in regression parameter β
12

1
.  

When these methods were used, bias remained small for all other estimands except the 

RELOS estimate, e2(2). Results using PMMSUBGP were very similar for both Cox and 

Weibull models, except that the bias in the RELOS estimate, e2(2), was greatly reduced when 

fitting a Weibull model. MI using draws from a linear imputation model (LINMI) resulted in 

large bias for some estimands, particularly estimates of RELOS (see Supplementary Material 

for PMMCOMP and LINMI results).   
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When some or all event times were MNAR (Figure 3), MI using either PMM or 

PMMSUBGP led to biased estimates. Bias was generally the same or larger than when using 

CCA. Using MI, bias was larger when the time to the absorbing state (relapse/death) was 

MNAR than when the time to the intermediate state (aGvHD) was MNAR, and when the 

largest times were MNAR than when the smallest times were MNAR. Times to relapse/death 

tended to be longer for patients who experienced aGvHD than for patients who experienced 

relapse/death without aGvHD (with aGvHD: median 200 days, IQR 386 days; without 

aGvHD: median 14 days, IQR 22 days). Therefore, MNAR mechanisms where longer times 

to relapse/death tended to be missing mainly affected patients who experienced aGvHD 

before relapse/death. Conversely, MNAR mechanisms where shorter times to relapse/death 

tended to be missing mainly affected patients who experienced relapse/death without aGvHD. 

This may explain why parameter estimates for the aGvHD to relapse/death transition 

intensity model, β
12

1
 and β

12

2
, were more biased than parameter estimates for the models of 

transition from transplant, β
01

1
 and β

02

1
, when the largest relapse/death times were MNAR and 

vice versa when the smallest relapse/death times were MNAR.   

 

As a test of the Markov assumption, the time from transplant until aGvHD was added as a 

covariate to the transition intensity model from aGvHD to relapse/death. Coverage for the 

regression parameter for this covariate, γ
12

, was in the range 0.92-0.98 in all methods and 

scenarios, except one. The coverage was 0.66 when applying MI using the PMMSUBGP 

method and a Weibull analysis model, with aGvHD times MAR and largest relapse/death 

times MNAR. To allow further exploration of this outlying value for coverage, performance 

measures for the regression parameter γ
12

 are shown in Table 1, for all scenarios in which 

times to aGvHD were MAR, times to relapse/death times MNAR and the imputation method 

was PMMSUBGP.  

 

As discussed above, MNAR mechanisms in which smallest times to relapse/death times 

tended to be missing affected mainly patients who experienced relapse/death without aGvHD. 

Hence, the regression parameter γ
12

 is unbiased with coverage close to the nominal value in 

this scenario. In MNAR mechanisms in which largest times to relapse/death tended to be 

missing, there is little bias when fitting a Cox model. However, the model-based SE is larger, 

which may explain the slight over-coverage in this case. Bias is large when fitting a Weibull 

model, which may explain the high degree of under-coverage in this case. 
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6. Analysis of the Motivating Example 

To illustrate our methods, we present an analysis of the NHS CBB dataset. As per the 

simulation study, our interest was in estimating transition intensity model parameters and 

RELOS (we estimated RELOS only within one year because event times were sparse beyond 

this point). Note that our analysis model represents a very simplified version of the events 

experienced by patients after HSC transplantation. Hence, our results are not intended to be 

used for clinical insight. 

 

6.1. Methods 

Analysis Model 

We fitted the three-state Markov model used in the simulation study, using a PH regression 

model for each transition intensity (fitting Cox models for all missing data methods, and 

additionally fitting Weibull models for PMMSUBGP). Transition intensity models included 

all clinically relevant baseline (at time of transplant) covariates. We tested the analysis model 

assumptions as follows: 

(i) The PH assumption was tested for each transition intensity model using the global test 

(i.e. testing for proportional hazards across all covariates in combination) proposed by 

Grambsch and Therneau.33 

(ii) As a test of the Markov assumption, an additional model was fitted for the transition 

from aGvHD to relapse/death, including the time from transplant until acute GvHD as 

well as all covariates.  

 

Missing Data Methods 

In the NHS CBB dataset, both event times and some covariates were partially observed (see 

Supplementary Material, Section S4). For simplicity, and illustration purposes only, we 

assumed all data were MAR (see Curnow et al.12 for discussion of potential missingness 

mechanisms for this dataset). Therefore, we applied the fully conditional specification (or 

“chained equations”) MI method34 for multiple variables MAR (using the ‘mice’ R package, 

as before), which involves specifying a series of univariate imputation models, one for each 

partially observed variable. Covariate data were imputed using standard methods: binary 

variables using logistic regression, and categorical variables using multinomial regression 

models. Missing event times were imputed using the main MI methods used in the simulation 

study (i.e. PMM and PMMSUBGP). Here, the sub-groups used in the PMMSUBGP method 

were: 
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(i) Patients experiencing both acute and chronic GvHD, or chronic GvHD without 

aGvHD (N=82).   

