Effectiveness of filtering or decontaminating air to reduce or prevent respiratory infections: A systematic review

Julii Brainard¹, Natalia R. Jones², Isabel Catalina Swindells³, Elizabeth J. Archer², Anastasia Kolyva⁴, Charlotte Letley¹, Katharine Pond⁵, Iain R. Lake², Paul R. Hunter¹

¹ Norwich Medical School, University of East Anglia Norwich NR4 7TJ, UK

- ² School of Environmental Sciences, University of East Anglia Norwich NR4 7TJ, UK
- ³ UCL Medical School, University College London, London WC1E 6DE, UK
- ⁴ Norfolk and Norwich University Hospital Trust, Norwich NR4 7UY, UK
- ⁵ Department of Civil and Environmental Engineering, University of Surrey Guildford GU2 7XH, UK

Corresponding author: Dr. Julii Brainard, <u>j.brainard@uea.ac.uk</u>, tel. +44-1603-591151. Postal Address as above

Other email addresses:

isabel.swindells@icloud.com, Anastasia.Kolyva@nnuh.nhs.uk, C.Letley@uea.ac.uk, <u>Elizabeth.Archer@uea.ac.uk</u>, N.Jones@uea.ac.uk, K.Pond@surrey.ac.uk, Paul.Hunter@uea.ac.uk, <u>I.Lake@uea.ac.uk</u>

Running title: Filtering air to prevent respiratory infections: Does it work?

ORCID numbers

Julii Brainard 0000-0002-5272-7995, Paul R. Hunter 0000-0002-5608-6144, Iain R. Lake 0000-0003-4407-5357 Elizabeth J. Archer 0000-0002-6760-9406, Isabel Catalina Swindells 0009-0001-8508-2126 Anastasia Kolyva 0000-0002-5507-0247 No ORCID #: Natalia Jones, Charlotte Letley, Katherine Pond

Word Count: Main manuscript: 4400. 3 tables, 5 figures, 62 references. 190 words in abstract

Declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Approval to use the data to undertake the research

Approval was not required because this is secondary analysis of published data.

Funding

ICS, IRL, PRH, JB and EJA were funded by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emergency Preparedness and Response at King's College London in partnership with the UK Health Security Agency (UKHSA), in collaboration with the University of East Anglia. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, any of our employers, the Department of Health or the UKHSA.

Author contributions

PRH conceived of the study. IRL and PRH secured funding. JB co-designed and ran the searches. JB integrated and de-duplicated bibliographic hits. JB, NRJ, ICS, EJA, AK, CL and KP screened titles and abstracts. ICS undertook backward and forward citation searches with confirmation by JB, who also checked references of systematic reviews for additional studies. JB and NRJ screened full text. JB and ICS initially extracted data from full text, confirmed by each other or NRJ. JB and PRH designed the synthesis strategy. JB and NRJ undertook quality assessment. JB wrote the first draft and assembled revisions with comments from all coauthors. All authors have read and approve of the final manuscript.

Acknowledgements

Thanks for advice from colleagues at Norwich Medical School and Matteo Carpentieri at the School of Mechanical Engineering, University of Surrey.

1 2 3 4 5 6	Effectiveness of filtering or decontaminating air to reduce or prevent respiratory infections: A systematic review
7	Abstract
8 9	BACKGROUND: Installation of technologies to remove or deactivate respiratory pathogens from
10	indoor air is a plausible non-pharmaceutical disease control strategy.
11	METHODS: We undertook a systematic review of observational and experimental studies, published
12	1970-2022, to synthesise evidence about the effectiveness of suitable indoor air treatment
13	technologies to prevent respiratory or gastrointestinal infections. We searched for data about
14	infection and symptom outcomes for persons who spent minimum 20 hours/week in shared indoor
15	spaces subjected to air treatment strategies hypothesised to change risk of respiratory or
16	gastrointestinal infections or symptoms.
17	RESULTS: Pooled data suggested no net benefits for symptom severity or symptom presence, in
18	absence of confirmed infection. There was weak evidence that air treatment technologies tended to
19	reduce confirmed infections, but these data evinced strong publication bias.
20	CONCLUSION: Although environmental and surface samples are reduced after air treatment by
21	several air treatment strategies, especially germicidal lights and high efficiency particulate air
22	filtration, robust evidence has yet to emerge to confirm that these technologies are effective in real
23	world settings. Data from several relevant randomised trials have yet to report and will be welcome
24	to the evidence base.
25 26 27	Keywords: respiratory infections, symptoms, indoor, air filtration, air sterilisation

29

30 Introduction

Several technologies have been developed or proposed that treat indoor air supplies in a way that 31 32 might prevent transmission of respiratory infections. Some of the most promising such technologies 33 are safe to operate while people are breathing the same area and moving around in the exposed 34 area. Removing microbes from air is a form of filtration, one example being high efficiency 35 particulate air (HEPA) filtration. As defined by the United States Department of Energy, the HEPA 36 standard is to remove at least 99.97% of aerosols 0.3 micrometers (µm) in diameter (US Department 37 of Energy 2005). Alternatively, rather than remove microbes, an air treatment technology might 38 render microbes incapable of biological replication, and as such, unable of causing infection. 39 Germicidal ultraviolet light (GUVL) in bandwidths safe for chronic human exposure but also able to 40 deactivate viruses, has been proposed as such a way to decontaminate air from pathogens (Narita et 41 al. 2020). 42 43 During the Covid-19 pandemic, such air treatment technologies were promoted as a practical 44 mitigation measure in environments where social distancing was difficult to maintain; many

45 governments at local and national level announced support for such technology to be deployed 46 widely, especially in schools (Camfil 2021, Ulmair 2021, Zimmer 2021). These aspirations were 47 hindered by the large cost involved in providing suitable air treatment devices in all proposed 48 settings and uncertainty about exactly which devices might be truly effective (Brandon 2020, Akpan 49 & Jeffrey-Wilensky 2021, Wightwick 2021). Some cluster randomised controlled trials to provide 50 possible supporting evidence were subsequently initiated, using either HEPA or GUVL, in schools 51 (ISRCTN46750688; NCT05016271) or long-term residential care homes (ACTRN12621000567820; 52 NCT05084898; ISRCTN63437172). These trial results are not yet available.

53

54 Any proposed novel technology or treatment, such as vaccination or a new drug, needs to go 55 through many stages of development, including rigorous safety testing and real-world experiments, 56 before effectiveness is established and large population treatment is justified. Technologies that 57 may purify/treat air are rapidly evolving and are concurrently at all stages of development. We 58 undertook a systematic review updated with evidence available through late 2022 about 59 effectiveness at the application stage, describing respiratory and/or gastrointestinal infection 60 outcomes in human beings following exposure in real world settings to air purifying/treatment 61 strategies and technologies. We consider a broad range of potential technologies and both 62 observational study designs (cohort or case control) as well as experimental trials. We consider 63 exposures whether the technology is portable or a permanent feature of the setting.

64	
65 66	Methods
67	We sought studies published in 1970 or later, using Google Scholar, OVID MEDLINE, Scopus,
68	medRxiv, bioRxiv, preprints.org. Grey literature published by December 2022 was also searched;
69	trial registries (NCT, ISRCTN and ACTRN) were searched in June 2022. Details of the search terms
70	and parameters are in the Appendix. Eligible studies could be written in any language in which we
71	had literacy (English, Spanish, Greek, French, Italian) or that we could fully translate into English
72	using Google Translate.
73	
74	Study design had to be controlled experiments, case-control or cohort studies with concurrent
75	comparison groups. Pre-post comparisons were excluded because changes in other conditions
76	cannot be controlled for (Thiese 2014).
77	
78	Study titles and abstracts were screened independently by two authors to decide which ones to take
79	to full text review. A third researcher was consulted if disagreements could not be resolved by
80	discussion. Full texts of studies not excluded from title/abstract screening were obtained where
81	possible and reviewed for eligibility. A protocol was registered in association with this review
82	(Prospero CRD42020208109); however, we had substantial protocol deviations due to resource
83	constraints and improved understanding of the relevant literature. Further details on study
84	selection are included in the Appendix.
85	
86 97	Risk of hias (quality) assessment
88	Quality assessment approach depended on study design. Trials were assessed for risk of bias using
89	the Cochrane risk of bias tool 1.0 (Higgins & Altman 2008), with an additional domain for adherence
90	(low risk of bias if reported to be \geq 64%). One point was awarded for each domain with low risk of
91	bias, and trials with least risk of bias were deemed to be those studies with scores \geq 6. The quality
92	checklist used for observational studies (cohort or case-control design) was based on the Newcastle
93	Ottawa Scale (NOS; Wells et al. 2000) with a modification that the comparability domain was a single
94	checklist item, whether the groups were balanced at baseline for age and sex.
95	
96	Outcomes
97 98	Eligible outcomes related to incidence of respiratory/gastrointestinal infection or compatible
99	symptomatic illness in humans, in the context of whether the cohort had been exposed (or not.
100	concurrently) to an eligible technology that treated, decontaminated or filtered air. Included studies

had to report at a minimum, the mean effect value for exposed/control cohorts; studies that
collected relevant data but did not report raw outcome data or change from baseline, or that only
reported between group differences after adjusting (in their own models) for possible confounders
were ineligible.

105

106 Preferred outcome was incidence (dichotomous yes/no) of respiratory/gastrointestinal infection by

107 a specific pathogen (such as influenza or norovirus) confirmed by a laboratory method. If

108 laboratory-confirmed infection data were not available, we accepted respiratory symptoms such as:

109 cough, acute breathing difficulty, anosmia, rhinitis, nasal congestion, scores for combined

110 respiratory disease symptoms. Eligible gastrointestinal symptoms were nausea, abdominal

111 cramping, vomiting, or diarrhoea that could not be attributed to non-infectious cause. Symptoms

could be expressed a dichotomous or continuous (severity) data. Further description of outcomes

113 are in the Appendix.

114

115

116 Intervention(s), exposure(s)

Eligible technology was treatment of indoor breathing air deemed suitable for use while humans were present doing routine activities (such as sleeping, working, eating, studying) without specialist protective equipment. Treatment methods that required humans to vacate the space during operation of the technology or chemical application to surfaces, or that required special protective equipment for humans to remain present, were ineligible.

122

123 Eligible technology could be radiation, chemical, or mechanical systems that aimed to safely purify 124 the air freely circulating in the indoor environment without simply ventilating (putting old indoor out 125 & bringing new air in). Exemplar technologies and treatment methods are HEPA filters, ionisers, 126 GUVL in safe bandwidths for recurring exposure (Narita et al. 2020), and some types of chemical 127 treatment. Studies that describe disinfection systems that move air to a private space where it may 128 be exposed to chemicals/radiation/physical filter were eligible as long as these systems could 129 operate while persons were present in the environment meant to receive the disinfected air AND 130 the populated spaces that received the disinfected air normally received this disinfected air within 131 two hours of treatment. Two hours was not meant to be a definitive threshold, but rather a 132 maximum reasonable period that still enabled the air processing to be relatively quick.

134 In absence of contrary information, we assumed that any air conditioning system was likely to 135 include some amount of air filtration as part of routine operation, although we could not know how 136 filtered the air was if not explicitly stated.

137

138 Settings

139 This technology must have operated in a non-laboratory setting, and must have been designed to 140 potentially be applied to an air space shared by five or more persons. This stipulation about size of 141 population exposed was applied because we wanted to exclude cases of specialist negative pressure 142 rooms, small spaces under laminar flow tents, or other resource-intensive, typically 143 clinical/laboratory environments that are typically intended to create very sterile conditions for a 144 single patient or experimental participant. Outcomes had to be in people. Virions or other 145 pathogens in air had to be removed directly from the air, not observed to be reduced after pathogen 146 removal from surfaces or from standing water in the shared environment. Incidence of microbes on 147 surfaces or in air samples were ineligible outcomes.

148

149 We excluded observational studies about workers in a small number (< 12) of different buildings, in 150 the context of 'sick building syndrome.' Often these studies considered correlation between 151 respiratory symptoms and presence of air conditioner filters, which were theorised to be clogged 152 with harmful dust or pathogens, and otherwise hindering ventilation. However, other factors that 153 affect air quality, both unobserved and observed, were reported to be highly heterogenous, such as 154 concentration of volatile organic compounds, temperature, humidity, density of staff, types of office 155 equipment and ventilation rates. Our own study was not designed to adequately address this 156 diversity of confounding in clustered cohort studies. 157

158

159 Intervention: Minimum Exposure

160 The majority of the intervention group had to be present in the setting where air was disinfected for 161 a mean duration of at least 20 hours a week during the monitoring period (about 12.5% of a person's 162 lived hours per week). The persons could be present for any reason (such as residence, education, 163 work, receiving inpatient treatment, etc).

164 165

Comparator(s)/control 166

167 The comparator group had to simultaneously experience usual ventilation regimes in same or similar 168 settings, so exposed to systems that manage air flow but did not attempt to disinfect air or remove

microbes from the air. Simple mechanical ventilation (i.e., expelling indoor air and replacing it with
outdoor air) was the ideal comparator exposure.

- 171 172 **Svnthesis** 173 174 We summarise the data narratively and quantitatively. All trials (randomised or not) are grouped for 175 synthesis; all observational study designs are grouped together. Where suitable data were supplied 176 (participant count in each exposure group, event count or mean effect and standard deviation/error 177 for ratio outcomes) in at least 2 studies of same design assessing a specific type of air treatment 178 method and outcome, we carried out random-effects meta-analysis with Review Manager version 5 179 (RevMan 2014). Studies with results that were too incompletely described to synthesise with other 180 evidence are described narratively. 181 182 The diversity of reported respiratory symptoms meant that pooled analysis was often only possible 183 by grouping similar measures. To enable synthesis, outcomes were grouped by similarity under 184 three possible umbrella terms: gastrointestinal; laboratory or clinical diagnosis of respiratory 185 infection and/or pneumonia, bronchitis; other respiratory symptoms. The direction of scales in 186 synthesis forest plots was standardised so that a lower value signified less illness/fewer symptoms. 187 Where one study reported multiple eligible outcomes, we did not count the same participants twice 188 in synthesis. We extracted both continuous and dichotomous outcome from the eligible studies. 189 Further description of the synthesis methods are included in the Appendix. 190 191 192 193 Results 194 195 Study selection is in Figure 1. From 39,346 initial bibliographic and grey literature hits, we found 32 196 eligible studies within which 41 outcomes were compared between groups. All included studies 197 were either trials or cohort design (no case-control studies). All outcomes related to respiratory 198 infections or symptoms, except for one study in care homes, which looked for norovirus outbreaks 199 related to air conditioning status. Studies are described in Table 1 by type of outcome, technology, 200 and study design (which is how they were grouped in synthesis). The median year of publication was 201 2008, with seven studies published after 2013 (in most recent ten years). Six studies were about 202 research undertaken after 2013. Eleven studies took place in North America, 9 in Europe, 12
- 203 elsewhere (Canada, Singapore, China, South Korea, Hong Kong, Israel, Australia). Exposure settings
- 204 were private homes (n=16), offices (n=6), clinical (n=5), childcare providers or schools (n=3) and
- shared residences (care homes or military barracks, n=2). Technologies were HEPA standard air

- filtration (n=14), filters as part of air conditioning (not specified as HEPA standard, n=8), GUVL (n=3),
- 207 Ionisers (n=4), laminar air flow filter and air flow system with or without HEPA standard (n=2),
- 208 electrostatic cleaner (n=2) and chemical (mugwort leaf smoke, n=1); sometimes multiple air
- 209 treatment technologies were applied simultaneously. One article was in Chinese; all other articles
- 210 were written in English. Study designs were controlled trials: 25, cohort: 7. 26 studies provided data
- suitable for pooling (with participant counts, unadjusted mean effect size, variance indicator such as
- 212 standard error or deviation on effect size).

213 214

216

215 Quality Assessment

- 217 We used grouped umbrella outcomes as shown in Table 1. Risk of bias assessment is in Table 2
- 218 (trials) and Table 3 (cohort studies). Figures 2a-2c show funnel plots for the meta-analyses in Figures
- 219 3-5. Figure 2a (pertaining to data shown in Figure 3) suggests strong publication bias (imbalanced
- distribution of effect sizes; Malički & Marušić 2014) for infection outcomes, but publication bias is
- not obvious for symptomatic outcomes (funnel plots 2b and 2c, pertaining to data used to construct
- 222 syntheses in Figures 4-5).

254 Table 1. Included studies, technologies, outcomes and participant counts

Umbrella outcome	Technology	Design	Primary results article	Setting	Specific outcome	#pts
	HEPA	Trial	Walker <i>et al.</i> (2022)	Private residence	Lower RTI	307
Respiratory			Oren <i>et al.</i> (2001)	Hospital wards	Invasive pulmonary aspergillosis	71
infections		Cohorts	Salam <i>et al.</i> (2010)	Hospital wards	Aspergillus sp from histology	18089
			Vokurka <i>et al.</i> (2014)	Hospital rooms	Pneumonia	289
	GUVL	Trial	Li and Jiang (2011)	Hospital wards	Influenza	104
					Upper RTI	104
	loniser +		Fernandez-Gerlinger <i>et al.</i>			
	electrostatic nano	Cohort	(2016)	Hospital rooms	Invasive aspergillosis	156
	filtration					
			Zuraimi <i>et al.</i> (2007)	Preschool/nursery	Pneumonia, Bronchitis	3752
	Air conditioning	Cohorts	White <i>et al.</i> (2011)	Military barracks	Febrile acute RTI	12220
					Afrebrile acute RTI	12220
	Mugwort leaf	Trial	Li and Jiang (2011)	Hospital wards	Influenza	111
	smoke			Hospital wards	Upper RTI	111
Norovirus	Air conditioning	Cohort	Lin <i>et al.</i> (2011)	Care homes	Norovirus outbreaks	748
	HEPA	Trials	Hedge <i>et al.</i> (1993)	Office building	Respiratory symptoms	112
			Lanphear et al. (2011)	Private residence	Asthma symptoms	225
Respiratory			Jhun <i>et al.</i> (2017)	Schools	Asthma-like symptoms	25
symptoms	GUVL	Trials	Menzies <i>et al.</i> (1999)	Office buildings	Cough or difficulty breathing	399
(event counts)			Menzies <i>et al</i> . (2003)	Office buildings	Respiratory symptoms	1542
	Air conditioning	Cohorts	Preziosi <i>et al.</i> (2004)	Office buildings	Otorhinolaryngologist attendance	920
			Zuraimi <i>et al.</i> (2007)	Preschool/nursery	Coughs with cold/flu	3752
			Villaveces <i>et al.</i> (1977)	Private residence	Change in asthma, rhinitis	13
			Antonicelli <i>et al.</i> (1991)	Private residence	Symptom score	18
	HEPA	Trials	Warburton <i>et al.</i> (1994)	Private residence	Cough scores	24
Respiratory			Thiam <i>et al.</i> (1999)	Private residence	Symptom scores	18
symptoms			Butz <i>et al.</i> (2011)	Private residence	Change in symptom free days	77
(continuous					Change in symptom free nights	77

Umbrella outcome	Technology	Design	Primary results article	Setting	Specific outcome	#pts
outcomes)			Park et al. (2017)	Private residence	Allergic rhinitis	17
			Li et al. (2020)	Private residence	Allergy induced nasal symptoms	90
			Park <i>et al.</i> (2020)	Private residence	Symptom score	44
			Phipatanakul <i>et al.</i> (2021)	Schools	Frequency days with asthma	202
	HEPA +	Trial	Hansel <i>et al.</i> (2022)	Private residence	Breathlessness, coughing, sputum	94
	charcoal filter				scale	
	GUVL + filters	Trial	Bernstein <i>et al.</i> (2006)	Private residence	Average #days with cough	38
	Filtered & cooled air	Trial	Boyle <i>et al</i> . (2012)	Private residence	Symptom domain quality of life scale	282
	Electrostatic cleaner	Trial	Skulberg <i>et al.</i> (2005)	Offices	Dry/irritated throat symptom	72
			Nogrady and Furnass (1983)	Private residence	Symptom score	19
	lonisers	Trials	Daniell <i>et al.</i> (1991)	Office building	Average symptom count	54
			Warner <i>et al.</i> (1993)	Private residence	Night time cough severity	28
			Johnsen <i>et al.</i> (1997)	Private residence	Symptom grade	30

256

257 Notes: RTI = respiratory tract infection, #pts = count of participants monitored. Cyan font = all participants were asthmatic or living with chronic allergies.

258

261

264 Table 3. Risk of Bias for observational studies, Newcastle Ottawa Scale

		Selection			Comparability	Outcome		Total	Score
Cohort Studies	Rep	Sel	Asc	Dem	Comp	Ass	Dur	Foll	
Oren 2001									7
Preziosi 2004									8
Zuraimi 2007									7
Salam 2010									7
Lin 2011									7
White 2011									8
Vokurka 2013									6
Fernandez-Gerlinger 2016									6
NOS Key:	_				NOS fields, bias	with respect	t to		
	ideal answe	rs, (a) answ	ers in NOS		Rep	Representa	ativeness	(generalisab	lity of) cohort
	adequate, (b) answers	in NOS		Sel	Controls fr	om same	community	as exposed
	not known,	informatio	n missing		Asc	How expos	ure was v	rerified	
	other answ	ers, inadequ	uate		Dem	Outcome n	ot presen	nt or was bal	anced at baseli
	—				Comp	Groups are	balanced	for age & se	ex
					Ass	Assessmen	t of outco	ome is object	ive
					Dur	Duration o	fmonitori	ing, long end	ugh?
					Foll	Adequacy of	of follow u	up, < 20% los	- SS

267 Note: Green font for total score indicates lowest risk of bias for these studies, as described in text, ≤ 7 for cohort studies.

Figure 2. Funnel plots for studies shown with infection events (2a: Figure 3 data), symptom events

272 (2b: Figure 4 data) or symptom scales (2c: Figure 5 data).