(ii) Patients experiencing aGvHD without chronic GvHD (N=173).   

(iii) Patients experiencing relapse without GvHD, or neither relapse nor GvHD (N=177).   

 

For each MI method, the imputation model for each partially observed variable included all 

other analysis variables, i.e. covariates, an indicator of whether the patient experienced 

relapse and/or death, and times of aGvHD, relapse, and death. Note that indicators of whether 

the patient experienced aGvHD or cGvHD were excluded from each imputation model 

because these had the same value for all patients in each sub-group. Year and country of 

transplant, and time of cGvHD were also included in each imputation model as auxiliary 

variables because they were highly predictive of missingness, as well as of the incomplete 

variables themselves. The time of the composite event (relapse/death) was derived post-

imputation.  

 

It is well-established that, to ensure compatibility (or approximate compatibility) with a 

survival analysis model, both event indicators (binary variables indicating whether each event 

was experienced) and a representation of the distribution of the associated event times should 

be included in the imputation model for each partially observed covariate.35-37 Since both 

covariate data and event times were missing in the NHS CBB dataset, the actual event times 

were included in the imputation models, rather than, for example, the baseline hazard 

function recommended by White and Royston.36 We performed 80 imputations (following the 

“rule of thumb”38 that the number of imputations should at least equal the percentage of 

incomplete cases - 73% in the NHS CBB dataset). As in the simulation study, we used the 

default of five iterations per imputation (assessing convergence using trace plots as before) 

and a donor pool of five donors for each PMM method. We also calculated CCA estimates 

for comparison purposes.    

 

6.2. Results 

To illustrate the difference between estimates from CCA and MI methods (PMM and 

PMMSUBGP, fitting either a Cox or Weibull model for the latter method), Figure 4 shows 

estimated hazard ratios (HR, conditional on all other covariates) for a double cord transplant 

(vs. single cord) and whether a patient was in relapse at time of transplant (vs. in remission) 

for each transition (see Supplementary Material Tables S4a-c for full results). For each HR, 
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95% confidence intervals (CI) were wider for CCA estimates than for MI estimates. 

PMMSUBGP estimates were very similar, whether a Cox or Weibull method was fitted. 

PMM estimates were generally similar to PMMSUBGP estimates. Some CCA point 

estimates were outside the 95% CI for the equivalent MI estimates (this was the case for 

double cord transplant, for both the transition from transplant to aGvHD and the transition 

from aGvHD to relapse/death, and, for some MI estimates, for whether in relapse at time of 

transplant, for both the transition from transplant to relapse/death and the transition from 

aGvHD to relapse/death). In these cases, the MI estimates were closer to the null than the 

CCA estimate.  

 

Table 2 shows CCA and MI estimates of RELOS in the first year post-transplant (illustrated 

for three different patient types: a patient with reference values of covariates, a low-risk, and 

a high-risk patient). For each patient type, CCA estimates of the time spent in relapse/death 

were higher than the MI estimates whilst CCA estimates of time spent in the aGvHD state 

were lower. For all estimates, CIs were wide and widest for CCA estimates. CIs were also 

wide for the aGvHD and relapse/death states when fitting a Weibull model (PMMSUBGP 

Weibull). This may be due to the small number of transitions relative to the range of observed 

event times e.g. only 46 patients with reference values of covariates experienced 

relapse/death after acute GvHD, and the range of event times was 14 - 1711 days post-

transplant. As a consequence, convergence of the Weibull model was not achieved in 29 of 

the 80 imputed datasets for the transition from aGvHD to relapse/death.  

There was no apparent association between time of acute GvHD and the hazard of 

relapse/death after acute GvHD (HR 1.00, 95% CI 0.99-1.01, see Supplementary Material), 

suggesting there was no violation of the Markov assumption. There was some indication of a 

violation of the PH assumption, particularly for the model for the transition from transplant to 

relapse/death (global PH test p-value = 0.14, 0.03, 0.30 for the transitions from transplant to 

acute GvHD, transplant to relapse/death and acute GvHD to relapse/death, respectively). 