274 Figure 3. Infection outcomes

275

Study or Subgroup Events Total Weight M-H, Random, 95% (1) M-H, Random, 95% (1) Vialker 2022 23 156 23 151 100.0% 0.97 [0.57, 1.65] Statiotal (9% C) 156 151 100.0% 0.97 [0.57, 1.65] Image: Comparison of the comparison of		Exposu	re	Control			Risk Ratio	Risk Ratio
3.1.1 HerA final Value: 202 2 23 156 23 151 100.0% 0.97 [0.57, 1.65] Subtal (95% C) 156 151 100.0% 0.97 [0.57, 1.65] Table verts 2 23 23 Heterogeneity: Not applicable Test for overall effect $Z = 0.12$ ($P = 0.90$) 3.1.2 HEPA cohort Over 2001 0 26 13 45 1.7% 0.06 [0.00, 1.02] Subtal (95% C) 1260 1000 0.0.6 0.41 [0.27, 0.62] Value: 2013 18 254 6 35 18.4% 0.41 [0.27, 0.62] Value: 2013 18 254 6 35 18.4% 0.41 [0.27, 0.62] Value: 2013 18 254 6 35 18.4% 0.41 [0.27, 0.62] Value: 2013 18 254 6 25 100.0% 0.40 [0.28, 0.59] Table events 4 8 94 Heterogeneity: Tau ² = 0.00; P1 83, df = 2 ($P = 0.40$); $P = 0$ % Test for overall effect $Z = 4.91$ ($P < 0.0001$) 3.1.3 GUV. trial L1 2011 (1) 4 52 8 52 100.0% 0.50 [0.16, 1.56] Table events 4 8 Heterogeneity: Nat applicable Test for overall effect $Z = 1.19$ ($P = 0.23$) 3.1.4 Ioniser + electrostatic cohort Fermandez-Centinger 2015 8 7 69 100.0% Subtal (95% C) 867 009 663 4211 52.0% 1.02 [0.95, 1.09] 3.1.5 Aircon cohorts White 2011 (2) 1667 8009 663 4211 52.0% 1.02 [0.95, 1.09] 3.1.5 Aircon cohorts White 2011 (2) 1667 8009 663 4211 52.0% 1.02 [0.95, 1.09] 3.1.5 Aircon cohorts White 2011 (2) 1667 8009 663 4211 52.0% 1.02 [0.95, 1.09] 3.1.5 Aircon cohorts White 2011 (2) 1667 8009 663 4211 62.0% 1.52 [0.19, 1.58] 3.1.5 Aircon cohorts 1.23 [0.84, 1.82] 3.1.6 Mayore test mode trial L1 2011 (2) 5 5 9 8 52 100.0% 0.55 [0.19, 1.58] 3.1.6 Mayore test mode trial L1 2011 (2) 264 8205 12 157 100.0% 0.42 [0.24, 0.73] 3.1.6 Mayore test mode trial L1 2011 (2) 264 8205 12 157 100.0% 0.42 [0.24, 0.73] 3.1.7 Morevins aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] 3.1.7 Morevins aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] 3.1.7 Morevins aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] 3.1.7 Morevins aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] 3.1.7 Morevins aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] 3.1.7 Morevins aircon cohort Lin 2014 events 264 12 Het	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Automa Avaza 2.3 2.3 1 100.0% 0.37 [0.57, 1.65] Total events 2.3 2.3 Heterogeneity. Not applicable 75 100.0% 0.06 [0.00, 1.02] Salar LEPA cohort 0 0 2.6 1.3 4.5 1.7% Oren 2001 0 2.6 1.3 4.5 1.7% 0.06 [0.00, 1.02] Salar 2010 31 1000 7.5 1000.0% 0.41 [0.27, 0.62] 1 Subtrait [95% CD) 12.80 1000 0.44 [0.27, 0.62] 1 1 Subtrait [95% CD) 12.80 1000 0.44 [0.27, 0.62] 1 1 Subtrait [95% CD) 12.80 100.0% 0.40 [0.28, 0.59] 1 1 Subtrait [95% CD) 12.8 9.2 100.0% 0.50 [0.16, 1.56] 1 Heterogeneity. Not applicable 1	3.1.1 HEPA triai Wolker 2022	22	166	22	151	100.0%	0.0710.67.1.651	_
Total events 23 23 Heterogeneity Not applicable Test for overall effect $Z = 0.12$ ($P = 0.90$) 3.1.2 HEPA cohort 0 26 13 45 1.7% 0.06 [0.00, 1.02] 3.1.2 HEPA cohort 0 26 13 45 1.7% 0.06 [0.00, 1.02] 3.1.2 HEPA cohort 0 26 13 45 1.7% 0.06 [0.00, 1.02] Salam 2010 31 100 75 1000 79.9% 0.41 [0.28, 0.58] Vokurka 2013 18 254 6 35 18.4% 0.41 [0.28, 0.58] Vokurka 2013 18 254 6 52 100.0% 0.40 [0.28, 0.58] Li 2011 (1) 4 52 8 52 100.0% 0.50 [0.16, 1.56] Subtotal (95% C1) 52 52 100.0% 0.50 [0.16, 1.56] 100.0% Subtotal (95% C1) 52 52 100.0% 0.08 [0.01, 0.60] 100.0% Subtotal (95% C1) 167 800 963 4211 52.0% 102 [0.95, 1.08] 100 Subtotal (95% C1) 1967 8009 <td>Subtotal (95% Cl)</td> <td>23</td> <td>156</td> <td>23</td> <td>151</td> <td>100.0%</td> <td>0.97 [0.57, 1.65]</td> <td>₹</td>	Subtotal (95% Cl)	23	156	23	151	100.0%	0.97 [0.57, 1.65]	₹
Heterogeneity. Not applicable Test for verall effect $Z = 0.12$ ($P = 0.90$) Salarn 2010 3 1 1000 3 1	Total events	23		23]
Test for verail effect $Z = 0.12$ (P = 0.90) 3.1.2 HEPA cohort Oren 2001 0 26 13 45 1.7% 0.06 [0.00, 1.02] Salar 2010 31 1000 75 1000 79.9% 0.41 [0.27, 0.62] Volurika 2010 18 254 6 355 18.4% 0.41 [0.18, 0.97] Subtotal (95% C) 12280 1080 100.0% 0.40 [0.28, 0.58] Total events 48 94 Heterogenethy Tau ² = 0.00; Ch ² = 1.83, df = 2 (P = 0.40); P = 0% Test for overall effect $Z = 4.91$ (P < 0.0001) 3.1.3 GUVL trial Li 2011 (1) 4 52 8 52 100.0% 0.50 [0.16, 1.56] Subtotal (95% C) 52 52 100.0% 0.50 [0.16, 1.56] Subtotal (95% C) 52 52 100.0% 0.50 [0.16, 1.56] Subtotal (95% C) 6 87 10 69 100.0% 0.08 [0.01, 0.60] O.08 [0.01, 0.60] Total events 1 10 Heterogenethy tot applicable Test for overall effect $Z = 1.9$ (P = 0.23) 3.1.4 Ioniser + electrostatic cohort Fernandez-Cerlinger 2016 1 87 10 69 100.0% 0.08 [0.01, 0.60] Total events 1 10 Heterogenethy tot applicable Test for overall effect $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 14 0 631 457 3121 48.0% 1.52 [1.28, 7.79] Subtotal (95% C) 59 8 52 100.0% 0.55 [0.18, 1.58] Subtotal (95% C) 59 8 52 100.0% 0.55 [0.18, 1.58] Total events 5 8 Heterogenethy Tau ² = 0.07; Ch ² = 1.82, 1, df = 1 (P < 0.001); P = 95% Test for overall effect $Z = 1.16$ (P = 0.29) 3.1.6 Mugwort lead smoke trial Li 2011 (3) 5 5 98 8 52 100.0% 0.55 [0.18, 1.58] Total events 5 8 Heterogenethy Tau ² = 0.07; Ch ² = 1.22, 1, df = 1 (P < 0.001); P = 95% Test for overall effect $Z = 1.16$ (P = 0.27) 3.1.7 Norwing aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Total events 24 12 Heterogenethy Tota pplicable Test for overall effect $Z = 1.05$ (P = 0.002)	Heterogeneity: Not applicable	e 						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Test for overall effect: $Z = 0.1$	2 (P = 0.90	0					
Oren 2001 0 26 13 45 1.7% 0.06 [0.00, 1.02] Silam 2010 31 1000 75 1000 79.9% 0.41 [0.27, 0.62] Voluxka 2013 18 254 6 35 18.4% 0.41 [0.18, 0.97] Subtotal (95% C1) 1280 1080 100.0% 0.40 [0.28, 0.58]	3.1.2 HEPA cohort							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Oren 2001	0	26	13	45	1.7%	0.06 [0.00, 1.02]	
Volume 2013 10 123 0 33 10.4% 0.40 [0.28, 0.59] Total events 49 94 Heterogeneity: Tarl= 0.00; 0.00 H= 1.83, df 2 (P = 0.40); P = 0% Test for overall effect Z = 4.91 (P < 0.00001)	Salam 2010 Velaute 2012	31	1000	75	1000	79.9%	0.41 [0.27, 0.62]	
Total events 49 94 Heterogeneity: Tau"= 0.00; Ch"= 1.33, df = 2 (P = 0.40); P = 0% Test for overall effect Z = 4.91 (P < 0.00001) 3.13 GUVL trial Li 2011 (1) 4 52 8 52 100.0% Subtotal (95% CI) 52 52 100.0% 1.20 [0.16, 1.56] Test for overall effect Z = 1.19 (P = 0.23) 3.1.4 Ionise + electrostatic cohort Fernandez-Cerlinger 2015 1 87 69 100.0% Subtotal (95% CI) 87 69 100.0% Total events 1 10 Heterogeneity: Not applicable Test for overall effect Z = 2.45 (P = 0.01) 3.1.5 Aircon cohorts Yhite 2011 (2) 1867 8009 663 4211 52.0% Subtotal (95% CI) 8640 7332 100.0% Total events 2007 1420 Heterogeneity: Tau" = 0.07; Ch" = 18.21; df = 1 (P < 0.0001); P = 95% Test for overall effect Z = 1.06 (P = 0.29) 3.1.6 Mugwort leaf smoke trial Li 2011 (3) 5 59 8 52 100.0% Subtotal (95% CI) 264 8205 12 157 100.0% Subtotal (95% CI) 264 8205 157 100.0% S	Subtotal (95% CI)	18	254 1280	ь	35 1080	18.4% 100.0%	0.41 [0.18, 0.97]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 1.83, df = 2 ($P = 0.40$); $P = 0\%$ Test for overall effect: Z = 4.91 ($P < 0.00001$) 3.1.3 GUVL trial Li 2011 (1) 4 52 8 52 100.0% Subtotal (95% C) 52 52 100.0% O.50 [0.16, 1.56] Total events 4 8 Heterogeneity: Not applicable Test for overall effect: Z = 1.19 ($P = 0.23$) 3.1.4 Ioniser + electrostatic cohort Fernande: Cerlinger 2016 1 87 69 100.0% Subtotal (95% C) 87 69 100.0% Unite 2011 (2) 1867 8009 963 4211 52.0% Unite 2011 (2) 59 5 5 8 52 100.0% Unite 2011 (2) 59 5 5 8 52 100.0% Unite 2011 (2) 59 5 5 8 157 100.0% Unite 2011 (2) 264 8205 12 157 100.0% Unite 2012 (2) 4, 0.73] Heterogeneity: Not applicable Test for overall effect: Z = 3.05 ($P = 0.002$)	Total events	49		94				
Test for overall effect $Z = 4.91$ (P < 0.0001) 3.1.3 GUVL trial Li 2011 (1) 4 52 8 52 100.0% 0.50 [0.16, 1.56] Subtotal (95% CD) 52 52 100.0% 0.50 [0.16, 1.56] Total events 4 8 Heterogeneity: Not applicable Test for overall effect: $Z = 1.19$ (P = 0.23) 3.1.4 Ioniser + electrostatic cohort Fernandze: Gerlinger 2016 1 87 10 69 100.0% 0.08 [0.01, 0.60] Total events 1 10 Heterogeneity: Not applicable Test for overall effect: $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zurarini 2011 1 140 631 457 3121 48.0% 1.52 [1.28, 1.73] Subtotal (95% CD) 8640 7 7332 100.0% 0.55 [0.19, 1.58] Test for overall effect: $Z = 1.45$ (P = 0.001); P = 95% Test for overall effect: $Z = 1.11$ (P = 0.22) 3.1.6 Mugwort leaf smoke trial Li 2011 (2) 5 59 8 52 100.0% 0.55 [0.19, 1.58] Subtotal (95% CD) 59 52 100.0% 0.55 [0.19, 1.58] Total events 5 8 Heterogeneity: Not applicable Test for overall effect: $Z = 1.11$ (P = 0.27) 3.1.7 Morovirus aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CD) 8205 157 100.0% 0.42 [0.24, 0.73] Total events 264 12 Heterogeneity: Not applicable Test for overall effect: $Z = 3.05$ (P = 0.002)	Heterogeneity: Tau ² = 0.00; C	hi ² = 1.83,	df = 2	(P = 0.4)	0); l² = ()%		
3.1.3 GUVL trial Li 2011 (1) 4 52 8 52 100.0% 0.50 [0.16, 1.56] Total events 4 8 Heterogeneity: Not applicable Test for overall effect 2 = 1.10 (P = 0.23) 3.1.4 loniser + electrostatic cohort Fernandez-Gerlinger 2016 1 87 69 100.0% 0.08 [0.01, 0.60] Subtotal (95% C1) 87 69 100.0% 0.08 [0.01, 0.60] 0.08 [0.01, 0.60] Total events 1 10 Heterogeneity: Not applicable 1 10 Test for overall effect Z = 2.45 (P = 0.01) 3.15 Air con cohorts 1.02 [0.95, 1.09] 1.23 [0.84, 1.82] Vinite 2011 (2) 1667 8009 963 4211 52.0% 1.22 [0.95, 1.09] Zuraini 2011 140 631 457 312.1 48.0% 1.52 [1.28, 1.79] Zuraini 2011 1400 69 60 0.55 [0.19, 1.58] 1.23 [0.84, 1.82] Total events 2007 1420 1.23 [0.84, 1.82] 1.23 [0.84, 1.82] 1.23 [0.84, 1.82] Total events 5 5 100.0% 0.55 [0.19, 1.58] 1.55 [0.19, 1.58]	Test for overall effect: Z = 4.9	1 (P < 0.00	1001)					
Li 2011 (1) 4 52 8 52 100.0% 0.50 [0.16, 1.56] Subtotal (95% C) 52 52 100.0% 0.50 [0.16, 1.56] Total events 4 8 Heterogenelty: Not applicable Test for overall effect $Z = 1.19$ (P = 0.23) 3.1.4 loniser + electrostatic cohort Fernandez-Gerlinger 2016 1 87 10 69 100.0% 0.08 [0.01, 0.60] Subtotal (95% C) 87 69 100.0% 0.08 [0.01, 0.60] Total events 1 10 Heterogenelty: Not applicable Test for overall effect $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 7121 480.0% 1.52 [1.28, 1.79] Subtotal (95% C) 8640 7332 100.0% 1.23 [0.84, 1.82] Total events 2007 1420 Heterogenetity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.0001); P = 95% Test for overall effect $Z = 1.06$ (P = 0.29) 3.1.6 Mugwort leaf smoke trial Li 2011 (3) 5 59 8 52 100.0% 0.55 [0.19, 1.58] Total events 5 8 Heterogenetity: Not applicable Test for overall effect $Z = 1.11$ (P = 0.27) 3.1.7 Morvinus aircon cohort Li 2011 (2) 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% C) 8205 157 100.0% 0.42 [0.24, 0.73] Total events 264 12 Heterogenetity. Not applicable Test for overall effect $Z = 3.05$ (P = 0.002)	3.1.3 GUVL trial							
Subtotal (95% CI) 52 52 100.0% 0.50 [0.16, 1.56] Total events 4 8 Heterogeneity: Not applicable Test for overall effect Z = 1.19 (P = 0.23) 3.1.4 loniser + electrostatic cohort Fernandez-Gerlinger 2016 1 87 10 69 100.0% 0.08 [0.01, 0.60] Subtotal (95% CI) 87 69 100.0% 0.08 [0.01, 0.60] Total events 1 10 Heterogeneity: Not applicable Test for overall effect Z = 2.45 (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraini 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.001); P = 95% Test for overall effect Z = 1.06 (P = 0.29) 3.1.6 Mugwort leaf smoke trial Li 2011 (3) 5 59 8 52 100.0% 0.55 [0.19, 1.58] Total events 5 8 Heterogeneity: Not applicable Test for overall effect Z = 1.11 (P = 0.27) 3.1.7 Norovirus aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CI) 8205 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CI) 8205 157 100.0% 0.42 [0.24, 0.73] Fortal events 264 12 Heterogeneity: Not applicable Test for overall effect Z = 3.05 (P = 0.002)	Li 2011 (1)	4	52	8	52	100.0%	0.50 [0.16, 1.56]	
10 diarterilits 1 0 Heterogeneity: Not applicable Test for overall effect $Z = 1.19$ (P = 0.23) 3.1.4 loniser + electrostatic cohort Fernandez-Gerlinger 2016 1 87 69 100.0% 0.08 [0.01, 0.60] Subtotal (95% CI) 87 69 100.0% 0.08 [0.01, 0.60] 0.08 [0.01, 0.60] Total events 1 10 Heterogeneity: Not applicable 1 10 Test for overall effect $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts 1.02 [0.95, 1.09] 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7322 100.0% 1.23 [0.84, 1.82] 1 Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.0001); P = 95%	Subtotal (95% CI)	4	52		52	100.0%	0.50 [0.16, 1.56]	
3.1.4 Ioniser + electrostatic cohort Fernandez-Gerlinger 2016 1 87 69 100.0% 0.08 [0.01, 0.60] Subtotal (95% CI) 87 69 100.0% 0.08 [0.01, 0.60] Total events 1 10 Heterogeneity: Not applicable Test for overall effect: $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Image: test for overall effect: $Z = 1.06$ (P = 0.29) 3.1.6 Mugwort leaf smoke trial Image: test for overall effect: $Z = 1.06$ (P = 0.29) Image: test for overall effect: $Z = 1.11$ (P = 0.27) 3.1.7 Norovirus aircon cohort Image: test for overall effect: $Z = 1.11$ (P = 0.27) 3.1.7 Norovirus aircon cohort Image: test for overall effect: $Z = 1.11$ (P = 0.27) 3.1.7 Norovirus aircon cohort Image: test for overall effect: $Z = 3.05$ (P = 0.002) 3.1.7 Norovirus aircon cohort Image: test for overall effect: $Z = 3.05$ (P = 0.002)	Heterogeneity: Not applicable	4		0				
3.1.4 Ioniser + electrostatic cohort Fernandez-Gerlinger 2016 1 87 10 69 100.0% 0.08 [0.01, 0.60] Subtotal (95% CI) 87 69 100.0% 0.08 [0.01, 0.60] Total events 1 10 Heterogeneity: Not applicable Test for overall effect: $Z = 2.45$ ($P = 0.01$) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Image: Colored	Test for overall effect: Z = 1.1	9 (P = 0.23)					
3.1.4 tornset + electrostatic conort Fernandez-Gerlinger 2016 1 87 10 69 100.0% 0.08 [0.01, 0.60] Subtotal (95% CI) 87 69 100.0% 0.08 [0.01, 0.60] 0.08 [0.01, 0.60] Total events 1 10 Heterogeneity: Not applicable 1 10 Test for overall effect $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.52 [1.28, 1.79] 1.23 [0.84, 1.82] Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.0001); P = 95%								
Primitole/Commiger 2018 1 67 10 69 100.0% 0.08 0.08 0.01 0.08 Total events 1 10 10 10 10 10 10 Heterogeneity: Not applicable Test for overall effect $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts 1.02 [0.95, 1.09] 1.02 [0.95, 1.09] White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] 1 Total events 2007 1420 1420 1420 1420 Heterogeneity: Tau" = 0.07; Chi" = 18.21, df = 1 (P < 0.001); P = 95%	3.1.4 Ioniser + electrostatic	conort	07	10	60	100.00	0.00.00.01.0.001	
Total events 1 10 Heterogeneity: Not applicable 1 10 Test for overall effect: $Z = 2.45$ (P = 0.01) 3.15 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Ch ² = 18.21, df = 1 (P < 0.0001); P = 95%	Subtotal (95% CI)	1	87	10	69	100.0%	0.08 [0.01, 0.60]	
Heterogeneity: Not applicable Test for overall effect: $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtoal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.0001); i ² = 95% Test for overall effect: $Z = 1.06$ (P = 0.29) 3.1.6 Mugwort leaf smoke trial Li 2011 (3) 5 59 8 52 100.0% 0.55 [0.19, 1.58] Subtotal (95% CI) 59 52 100.0% 0.55 [0.19, 1.58] Image: State sta	Total events	1		10				
Test for overall effect: $Z = 2.45$ (P = 0.01) 3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.0001); P = 95%	Heterogeneity: Not applicable							
3.1.5 Aircon cohorts White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.0001); P = 95%	Test for overall effect: Z = 2.4	5 (P = 0.01)					
White 2011 (2) 1867 8009 963 4211 52.0% 1.02 [0.95, 1.09] Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Image: Comparison of the comparison of th	3.1.5 Aircon cohorts							
Zuraimi 2011 140 631 457 3121 48.0% 1.52 [1.28, 1.79] Subtotal (95% CI) 8640 7332 100.0% 1.23 [0.84, 1.82] Total events 2007 1420 Heterogeneifty: Tau ² = 0.07; Chl ² = 18.21, df = 1 (P < 0.0001); P = 95%	White 2011 (2)	1867	8009	963	4211	52.0%	1.02 [0.95, 1.09]	•
Subtotal (95% Cl) a640 7332 100.0% 1.25 [0.84, 1.82] Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Chi ² = 18.21, df = 1 (P < 0.0001); P = 95%	Zuraimi 2011	140	631	457	3121	48.0%	1.52 [1.28, 1.79]	
Total events 2007 1420 Heterogeneity: Tau ² = 0.07; Ch ² = 18.21, df = 1 (P < 0.0001); P = 95%	Subtotal (95% CI)	2007	8040	1420	1332	100.0%	1.23 [0.84, 1.82]	T
Test for overall effect: $Z = 1.06$ (P = 0.29) 3.1.6 Mugwort leaf smoke trial Li 2011 (3) 5 59 8 52 100.0% 0.55 [0.19, 1.58] Subtotal (95% CI) 59 52 100.0% 0.55 [0.19, 1.58] Image: Comparison of the test of test of the test of test o	Heterogeneity: Tau ² = 0.07: C	2007 hi² = 18.21	1.df=	1420 1 (P < 0,1	0001):	²= 95%		
3.1.6 Mugwort leaf smoke trial Li 2011 (3) 5 59 8 52 100.0% 0.55 [0.19, 1.58] Subtotal (95% CI) 59 52 100.0% 0.55 [0.19, 1.58] Image: constraint of the state of the stat	Test for overall effect: Z = 1.0	6 (P = 0.29	0	· •	//			
Li 2011 (3) 5 59 8 52 100.0% 0.55 [0.19, 1.58] Subtotal (95% CI) 59 52 100.0% 0.55 [0.19, 1.58] Total events 5 8 Heterogeneity: Not applicable	3.1.6 Mugwort lost emeketr	ial						
Subtotal (95% CI) 59 52 100.0% 0.55 [0.19, 1.58] Total events 5 8 Heterogeneity: Not applicable Test for overall effect: Z = 1.11 (P = 0.27) 3.1.7 Norovirus aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CI) 8205 157 100.0% 0.42 [0.24, 0.73] Total events 264 12 Heterogeneity: Not applicable Test for overall effect: Z = 3.05 (P = 0.002) 12 157 100.0% 0.42 [0.24, 0.73] Total events 264 12	Li 2011 (3)	5	59	8	52	100.0%	0.55 (0.19, 1.58)	_
Total events 5 8 Heterogeneity: Not applicable	Subtotal (95% CI)	0	59	0	52	100.0%	0.55 [0.19, 1.58]	
Heterogeneity: Not applicable Test for overall effect: Z = 1.11 (P = 0.27) 3.1.7 Norovirus aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CI) 8205 157 100.0% 0.42 [0.24, 0.73] Total events 264 12 Heterogeneity: Not applicable 12 Test for overall effect: Z = 3.05 (P = 0.002)	Total events	5		8				
3.1.7 Norovirus aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CI) 8205 157 100.0% 0.42 [0.24, 0.73] Total events 264 12 Heterogeneity: Not applicable Test for overall effect: Z = 3.05 (P = 0.002)	Heterogeneity: Not applicable) /D - 0.07	n					
3.1.7 Norovirus aircon cohort Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CI) 8205 157 100.0% 0.42 [0.24, 0.73] Image: Comparison of the compa	Test for overall effect: $Z = 1.1^{\circ}$	1 (P = 0.27))					
Lin 2011 264 8205 12 157 100.0% 0.42 [0.24, 0.73] Subtotal (95% CI) 8205 157 100.0% 0.42 [0.24, 0.73] Total events 264 12 Heterogeneity: Not applicable Test for overall effect: Z = 3.05 (P = 0.002)	3.1.7 Norovirus aircon cohoi	t						_
Subcoli (95% Cl) 8205 157 100.0% 0.42 [0.24, 0.73] Total events 264 12 Heterogeneity: Not applicable 1 Test for overall effect: Z = 3.05 (P = 0.002) 1	Lin 2011 Subtatal (05% CP)	264	8205	12	157	100.0%	0.42 [0.24, 0.73]	
Heterogeneity: Not applicable Test for overall effect: Z = 3.05 (P = 0.002)	Subrotal (95% CI) Total events	1 264	0200	12	157	100.0%	0.42 [0.24, 0.73]	-
Test for overall effect: Z = 3.05 (P = 0.002)	Heterogeneity: Not applicable	204		12				
	Test for overall effect: Z = 3.0	5 (P = 0.00	2)					
								0.002 0.1 1 10 500

Test for subgroup differences: Chi² = 26.10, df = 6 (P = 0.0002), l² = 77.0% <u>Footnotes</u> (1) Upper respiratory tract infections (2) Afebrile respiratory infections (3) Upper respiratory tract infections

276 277

279 Figure 4. Symptoms as dichotomous outcomes

280

Favours treatment Favours control

283

284

281 282

Synthesis and outcomes 285

286 Figure 3 shows pooled risk ratios for infections as outcomes, with subgroups by umbrella outcome, 287 study design (trial or cohort) and technology. There was a trend towards the treatment groups to 288 have fewer infections. This finding was more consistent for observational studies, especially HEPA 289 cohorts. Confidence in the HEPA cohort comparisons can be boosted because of their low heterogeneity $(1^2 = 0\%)$; in contrast to the high heterogeneity (95%) in the air conditioning cohort 290 291 comparison for respiratory infections. Ionisers with electrostatic technology also appeared to have a 292 strong protective effect, however this finding is from only one moderate size study which was not 293 undertaken for a highly generalisable group (care home residents, which groups were unbalanced 294 for sex/age at baseline). No trials had effects that were in favour of air treatment to reduce 295 infection at p < 0.05. We also note (Figure 2a) that there is strong evidence of publication bias in this 296 group. The only gastrointestinal study we found was for norovirus outbreaks. Comparison 3.1.7 297 found fewer norovirus outbreaks in care homes with air conditioning; however, this result may be 298 interpreted with caution given that only a small percentage of participants lived without air 299 conditioning.