 

7. Discussion 

In this paper, by simulation, we have shown that MSM analysis using Markov models with 

an MI strategy based on PMM yields estimates with little or negligible bias when event times 

are MAR. In our setting, in which the probability that event times are missing depends on the 

event type (a common occurrence in practice because overall survival status is generally 

completely reported whereas non-fatal events may not be), CCA is not valid because 
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missingness depends on the analysis outcome. Our simulation study shows that even when 

CCA estimates are unbiased (e.g. when times are MCAR), PMM estimates have better 

precision than CCA estimates. In PMM, missing values are replaced by sampling at random 

from a donor pool of patients with observed values who are ‘similar’ to the subject with 

missing data. In the MSM context, this means that the donor pool tends to contain patients 

who have experienced the same sequence of events as the incomplete case. Therefore, the 

original sequence of events can be preserved for the incomplete case, without explicitly 

specifying the order of events in the imputation process. In both our simulation study and real 

data application, the distribution of event times differed across sub-groups of patients. In the 

simulation study, applying PMM separately for sub-groups of patients who did and did not 

experience the intermediate event (PMMSUBGP) tended to reduce bias and model-based SE, 

particularly for parameters for the transition from the intermediate to absorbing state (aGvHD 

to relapse/death). PMMSUBGP also improved coverage in a parameter used to test the 

Markov assumption (by including time from transplant to aGvHD in the model).  

 

An extension of the PMMSUBGP method, which explicitly preserved the ordering of events 

by including the aGvHD event time and time from aGvHD to relapse/death in the imputation 

model, but not the relapse/death event time (PMMCOMP), gave results with comparable bias 

to PMMSUBGP, but larger model-based SE. Due to the loss of information using this 

method, with no advantage in terms of bias reduction, we would not recommend this 

approach.   

 

In our study, MI using draws from a linear imputation model (LINMI) led to more bias than 

PMM when estimating transition intensity model parameters and RELOS. This may be 

because this approach could result in an imputed relapse/death time that was smaller than the 

(observed or imputed) aGvHD time. Hence, LINMI was not compatible with the analysis 

model and estimates were biased as a consequence.  

 

Overall, we recommend using Type 1 PMM to impute missing event times in a MSM 

analysis using Markov models, first exploring the distribution of event times for each sub-

group of patients with a different path through the MSM. Type 1 PMM should be applied 

separately for each sub-group of patients with a different distribution of event times. In our 

simulation study, the distributions of simulated times of relapse/death were very different for 

patients who did and did not experience aGvHD. In analysis of real data, there may be 
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smaller differences between distributions of event times for different sub-groups of patients, 

and applying PMM by sub-group may make little difference to the results. Therefore, to 

assess the sensitivity of results to the imputation method, we recommend performing analysis 

using both a single imputation model and separate models for each sub-group of patients. 

Note that sub-groups should be of sufficient size to allow for random donor selection in the 

PMM procedure. 

 

The PMM strategy described here can only be used if some event times are exactly observed, 

which may not always be the case. For example, after corneal transplantation, hospitals were 

asked whether any post-transplant surgery had been performed since the previous follow-up 

report but were not asked for the date of surgery.39 In this example, time of surgery would be 

missing for all patients. Valid use of PMM would require further data collection to obtain 

exact event times for a representative sample of patients. If this was not possible, a ML 

approach could be used instead.  

 

Although PMM performed well in our study, there is still scope for improvement, for 

example, by development of methods that are explicitly compatible with a MSM analysis.  

This could be achieved, for example, through an extension of the MAR stacked MI approach 

of Beesley and Taylor40 or the SMC-FCS method41 to MSM, particularly when these use 

parametric models. Alternatively, another method proposed by Beesley and Taylor42 could be 

extended, combining an ML approach with full imputation (Beesley and Taylor use 

“improper” imputation within their EM algorithm).   

 

Generally, MI techniques that assume MAR are not recommended when data are MNAR.  In 

this study, MI resulted in biased estimates when event times were MNAR or a mixture of 

MAR and MNAR. Our results suggested that bias was greater when the time to the absorbing 

state (relapse/death) was MNAR than when the time to the intermediate state (aGvHD) was 

MNAR. This may be due to the constrained nature of the time to an intermediate event (in an 

illness-death model, this is bounded by 0 and the time of transition to the absorbing state), 

which may limit the degree of bias even when event times are MNAR. Conversely, the lack 

of constraint on the maximum time of transition to an absorbing state, and the different 

pathways through the MSM to that state (each potentially with a different distribution of 

event times), may increase the degree of bias. Here, we only considered MSMs with the 

Markov property. Semi-Markov or non-Markov models may result in greater bias when 
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intermediate state event times are MNAR. Therefore, further work is needed to determine if 

the conclusions of this research still hold for more complex MSMs. A further, useful, 

extension of this research would be to consider a range of sample sizes, covariate 

associations, and event rates.   

 

In our simulation study, parametric analysis models generally performed as well as semi-

parametric models. Furthermore, parametric models resulted in less biased estimates of the 

expected length of stay in state (RELOS) when there were sparse event times. However, 

regression parameter estimates from parametric models were more biased than estimates 

from semi-parametric models when event times were MNAR.  In addition, in practice, 

parametric models seemed to be more prone to convergence problems than semi-parametric 

models (and this may have been the case even if all variables were fully observed because 

event times were sparsely distributed). Further work is required to determine if this is also the 

case for flexible parametric models.   