- 301 Figure 4 shows pooled data for dichotomous respiratory symptom outcomes. There was no overall
- 302 trend towards favouring controls or treatment. Heterogeneity was especially high ($I^2 = 88\%$) for the
- 303 air conditioning as treatment method, not dissimilar to the high heterogeneity for air conditioning
- 304 treatment in Figure 3.
- 305
- 306

307 Figure 5 Respiratory severity scores

308

	Ex	posed		С	ontrol			Std. Mean Difference		Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	Year	IV, Random, 95% Cl
5.1.1 Filtered cooled	air, trial									
Boyle 2012 Subtotal (95% CI)	-1.34	1.14	189 189	-0.96	1.34	93 93	100.0% 100.0 %	-0.31 [-0.56, -0.06] - 0.31 [-0.56, -0.06]	2012	•
Heterogeneity: Not ap	oplicable									
Test for overall effect:	Z= 2.46	(P = 0	1.01)							
5.1.2 Electrostatic cl	eaner, tr	ial								
Skulberg 2005 Subtotal (95% Cl)	-0.7	0	37	-1.1	0	35		Not estimable	2005	
Heterogeneity: Not as	oplicable		U			0		Notestinable		
Test for overall effect:	Not app	licable	9							
5.1.3 GUVL, trial										
Berstein 2006	5.23	5.04	19	5.81	5.34	19	100.0%	-0.11 [-0.75, 0.53]	2006	
Subtotal (95% CI)	nlicoblo		19			19	100.0%	-0.11 [-0.75, 0.53]		•
Test for overall effect:	Z = 0.34	(P = 0	1.74)							
	al 68 1	ria!								
5.1.4 HEPA + charcos Honcol 2022	al tilter, t	1.64	61	-0.00	17	12	100.0%	190.0.00.000.000	2022	_
Subtotal (95% CI)	-0.03	1.04	51	-0.03	1.7	43	100.0%	-0.48 [-0.89, -0.06]	2022	
Heterogeneity: Not ap	plicable									
l est for overall effect:	Z= 2.27	(P = 0	1.02)							
5.1.5 Ionisers, trials										
Nogrady 1983	1.81	1.39	10	2.46	1.23	9	22.6%	-0.47 [-1.39, 0.44]	1983	
Daniell 1991 (1)	2.3	2.5	24	1.9	2.9	30	27.5%	0.14 [-0.39, 0.68]	1991	
Daniell 1991 (2)	1.9	3	30	1.8	2	24	27.5%	0.04 [-0.50, 0.57]	1991	
Warner 1993	0.43	0.19	14	0.139	0.04	14	22.3%	2.06 [1.12, 3.00]	1993	_ _
Johnsen 1997 Subtetel (05%, CI)	1.08	0	15	1.95	0	15	100.0%	Not estimable	1997	
Heterogeneity: Tau ² -	0.581.01	hi ≧ = 10	се 15 25 7	f = 3 (P -	- ი იი	92 - 11 (80	100.0%	0.40 [-0.45, 1.24]		
Test for overall effect:	Z = 0.94	(P = 0	1.35)	- 5 (1 -	- 0.00		00,0			
516 UEDA triale ae	thma/all		ontoxt							
Villaveces 1977	-18	ergyrc Ո	0 D	-3	О	Ο		Not estimable	1977	
Antonicelli 1991	0.9	07	ğ	0.85	0.6	ğ	5.8%	0.07 (-0.85, 1.00)	1991	_ _
Warburton 1994	0.2	0	12	0.22	0	12		Not estimable	1994	
Thiam 1999	0.7	ñ	12	1.8	ñ	6		Not estimable	1999	
Butz 2011 (3)	-1.21	4.5	35	0.03	43	42	19.4%	-0.28 [-0.73 0.17]	2011	
Park 2017 (4)	5.5	1.5	g	8.6	2.55	8	4.2%	-1 43 [-2 53 -0 33]	2017	
Park 2020	-1.1	5	22	-1.1	5	22	12.7%	0.001-0.59-0.591	2020	
112020	-73	63	45	-6.8	8	45	22.0%	-0.07 [-0.48, 0.34]	2020	
Phinatanakul 2021	1.6	3	105	1.8	33	97	36.0%	-0.06[-0.34]0.21]	2021	+
Subtotal (95% CI)			237		0.0	235	100.0%	-0.15 [-0.38, 0.08]		•
Heterogeneity: Tau² =	= 0.02; Cł	hi² = 6.	48, df=	= 5 (P =	0.26);	iz = 239	%			
Test for overall effect:	Z=1.25	(P = 0	1.21)							
									-	<u> </u>
										-4 -2 U 2 4 Favours treatment Favours control
Test for subgroup dif	ferences	: Chi² =	= 4.62,	df = 4 (i	P = 0.3	3), I ² =	13.4%			
<u>Footnotes</u> (1) End of Period 1										

309

(2) End of Period 2

(3) Change in symptom free days (reversed scale)(4) symptom severity, reversed scale

310

312 Figure 5 shows respiratory symptomatic severity outcomes expressed as continuous data (scores or 313 scales; higher is worse), using standardised mean differences. Between group effects could not be 314 estimated for some studies because variance data were unavailable in Skulberg et al. 2005, 315 Villaveces et al. 1977, Warburton et al. 1994, Johnsen et al. 1997 and Thiam et al. 1999. Most 316 studies did not find statistically significant evidence to support treatment effect in reducing 317 symptom severity. Combined air treatment (such as cooled and filtered, or HEPA with additional 318 charcoal filtration) seemed to perform better than single technology approaches (e.g., just HEPA or 319 ionisers). Filtered (non HEPA) and cooled air had the best results in terms of reducing symptom 320 severity. The mean effect in Boyle et al. 2012 was -0.31 (95%CI -0.56 to -0.06). One study gave 321 especially strong support in favour of HEPA treatment for asthmatics (Park et al. 2017). Evidence was especially heterogenous for ionisers ($l^2 = 83\%$), with the untreated groups tending to have fewer 322

- 323 symptoms (pooled SMD 0.40, 95%Cl -0.43 to 1.24).
- 324

325 Costs and maintenance

326 Most studies (n=28) made no statement about costs of the technology. Menzies et al. (1999) said 327 that GUVL was a "relatively low cost intervention". (Menzies et al. 2003) were more specific, saying 328 that to install GUVL in an office building with 1000 staff would cost circa (USD) \$52,000 to install and 329 about \$14,000 in annual running costs (electricity and replacement bulbs), resulting in an investment 330 cost of \$52 and annual running costs of \$14 per employee. With respect to HEPA filtration, Salam et 331 al. (2010; device used in private homes) said that two portable HEPA filtration units cost about \$900 332 each with annual running costs circa \$500, while (Butz et al. 2011; devices used in hospital rooms) 333 said that likely costs were \$200-\$400 per installed unit. Authors relied on citation of other 334 documents to address sustainability or maintenance issues related to device, operation, although 335 Jhun *et al.* (2017) said that the HEPA device filters only needed to be changed once a year, while 336 Park et al. (2017) said that HEPA filters had been changed during the intervention period after 12 337 weeks.

338

339

340 Adverse effects

Most studies (n=21) did not comment on whether adverse effects of the intervention or exposure had been looked for or analysed. Of studies that did discuss possible adverse effects, noise from devices was the most common participant complaint (n= 4). Nogrady and Furnass (1983) reported lack of ozone being detected, related to ioniser use. Li *et al.* (2020) undertook especially systematic data collection for device tolerability, with weekly Likert scale questions about whether the device operation was tolerable. Eye irritation from mugwort smoke was mentioned in Li and Jiang (2011).

347

348 Discussion

349 Our review has novel findings not previously evaluated using rigorous systematic review methods. A 350 systematic review of literature published by late 2020 Hammond et al. (2021) concluded that no 351 existing studies had vet investigated incidence of respiratory infections using portable HEPA filter 352 devices. Our literature search is both updated and applies much wider inclusion search criteria than 353 those applied in Hammond et al. (2021) because we included both portable and installed in situ 354 technologies, as well as a much wider types of technologies (GUVL, ionisers, electrostatic cleaners, 355 etc.). Our review also considered a broader range of outcomes, respiratory symptoms (severity 356 scales or incidence) as well as incidence of respiratory infections.

357

358 Air treatment technologies that successfully inactivated SARS-CoV-2 in air samples and on surfaces 359 has been widely reported, including studies in community settings (Rodríguez et al. 2021, Myers et 360 al. 2022, Zhang et al. 2022). We did not systematically collect or review environmental outcomes 361 evidence, but agree that much of this research suggests that some technologies can be very effective 362 at reducing microbe presence in environments while people are undertaking routine activities. 363 However, while those environmental sampling results are promising, our synthesis of data to date 364 about symptom and infection outcomes in human beings could not confirm that air 365 purifying/treatment technology is likely to reduce respiratory or gastrointestinal infections. This 366 finding could be, in part, due to a lack of rigorous evidence, a deficit that should be redressed by 367 2026. Where symptoms or infections seemed to most reduce was in association with combined 368 technology, such as ionisers with electrostatic cleaners, or HEPA standard filters with additional 369 charcoal-based filtration.

370

371 Controlled swine farms studies found reduced clinical signs of enzootic pneumonia, atrophic rhinitis 372 and other viral indicators among animals subject to air filtration (HEPA or MERV rating 14 / 16) and 373 resident in the facilities at all times (Lau et al. 1996, Dee et al. 2012). It is encouraging that air 374 treatment technologies in these types of environments reduced airborne infections. We note that a 375 key difference between a livestock farm and human activities is that most humans are not confined 376 to a single indoor space for weeks or months, with large groups of similarly confined co-residents. 377 Exceptions are prisoners and in general, many care home residents. One Portuguese study found 378 that elderly care home residents in 2014 spent an average 95% of their time indoors at their 379 residential facility (Almeida-Silva et al. 2014). In these unusual environments, technologies that try 380 to stop disease transmission by disinfecting air have the greatest chance of success.

382 Six of our included studies reported on data collected in 2014-2023. However, we found just four 383 reports about experiments at any date (rather than observational study designs) that collected data 384 about infections in humans after air treatment that was meant to deactivate or remove pathogens 385 from indoor air. Lack of rigorous experimental trials is problematic because of the greater biases in 386 cohort (observational) study designs, but even in randomised controlled trials (RCT) study designs, 387 biases introduced by poor randomisation, blinding and allocation concealment may exceed the 388 apparent preventive effects suggested by the cohort studies included in our review (Wood et al. 389 2008, Savović et al. 2012). Nevertheless, it is excellent that at least five cluster RCTs were registered 390 since 2020, in four different countries, to evaluate the most recent technologies that may be able to 391 adequately remove/deactivate contagions in shared indoor spaces. These trials will have evaluated 392 both HEPA (n=3) and GUVL (n=2). According to registrations, two school-based trials 393 (ISRCTN46750688; NCT05016271) were scheduled to finish data collection by late 2022; while three 394 experiments in care home settings (NCT05084898; ACTRN12621000567820; ISRCTN63437172) will 395 finish data collection in 2023 and 2024. Unfortunately, we did find evidence of publication bias in 396 the existing evidence base. 397 398 We did not expect to find so many studies undertaken in the context of allergenic response or

399 asthma. We felt we should include these studies unless the authors said they had excluded infection 400 as a cause of symptoms (which they did not). We also realised that we needed to include for full 401 text review all studies about respiratory or gastrointestinal outcomes in people where a relevant 402 technology was tested in an eligible setting. Even if our outcomes were not mentioned in the article 403 abstract, these data were sometimes collected and reported in the full report. Reviewing full text of 404 so many articles exceeded our initial resource allocation. We also decided that it was undesirable to 405 confine our review to only dichotomous outcomes as stated in the original protocol. These are 406 among the many reasons for deviating from our original protocol (Prospero CRD42020208109).

407

408 Operational costs are not a small concern when a technology is suggested to be rolled out at scale, 409 as happened during the Covid-19 pandemic. The costs of providing these air disinfection solutions 410 are likely to still be prohibitive in many settings (Wightwick 2021, Zimmer 2021). In future, costs are 411 likely to reduce, and may coincide with the time point when the technology is proven to give 412 effective protection against disease transmission. Resource limits are an uncomfortable reality with 413 regard to any medical or public health intervention: data on implementation costs should be 414 included in published evaluations.

416 There is a distinct lack of studies addressing aerosol or other possible airborne transmission of 417 gastrointestinal infections. Although aerosol transmission is a lesser pathway for gastrointestinal 418 infections, it does happen, notably following project vomiting, for instance, which is often associated 419 with norovirus infection (Makison Booth 2014). Norovirus outbreaks have been associated with air 420 travel in spite of HEPA filtration being routinely fit on nearly all commercial aircraft manufactured in 421 recent decades (Thornley et al. 2011). Experiments evaluating effective protection from air 422 treatment systems should consider many common very transmissible pathogens, and in so-doing 423 may establish greater benefits.

424

Potential adverse effects in earlier experiments were often simply not addressed, not commented

on at all. The most common adverse effect reported, which sometimes led to trial withdrawal, was

427 noise. This potential nuisance is likely to be reduced with technological developments.

428

429 Strengths and Limitations

We undertook a very large search in diverse bibliographic sources (engineering, environmental, medical and health sciences), including three trial registries. We looked beyond abstracts to find evidence of outcomes in humans regardless of whether or not the abstract indicated those outcomes had been monitored. We undertook thorough forward and backward citation searches; about a third of our included studies came from citation searches. We searched nine good similar systematic reviews for additional studies to include.

436

437 We made inclusion decisions that could have slightly adjusted findings. We excluded studies 438 published before 1970; we are aware of 1940s-1950s studies with both encouraging and equivocal 439 results using GUVL (Reed 2010). We were unable to incorporate results from at least five very 440 modern trials (initiated \geq 2020) that have yet to report. Contacting original authors for additional 441 information exceeded our resource capacity, although we note that most studies were published 442 before 2010 so it is unlikely that much additional information could have been collected. We 443 excluded articles that did not report primary raw (unadjusted) outcomes. We excluded 444 multifactorial experiments, such as Eggleston et al. (2005), which had HEPA filters as well as 445 environmental actions in the only intervention arm. We found many studies that collected symptom 446 outcome data related to air treatment but did not report raw results we could input to group 447 synthesis. For instance, Shao et al. (2017) collected data about shortness of breath in participants, 448 but did not report this information. In models adjusted for participant age and gender, Noonan et 449 al. (2017; RCT in homes) found no improvement in (asthmatic) symptom severity related to HEPA 450 filtration. In models adjusted for 13 other covariates, Abd Razak et al. (2020; cohort study in child

451 care centres) found greater symptom severity related to air conditioning rather than natural

452 ventilation. Gent *et al.* (2022; RCT in homes) found reduced symptomatic illness related to HEPA

453 filtration in homes of asthmatics, after adjusting for measured NO₂ concentrations in same

454 environment. These findings suggest that adjustment by many types of confounders may be

- 455 warranted to find true effect size, a study design that requires access to individual participant data.
- 456 We did not attempt individual participant meta-analysis, but otherwise note that the lack of
- 457 apparent consensus from these other studies is similar to our own findings.
- 458

459 We have not attempted to adjust for aspects of any study such as participant vulnerability,

- 460 participant ages, device air flow rates, person-hours of exposure, adherence to trial protocol or
- 461 vulnerabilities of target pathogens, any one of which may well affect real world effectiveness. We
- 462 endeavoured to undertake our synthesis with minimal bias but acknowledge that it is not ideal that
- 463 our own study did not adhere to a pre-registered protocol.
- 464

465 Conclusions

- 466 Evidence that treating indoor air in public spaces will reliably prevent transmission of respiratory or
- 467 gastrointestinal diseases remains elusive. Pooled data suggested no net benefits for symptom
- severity or symptom presence, in absence of confirmed infection. There is weak evidence that air
- 469 treatment technologies tended to reduce confirmed infections, but these data evince strong
- 470 publication bias. Although environmental and surface samples are reduced after air treatment by
- several air treatment strategies, especially germicidal lights and high efficiency particulate air
- filtration, robust evidence has yet to emerge to confirm that these technologies are effective in real
- 473 world settings. Data from several relevant randomised trials have yet to report and will be welcome
- to the evidence base. Where such technology is trialled, costings and adverse events should be
- reported to contextualise any potential trade offs in public health protection decisions. We
- 476 recommend that authors publish both raw unadjusted outcome measures as well as results from
- 477 appropriately adjusted models to facilitate multi-study synthesis.
- 478

479 References

480

Abd Razak, A., A. M. Z. Abidin, H. Saidin, R. Shaharudin, M. F. Mohamad and M. R. M. Nawi (2020).
"Assessments on the Effect of Ventilation System Associated with Children Respiratory Symptoms in
Child Care Centers." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 67(2):
135-143.

- 486 Akpan, N. and J. Jeffrey-Wilensky. (2021, Nov 18). "NYC Schools Bought Weaker Air Purifiers. Now
- 487 Underventilated Campuses Are More Prone To COVID Cases." from

488	https://www.wnyc.org/story/nyc-schools-bought-weaker-air-purifiers-now-underventilated-
489	<u>campuses-are-more-prone-covid-cases/</u> .
490 491 492	Almeida-Silva, M., H. T. Wolterbeek and S. Almeida (2014). "Elderly exposure to indoor air pollutants." <u>Atmospheric Environment</u> 85 : 54-63.
493 494 495 496	Antonicelli, L., M. Bilo, S. Pucci, C. Schou and F. Bonifazi (1991). "Efficacy of an air-cleaning device equipped with a high efficiency particulate air filter in house dust mite respiratory allergy." <u>Allergy</u> 46 (8): 594-600.
497 498 499 500	Bernstein, J. A., R. C. Bobbitt, L. Levin, R. Floyd, M. S. Crandall, R. A. Shalwitz, A. Seth and M. Glazman (2006). "Health effects of ultraviolet irradiation in asthmatic children's homes." <u>Journal of Asthma</u> 43 (4): 255-262.
501 502 503 504	Boyle, R. J., C. Pedroletti, M. Wickman, L. Bjermer, E. Valovirta, R. Dahl, A. Von Berg, O. Zetterström, J. O. Warner and A. S. Group (2012). "Nocturnal temperature controlled laminar airflow for treating atopic asthma: a randomised controlled trial." <u>Thorax</u> 67 (3): 215-221.
505 506 507	Brandon, M. (2020, Oct 21). "No Air Filters at Schools in Germany: But Why?", from https://scholarlyoa.com/no-air-filters-schools-in-germany/ .
508 509 510 511 512	Butz, A. M., E. C. Matsui, P. Breysse, J. Curtin-Brosnan, P. Eggleston, G. Diette, D. A. Williams, J. Yuan, J. T. Bernert and C. Rand (2011). "A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure." <u>Archives of</u> <u>Pediatrics & Adolescent Medicine</u> 165 (8): 741-748.
513 514 515 516	Camfil. (2021, Feb 27). "Education department Valencia protecting schools." from https://www.camfil.com/en-sg/insights/case-studies/education-department-valencia-protecting-schools .
517 518 519 520	Daniell, W., J. Camp and S. Horstman (1991). "Trial of a negative ion generator device in remediating problems related to indoor air quality." <u>Journal of Occupational and Environmental Medicine</u> 33 (6): 681-687.
521 522 523 524	Dee, S., J. P. Cano, G. Spronk, D. Reicks, P. Ruen, A. Pitkin and D. Polson (2012). "Evaluation of the long-term effect of air filtration on the occurrence of new PRRSV infections in large breeding herds in swine-dense regions." <u>Viruses</u> 4 (5): 654-662.
525 526 527 528	Eggleston, P. A., A. Butz, C. Rand, J. Curtin-Brosnan, S. Kanchanaraksa, L. Swartz, P. Breysse, T. Buckley, G. Diette and B. Merriman (2005). "Home environmental intervention in inner-city asthma: a randomized controlled clinical trial." <u>Annals of Allergy, Asthma & Immunology</u> 95 (6): 518-524.
529 530 531	Fernandez-Gerlinger, MP., AS. Jannot, S. Rigaudeau, J. Lambert, O. Eloy, F. Mignon, H. Farhat, S. Castaigne, J. Merrer and P. Rousselot (2016). "The plasmair decontamination system is protective

532 against invasive Aspergillosis in neutropenic patients." Infection Control & Hospital Epidemiology 533 37(7): 845-851. 534 535 Gent, J. F., T. R. Holford, M. B. Bracken, J. M. Plano, L. A. McKay, K. M. Sorrentino, P. Koutrakis and B. 536 P. Leaderer (2022). "Childhood asthma and household exposures to nitrogen dioxide and fine 537 particles: a triple-crossover randomized intervention trial." Journal of Asthma: 1-10. 538 539 Hammond, A., T. Khalid, H. V. Thornton, C. A. Woodall and A. D. Hay (2021). "Should homes and 540 workplaces purchase portable air filters to reduce the transmission of SARS-CoV-2 and other 541 respiratory infections? A systematic review." PLoS One 16(4): e0251049. 542 543 Hansel, N. N., N. Putcha, H. Woo, R. Peng, G. B. Diette, A. Fawzy, R. A. Wise, K. Romero, M. F. Davis and A. M. Rule (2022). "Randomized clinical trial of air cleaners to improve indoor air quality and 544 chronic obstructive pulmonary disease health: results of the CLEAN AIR study." American Journal of 545 546 Respiratory and Critical Care Medicine 205(4): 421-430. 547 548 Hedge, A., G. E. Mitchell, J. F. McCarthy and J. Ludwig (1993). "Effects of a Furniture-integrated 549 Breathing-zone Filtration System on Indoor Air Quality, Sick Building Syndrome, and Productivity." 550 Indoor Air 3(4): 328-336. 551 552 Higgins, J. P. and D. G. Altman (2008). "Assessing risk of bias in included studies." Cochrane 553 handbook for systematic reviews of interventions: Cochrane book series: 187-241. 554 555 Jhun, I., J. M. Gaffin, B. A. Coull, M. F. Huffaker, C. R. Petty, W. J. Sheehan, S. N. Baxi, P. S. Lai, C.-M. 556 Kang and J. M. Wolfson (2017). "School environmental intervention to reduce particulate pollutant 557 exposures for children with asthma." The Journal of Allergy and Clinical Immunology: In Practice 558 **5**(1): 154-159. e153. 559 560 Johnsen, C., H. Mosbech and J. Heinig (1997). "Can ionisers in bedrooms help asthmatics?" Indoor 561 and Built Environment 6(3): 174-178. 562 563 Lanphear, B. P., R. W. Hornung, J. Khoury, K. Yolton, M. Lierl and A. Kalkbrenner (2011). "Effects of 564 HEPA air cleaners on unscheduled asthma visits and asthma symptoms for children exposed to 565 secondhand tobacco smoke." Pediatrics 127(1): 93-101. 566 567 Lau, A., A. Vizcarra, K. Lo and J. Luymes (1996). "Recirculation of filtered air in pig barns." Canadian 568 Agricultural Engineering 38: 297-304. 569 570 Li, L., L. Zhang, J. H. Mo, Y. Y. Li, J. Y. Xia, X. B. Bai, P. F. Xie, J. Y. Liang, Z. F. Yang and Q. Y. Chen 571 (2020). "Efficacy of indoor air purification in the treatment of Artemisia pollen-allergic rhinitis: a 572 randomised, double-blind, clinical controlled trial." Clinical Otolaryngology 45(3): 394-401. 573 574 Li, R. and X. Jiang (2011). "Clinical observation on the prevention of influenza by air disinfection with 575 moxa stick fumigation." Chinese Journal of Nosoconmiology 21(8): 1606-1607.

576 577 578 579	Lin, H., S. Ng, S. Chan, W. M. Chan, K. C. Lee, S. C. Ho and L. Tian (2011). "Institutional risk factors for norovirus outbreaks in Hong Kong elderly homes: a retrospective cohort study." <u>BMC Public Health</u> 11 (1): 1-7.
580 581 582 583	Makison Booth, C. (2014). "Vomiting Larry: a simulated vomiting system for assessing environmental contamination from projectile vomiting related to norovirus infection." <u>Journal of Infection</u> <u>Prevention</u> 15 (5): 176-180.
584 585 586 587	Malički, M. and A. Marušić (2014). "Is there a solution to publication bias? Researchers call for changes in dissemination of clinical research results." <u>Journal of Clinical Epidemiology</u> 67 (10): 1103- 1110.
588 589 590 591	Menzies, D., J. Pasztor, T. Rand and J. Bourbeau (1999). "Germicidal ultraviolet irradiation in air conditioning systems: effect on office worker health and wellbeing: a pilot study." <u>Occupational and</u> <u>Environmental Medicine</u> 56 (6): 397-402.
592 593 594 595	Menzies, D., J. Popa, J. A. Hanley, T. Rand and D. K. Milton (2003). "Effect of ultraviolet germicidal lights installed in office ventilation systems on workers' health and wellbeing: double-blind multiple crossover trial." <u>The Lancet</u> 362 (9398): 1785-1791.
596 597 598 599	Myers, N. T., R. J. Laumbach, K. G. Black, P. Ohman-Strickland, S. Alimokhtari, A. Legard, A. De Resende, L. Calderón, F. T. Lu and G. Mainelis (2022). "Portable air cleaners and residential exposure to SARS-CoV-2 aerosols: A real-world study." <u>Indoor Air</u> 32 (4): e13029.
600 601 602 603	Narita, K., K. Asano, K. Naito, H. Ohashi, M. Sasaki, Y. Morimoto, T. Igarashi and A. Nakane (2020). "Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens." <u>Journal of Hospital Infection</u> 105 (3): 459-467.
604 605 606	Nogrady, S. and S. Furnass (1983). "Ionisers in the management of bronchial asthma." <u>Thorax</u> 38 (12): 919-922.
607 608 609 610	Noonan, C. W., E. O. Semmens, P. Smith, S. W. Harrar, L. Montrose, E. Weiler, M. McNamara and T. J. Ward (2017). "Randomized trial of interventions to improve childhood asthma in homes with wood- burning stoves." <u>Environmental Health Perspectives</u> 125 (9): 097010.
611 612 613 614	Oren, I., N. Haddad, R. Finkelstein and J. M. Rowe (2001). "Invasive pulmonary aspergillosis in neutropenic patients during hospital construction: before and after chemoprophylaxis and institution of HEPA filters." <u>American Journal of Hematology</u> 66 (4): 257-262.
615 616 617 618	Park, HK., KC. Cheng, A. O. Tetteh, L. M. Hildemann and K. C. Nadeau (2017). "Effectiveness of air purifier on health outcomes and indoor particles in homes of children with allergic diseases in Fresno, California: a pilot study." Journal of Asthma 54 (4): 341-346.