 

In the real data analysis, there was some indication that the proportional hazards assumption 

did not hold, particularly for the model for the transition from transplant to relapse/death.  

Therefore, the model could be improved by including time-dependent regression parameters, 

or by using the dynamic landmarking approach.43 In addition, clinical inference would be 

strengthened, and important clinical questions could be answered, if a more detailed event 

history was modelled for each patient. However, this does rely on the availability of 

additional post-transplant data, which will almost certainly include some missing data.  A 

more complex analysis model will increase the complexity of any imputation model and the 

likelihood of imputation model misspecification. 
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Tables 

 

Table 1. Performance measures for estimates of the regression parameter γ12 in the transition 

intensity model from aGvHD to relapse/death when some event times are MNAR  

  

Estimand  γ
12

  

Missing data mechanism Multiple imputation 

method & analysis model 

Bias Mod 

SE 

Std 

Bias 

Cov 

MAR (aGvHD) &  

MNAR (smallest times to 

relapse/death) 

PMMSUBGP, Cox -0.001 0.004 -0.29 0.94 

PMMSUBGP, Weibull <0.001 0.004 0.02 0.94 

MAR (aGvHD) &  

MNAR (largest times to 

relapse/death) 

PMMSUBGP, Cox -0.001 0.005 -0.26 0.98 

PMMSUBGP, Weibull 0.007 0.005 1.44 0.66 

ModSE, average model-based SE; StdBias, standardised bias; Cov, coverage 

Parameter γ12 is for the time from transplant until aGvHD   

PMMSUBGP, MI by Type 1 predictive mean matching with imputation models fit separately for 

patients with and without aGvHD 
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Table 2. Estimates and 95% confidence intervals (CI) of expected length of stay in each state 

in the first year post-transplant, comparing CCA and MI methods 

State 

Expected length of stay in each state (days) 

CCA  

(N=116) 

PMM 

(N=432) 

PMMSUBGP  

(N=432) 

PMMSUBGP 

Weibull (N=432) 

Est 95% CI Est 95% CI Est 95% CI Est 95% CI 

Reference patient  

Transplant 151 35-267 174 111-237 158 96-220 219 106-332 

AGvHD 76 0-173 113 56-170 132 71-193 95 0-196 

Relapse/death 123 0-271 70 22-118 68 23-113 51 0-130 

Low-risk patient  

Transplant 273 0-365 229 151-307 233 160-306 291 212-370 

AGvHD 38 0-365 95 24-166 94 25-163 54 0-123 

Relapse/death 39 0-365 33 0-79 31 0-71 20 0-61 

High-risk patient  

Transplant 33 0-365 72 0-167 139 25-253 165 0-335 

AGvHD 9 0-365 22 0-54 49 0-100 36 0-93 

Relapse/death 309 0-365 262 155-369 170 45-295 163 0-360 

95% CI boundaries outside the range (0,365) were truncated to 0 and 365 for lower and upper bounds 

respectively. 

Unless otherwise stated, Cox transition intensity models were fitted. 

CCA, complete case analysis; PMM, MI by Type 1 predictive mean matching; 

PMMSUBGP, as for PMM with imputation models fit separately for patients experiencing (i) both 

acute and chronic GvHD or chronic GvHD without acute GvHD, (ii) acute GvHD without chronic 

GvHD, (iii) relapse without GvHD or neither GvHD nor relapse. 

 

Reference patient has reference values of all categorical covariates and age 24 years. 

Low-risk patient has a non-malignant disorder, receives a high stem cell dose, age 4 years, with 

reference values of all other covariates.  

High-risk patient is in relapse at transplant, receives a double cord transplant, has 2 or more donor-

recipient human leucocyte antigen mismatches (matching is important to avoid graft rejection), age 44 

years, with reference values of all other covariates. 
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Figures 

Figure 1.  The illness-death multi-state model  
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Figure 2. Lollipop plot of standardised bias of transition intensity regression parameters, βab , and expected length of stay in each state up to two 

years post-transplant, eb(2), given event times missing completely at random (MCAR) and missing at random (MAR), comparing CCA (yellow 

oval), PMM (blue circle), and PMMSUBGP (green diamond)  
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Figure 3. Lollipop plot of standardised bias of transition intensity regression parameters, βab , and expected length of stay in each state up to two 

years post-transplant, eb(2), given some event times missing not at random (MNAR), comparing CCA (yellow oval), PMM (blue circle) and 

PMMSUBGP (green diamond) 
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Figure 4. Hazard ratio estimates and 95% confidence intervals for each transition, comparing 

CCA and MI methods 

 