620 621 622	Park, K. H., S. C. Lee, S. Moon, E. Choe, H. Shin, S. R. Kim, JH. Lee, H. H. Park, D. Huh and JW. Park (2020). "Effects of air purifiers on patients with allergic rhinitis: a multicenter, randomized, double- blind, and placebo-controlled study." <u>Yonsei Medical Journal</u> 61 (8): 689.
623 624 625 626 627	Phipatanakul, W., P. Koutrakis, B. A. Coull, C. R. Petty, J. M. Gaffin, W. J. Sheehan, P. S. Lai, L. M. Bartnikas, CM. Kang and J. M. Wolfson (2021). "Effect of school integrated pest management or classroom air filter purifiers on asthma symptoms in students with active asthma: a randomized clinical trial." <u>Journal of American Medical Association</u> 326 (9): 839-850.
628 629 630 631	Preziosi, P., S. Czernichow, P. Gehanno and S. Hercberg (2004). "Workplace air-conditioning and health services attendance among French middle-aged women: a prospective cohort study." <u>International Journal of Epidemiology</u> 33 (5): 1120-1123.
632 633 634	Reed, N. G. (2010). "The history of ultraviolet germicidal irradiation for air disinfection." <u>Public</u> <u>Health Reports</u> 125 (1): 15-27.
635 636	RevMan (2014). Copenhagen: the Nordic Cochrane Centre, the Cochrane collaboration.
637 638 639	Rodríguez, M., M. L. Palop, S. Seseña and A. Rodríguez (2021). "Are the Portable Air Cleaners (PAC) really effective to terminate airborne SARS-CoV-2?" <u>Science of The Total Environment</u> 785 : 147300.
640 641 642 643	Salam, ZH. A., R. B. Karlin, M. L. Ling and K. S. Yang (2010). "The impact of portable high-efficiency particulate air filters on the incidence of invasive aspergillosis in a large acute tertiary-care hospital." <u>American Journal of Infection Control</u> 38 (4): e1-e7.
644 645 646 647	Savović, J., H. E. Jones, D. G. Altman, R. J. Harris, P. Jüni, J. Pildal, B. Als-Nielsen, E. M. Balk, C. Gluud and L. L. Gluud (2012). "Influence of reported study design characteristics on intervention effect estimates from randomized, controlled trials." <u>Annals of Internal Medicine</u> 157 (6): 429-438.
648 649 650 651 652	Shao, D., Y. Du, S. Liu, B. Brunekreef, K. Meliefste, Q. Zhao, J. Chen, X. Song, M. Wang and J. Wang (2017). "Cardiorespiratory responses of air filtration: a randomized crossover intervention trial in seniors living in Beijing: Beijing Indoor Air Purifier StudY, BIAPSY." <u>Science of the Total Environment</u> 603 : 541-549.
653 654 655 656	Skulberg, K., K. Skyberg, K. Kruse, W. Eduard, F. Levy, J. Kongerud and P. Djupesland (2005). "The effects of intervention with local electrostatic air cleaners on airborne dust and the health of office employees." <u>Indoor Air</u> 15 (3): 152-159.
657 658 659 660	Thiam, D. G. Y., F. T. Chew, S. H. Lim, L. Zhang and L. Bee-Wah (1999). "An evaluation of mattress encasings and high efficiency particulate filters on asthma control in the tropics." <u>Asian Pacific</u> Journal of Allergy and Immunology 17 (3): 169.
661 662	Thiese, M. S. (2014). "Observational and interventional study design types; an overview." <u>Biochemia</u>

663 <u>Medica</u> **24**(2): 199-210.

664 665 666	Thornley, C. N., N. A. Emslie, T. W. Sprott, G. E. Greening and J. P. Rapana (2011). "Recurring norovirus transmission on an airplane." <u>Clinical infectious diseases</u> 53 (6): 515-520.
667 668 669 670	Ulmair. (2021, Jul 11). "Free state of Bavaria subsidises room air cleaners in the classroom." from <u>https://www.ulmair.de/en/blog/2021/07/11/freistaat-bayern-bezuschusst-raumluftreiniger-im-</u> <u>klassenzimmer/</u> .
671 672 673	US Department of Energy. (2005, December). "Specification for HEPA Filters Used by DOE Contractors ", from <u>https://www.standards.doe.gov/standards-documents/3000/3020-astd-2015</u> .
674 675 676	Villaveces, J., H. Rosengren and J. Evans (1977). "Use of laminar air flow portable filter in asthmatic children." <u>Annals of Allergy</u> 38 (6): 400-404.
677 678 679 680 681 682	Vokurka, S., E. Bystrická, T. Svoboda, I. K. Škoda Gorican, M. Sever, E. Mazur, A. Kopinska, V. Pavlicová, O. Mocanu and A. Tanase (2014). "The availability of HEPA-filtered rooms and the incidence of pneumonia in patients after haematopoietic stem cell transplantation (HSCT): results from a prospective, multicentre, eastern E uropean study." <u>Journal of Clinical Nursing</u> 23 (11-12): 1648-1652.
683 684 685 686 687 688	Walker, E. S., E. O. Semmens, A. Belcourt, B. B. Boyer, E. Erdei, J. Graham, S. E. Hopkins, J. L. Lewis, P. G. Smith and D. Ware (2022). "Efficacy of air filtration and education interventions on indoor fine particulate matter and child lower respiratory tract infections among rural US homes heated with wood stoves: results from the KidsAIR randomized trial." <u>Environmental Health Perspectives</u> 130 (4): 047002.
689 690 691 692	Warburton, C., R. M. Niven, C. Pickering, A. Fletcher, J. Hepworth and H. Francis (1994). "Domiciliary air filtration units, symptoms and lung function in atopic asthmatics." <u>Respiratory Medicine</u> 88 (10): 771-776.
693 694 695	Warner, J., J. Marchant and J. Warner (1993). "Double blind trial of ionisers in children with asthma sensitive to the house dust mite." <u>Thorax</u> 48 (4): 330-333.
696 697 698 699	Wells, G. A., B. Shea, D. O'Connell, J. Peterson, V. Welch, M. Losos and P. Tugwell. (2000). "The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses." from <u>https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp</u> .
700 701 702 703	White, D. W., C. E. Feigley, R. E. McKeown, J. J. Hout and J. R. Hebert (2011). "Association between barracks type and acute respiratory infection in a gender integrated Army basic combat training population." <u>Military Medicine</u> 176 (8): 909-914.
704 705 706 707	Wightwick, A. (2021, Sep 2). "Wales' £3.3m plan to give schools ozone cleaners called 'absurd' as ministers backtrack." from https://www.walesonline.co.uk/news/education/wales-33m-plan-give-schools-21457305 .

Wood, L., M. Egger, L. L. Gluud, K. F. Schulz, P. Jüni, D. G. Altman, C. Gluud, R. M. Martin, A. J. Wood
and J. A. Sterne (2008). "Empirical evidence of bias in treatment effect estimates in controlled trials
with different interventions and outcomes: meta-epidemiological study." <u>British Medical Journal</u>

336(7644): 601-605.

713

- Zhang, C., H. Cui, C. Zhang, Z. Chen, X. Jiang, J. Liu, Z. Wan, J. Li, J. Liu and Y. Gao (2022). "Aerosol
- 715 Transmission of the Pandemic SARS-CoV-2 and Influenza A Virus Was Blocked by Negative Ions."
- 716 <u>Frontiers in Cellular and Infection Microbiology</u>: 506.

717

718 Zimmer, A. (2021, Aug 19). "NYC schools will put 2 air purifiers in each classroom. Did they pick the 719 best device?", from https://ny.chalkbeat.org/2021/8/18/22630636/air-purifiers-hepa-nyc-schools-

720 <u>covid</u>.

721

- 722 Zuraimi, M., K. Tham, F. Chew and P. Ooi (2007). "The effect of ventilation strategies of child care
- centers on indoor air quality and respiratory health of children in Singapore." Indoor Air 17(4): 317-
- 724 327.

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material

SEARCH STRATEGY

Google Scholar (first 20 hits only for each combination, including links to patents) respiratory /or/ gastrointestinal /or/ norovirus and each separately from this list air disinfection /or/ air cleansing /or/ air filtering /or/ air filtration and each separately from this list... germicidal; air purification; laminar; HEPA; far UVC, hydrogen peroxide

Scopus (all hits back to 1970) (TITLE-ABS-key ((respiratory OR coronavirus OR influenza OR legionella OR tuberculosis OR commoncold OR rhinovirus OR norovirus OR vomit* OR diarr* OR gastrointes* OR sick* OR ill*)) AND TITLE-ABS-KEY (purification OR disinfection OR filtration OR germicidal OR laminarflow OR hepa OR far-uvc OR hydrogen-peroxide) AND TITLE-ABS-KEY (trial OR rct OR experimen* OR effect* OR case-control OR cohort OR longitudinal)) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (SUBJAREA, "MEDI") OR LIMIT-TO (SUBJAREA, "ENGI") OR LIMIT-TO (SUBJAREA, "ENVI")) AND (LIMIT-TO (LANGUAGE, "English"))

medrxiv, **bioRxiv**, **preprints.org** (used exact phrase on preprints.org, first 75 only on bioRxiv sorted by best match)

(in each respository) air-filtration or air-disinfection or germicidal or irradiation or laminar-flow or ultraviolet or far-UVC or HEPA or peroxide

Trial registries (ANZCTR, NCT, ISRCTN) were all searched on 10 June 2022 and for updates on same trials on 5 Dec 2022, with these terms:

(ultraviolet or filter or hepa) and (respiratory or covid)

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material

OVID MEDLINE

Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) <1946 to 6 Sept 2020> Search Strategy:

- 1 exp Air Filters/ (350)
- 2 exp Filtration/ (36555)
- 3 2 and 1970:2012.(sa_year). (27640)

4 ((purify or purifi* or disinfect* or filtrat* or sanitiz* or sanitis* or ioniz* or ionis* or filter* or germicid* or laminar-flow* or HEPA or irradiat* or far-UVC) adj5 air*).ti,ab. (7691)

5 1 or 3 or 4 (34802)

6 (respiratory or coronavirus* or influenza* or flu or legionella* or tuberculosis or TB or (common adj3 cold*) or rhinovirus*).ti,ab. (770505)

- 7 exp Respiratory Tract Infections/ (378001)
- 8 6 or 7 (979407)

9 control groups/ or double-blind method/ or random allocation/ or single-blind method/ or exp case-control studies/ or exp cohort studies/ (2474810)

- 10 randomized controlled trial.pt. (512469)
- 11 controlled clinical trial.pt. (93828)
- 12 randomized.ab. (491495)
- 13 placebo.ab. (210767)
- 14 drug therapy.fs. (2231824)
- 15 randomly.ab. (340352)
- 16 trial.ab. (518815)
- 17 groups.ab. (2089568)
- 18 randomised ab. (98135)
- 19 15 or 12 or 16 or 18 or 11 or 17 or 10 or 13 or 14 (4802048)
- 20 (animals not (human and animals)).sh. (6660396)
- 21 9 or 19 (6340283)
- 22 21 not 20 (5344046)
- 23 5 and 8 and 22 (245)
- 24 23 and 1970:2020.(sa_year). (245)
- 25 (norovirus* or vomit* or diarr* or gastro* or ill* or sick*).ti,ab. (1339654)
- 26 exp Norovirus/ (4764)
- 27 25 or 26 (1339940)
- 28 8 or 27 (2236554)
- 29 5 and 22 and 28 (365)

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material

Supplemental Methods

Study selection

We looked at every full text study that tested an eligible technology in an eligible setting where the abstract said that authors had monitored respiratory or gastrointestinal outcomes, even if the outcomes described in the abstract were not our eligible outcomes. For instance, if a study mentioned results in the abstract only about forced expiratory volume or only about surface swab samples, we checked the full text to see if they authors had also published data within about respiratory symptoms in people (even if not mentioned in the abstract). Data were extracted by a single author and confirmed by others in the research team. Backward and forward citation searches in all included studies was undertaken. We also checked for eligible studies in nine systematic reviews with similar research questions (Lee *et al.* 2005, Eckmanns *et al.* 2006, Blackhall *et al.* 2012, Luongo *et al.* 2016, Cheek *et al.* 2021, Park *et al.* 2021, Bowles *et al.* 2022, Thornton *et al.* 2022). Quality assessment was undertaken by a single author. We did not contact primary study authors for additional information.

Risk of bias (quality) assessment

Criteria used to assign risk of bias category for each domain are noted in result tables. One point was awarded for each domain with an assessment of low risk of bias. This meant that the scoring for our version of NOS was maximum 8; maximum quality score for trials in our quality assessment was 7 (higher score meant lower risk of bias).

Outcomes

Study participants with a chronic illness that might present with same symptoms as our outcomes, such as Crohn's disease or asthma, were included unless infection had been excluded as possible cause. If a study reported compound derived outcome scores, such as a combined score for asthma management, we only considered this compound score to be an eligible outcome if eligible symptoms were dominant in the score derivation. For instance, an asthma management score that had 4 domains of which "night time coughing" was only one domain and the other three domains were laboratory rather than symptomatic measures such as forced expiratory volume, peak expiratory flow and inhaler use frequency : this composite outcome would not be an eligible outcome in our review.

Where one study had multiple eligible symptom outcomes (such as cough and fever and nasal congestion), we preferred them for pooled analysis in this order (most to least preferred): cough, breathing difficulties, nasal congestion, rhinitis/sneezing, throat symptoms, fever, other respiratory symptoms or combined respiratory symptom scores. Preferred gastrointestinal symptoms for synthesis in descending order were: vomiting, nausea, diarrhea, abdominal cramps.

When a study had multiple measurements of an outcome at different moments during the monitoring period, we used cumulative results at the last recorded follow-up within 28 days of latest exposure. Where more than one type of outcome was available (e.g., symptomatic scores and cases or lab-confirmed cases) we extracted both and collated them separately.

We also extracted data about adverse outcomes and comments about costs or maintenance considerations associated with the air treatment technology.

Synthesis

Dichotomous (yes/no) data were about infection and/or incidence of eligible symptoms. Effectiveness for dichotomous outcomes was expressed as risk ratios on a log scale with 95% confidence intervals. Examples of

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material continuous data were severity scores, frequency or change over baseline. For continuous data, we assessed effectiveness using standardised mean differences with 95% confidence intervals.

Where a study provided multiple eligible outcomes (eg. White *et al.* 2011 reported counts of cases that were either febrile or afebrile respiratory tract infections) we used only one outcome in synthesis, to avoid double counting. We chose in synthesis the outcome with larger absolute values : e.g., there were higher case counts (both arms) for afebrile illness in White *et al.* (2011).

Appendix References

Abd Razak, A., A. M. Z. Abidin, H. Saidin, R. Shaharudin, M. F. Mohamad and M. R. M. Nawi (2020). "Assessments on the Effect of Ventilation System Associated with Children Respiratory Symptoms in Child Care Centers." <u>Journal of</u> <u>Advanced Research in Fluid Mechanics and Thermal Sciences</u> **67**(2): 135-143.

Akpan, N. and J. Jeffrey-Wilensky. (2021, Nov 18). "NYC Schools Bought Weaker Air Purifiers. Now Underventilated Campuses Are More Prone To COVID Cases." from <u>https://www.wnyc.org/story/nyc-schools-bought-weaker-air-purifiers-now-underventilated-campuses-are-more-prone-covid-cases/</u>.

Almeida-Silva, M., H. T. Wolterbeek and S. Almeida (2014). "Elderly exposure to indoor air pollutants." <u>Atmospheric</u> <u>Environment</u> **85**: 54-63.

Antonicelli, L., M. Bilo, S. Pucci, C. Schou and F. Bonifazi (1991). "Efficacy of an air-cleaning device equipped with a high efficiency particulate air filter in house dust mite respiratory allergy." <u>Allergy</u> **46**(8): 594-600.

Bernstein, J. A., R. C. Bobbitt, L. Levin, R. Floyd, M. S. Crandall, R. A. Shalwitz, A. Seth and M. Glazman (2006). "Health effects of ultraviolet irradiation in asthmatic children's homes." Journal of Asthma **43**(4): 255-262.

Blackhall, K., S. Appleton and C. J. Cates (2012). "Ionisers for chronic asthma." <u>Cochrane Database of Systematic</u> <u>Reviews(</u>9).

Bowles, C. M., T. Winfield, L. Elston, E. Hasler, A. Needham, A. Cooper, R. Lewis and A. Edwards (2022). "A rapid review of Supplementary air filtration systems in health service settings. September 2022." <u>medRxiv</u>: 2022.2010. 2025.22281493.

Boyle, R. J., C. Pedroletti, M. Wickman, L. Bjermer, E. Valovirta, R. Dahl, A. Von Berg, O. Zetterström, J. O. Warner and A. S. Group (2012). "Nocturnal temperature controlled laminar airflow for treating atopic asthma: a randomised controlled trial." <u>Thorax</u> **67**(3): 215-221.

Brandon, M. (2020, Oct 21). "No Air Filters at Schools in Germany: But Why?", from <u>https://scholarlyoa.com/no-air-filters-schools-in-germany/</u>.

Butz, A. M., E. C. Matsui, P. Breysse, J. Curtin-Brosnan, P. Eggleston, G. Diette, D. A. Williams, J. Yuan, J. T. Bernert and C. Rand (2011). "A randomized trial of air cleaners and a health coach to improve indoor air quality for inner-city children with asthma and secondhand smoke exposure." <u>Archives of Pediatrics & Adolescent Medicine</u> **165**(8): 741-748.

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material

Camfil. (2021, Feb 27). "Education department Valencia protecting schools." from <u>https://www.camfil.com/en-sg/insights/case-studies/education-department-valencia-protecting-schools</u>.

Cheek, E., V. Guercio, C. Shrubsole and S. Dimitroulopoulou (2021). "Portable air purification: Review of impacts on indoor air quality and health." <u>Science of the Total Environment</u> **766**: 142585.

Daniell, W., J. Camp and S. Horstman (1991). "Trial of a negative ion generator device in remediating problems related to indoor air quality." Journal of Occupational and Environmental Medicine **33**(6): 681-687.

Dee, S., J. P. Cano, G. Spronk, D. Reicks, P. Ruen, A. Pitkin and D. Polson (2012). "Evaluation of the long-term effect of air filtration on the occurrence of new PRRSV infections in large breeding herds in swine-dense regions." <u>Viruses</u> **4**(5): 654-662.

Eckmanns, T., H. Rüden and P. Gastmeier (2006). "The influence of high-efficiency particulate air filtration on mortality and fungal infection among highly immunosuppressed patients: a systematic review." <u>The Journal of infectious diseases</u> **193**(10): 1408-1418.

Eggleston, P. A., A. Butz, C. Rand, J. Curtin-Brosnan, S. Kanchanaraksa, L. Swartz, P. Breysse, T. Buckley, G. Diette and B. Merriman (2005). "Home environmental intervention in inner-city asthma: a randomized controlled clinical trial." <u>Annals of Allergy, Asthma & Immunology</u> **95**(6): 518-524.

Fernandez-Gerlinger, M.-P., A.-S. Jannot, S. Rigaudeau, J. Lambert, O. Eloy, F. Mignon, H. Farhat, S. Castaigne, J. Merrer and P. Rousselot (2016). "The plasmair decontamination system is protective against invasive Aspergillosis in neutropenic patients." <u>Infection Control & Hospital Epidemiology</u> **37**(7): 845-851.

Gent, J. F., T. R. Holford, M. B. Bracken, J. M. Plano, L. A. McKay, K. M. Sorrentino, P. Koutrakis and B. P. Leaderer (2022). "Childhood asthma and household exposures to nitrogen dioxide and fine particles: a triple-crossover randomized intervention trial." Journal of Asthma: 1-10.

Hammond, A., T. Khalid, H. V. Thornton, C. A. Woodall and A. D. Hay (2021). "Should homes and workplaces purchase portable air filters to reduce the transmission of SARS-CoV-2 and other respiratory infections? A systematic review." <u>PLoS One</u> **16**(4): e0251049.

Hansel, N. N., N. Putcha, H. Woo, R. Peng, G. B. Diette, A. Fawzy, R. A. Wise, K. Romero, M. F. Davis and A. M. Rule (2022). "Randomized clinical trial of air cleaners to improve indoor air quality and chronic obstructive pulmonary disease health: results of the CLEAN AIR study." <u>American Journal of Respiratory and Critical Care Medicine</u> **205**(4): 421-430.

Hedge, A., G. E. Mitchell, J. F. McCarthy and J. Ludwig (1993). "Effects of a Furniture-integrated Breathing-zone Filtration System on Indoor Air Quality, Sick Building Syndrome, and Productivity." <u>Indoor Air</u> **3**(4): 328-336.

Higgins, J. P. and D. G. Altman (2008). "Assessing risk of bias in included studies." <u>Cochrane handbook for systematic</u> reviews of interventions: Cochrane book series: 187-241.

Jhun, I., J. M. Gaffin, B. A. Coull, M. F. Huffaker, C. R. Petty, W. J. Sheehan, S. N. Baxi, P. S. Lai, C.-M. Kang and J. M. Wolfson (2017). "School environmental intervention to reduce particulate pollutant exposures for children with asthma." <u>The Journal of Allergy and Clinical Immunology: In Practice</u> **5**(1): 154-159. e153.

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material

Johnsen, C., H. Mosbech and J. Heinig (1997). "Can ionisers in bedrooms help asthmatics?" <u>Indoor and Built</u> <u>Environment</u> **6**(3): 174-178.

Lanphear, B. P., R. W. Hornung, J. Khoury, K. Yolton, M. Lierl and A. Kalkbrenner (2011). "Effects of HEPA air cleaners on unscheduled asthma visits and asthma symptoms for children exposed to secondhand tobacco smoke." <u>Pediatrics</u> **127**(1): 93-101.

Lau, A., A. Vizcarra, K. Lo and J. Luymes (1996). "Recirculation of filtered air in pig barns." <u>Canadian Agricultural</u> <u>Engineering</u> **38**: 297-304.

Lee, T., N. N. Jordan, J. L. Sanchez and J. C. Gaydos (2005). "Selected nonvaccine interventions to prevent infectious acute respiratory disease." <u>American journal of preventive medicine</u> **28**(3): 305-316.

Li, L., L. Zhang, J. H. Mo, Y. Y. Li, J. Y. Xia, X. B. Bai, P. F. Xie, J. Y. Liang, Z. F. Yang and Q. Y. Chen (2020). "Efficacy of indoor air purification in the treatment of Artemisia pollen-allergic rhinitis: a randomised, double-blind, clinical controlled trial." <u>Clinical Otolaryngology</u> **45**(3): 394-401.

Li, R. and X. Jiang (2011). "Clinical observation on the prevention of influenza by air disinfection with moxa stick fumigation." <u>Chinese Journal of Nosoconmiology</u> **21**(8): 1606-1607.

Lin, H., S. Ng, S. Chan, W. M. Chan, K. C. Lee, S. C. Ho and L. Tian (2011). "Institutional risk factors for norovirus outbreaks in Hong Kong elderly homes: a retrospective cohort study." <u>BMC Public Health</u> **11**(1): 1-7.

Luongo, J. C., K. P. Fennelly, J. A. Keen, Z. J. Zhai, B. W. Jones and S. L. Miller (2016). "Role of mechanical ventilation in the airborne transmission of infectious agents in buildings." <u>Indoor Air</u> **26**(5): 666-678.

Makison Booth, C. (2014). "Vomiting Larry: a simulated vomiting system for assessing environmental contamination from projectile vomiting related to norovirus infection." Journal of Infection Prevention **15**(5): 176-180.

Malički, M. and A. Marušić (2014). "Is there a solution to publication bias? Researchers call for changes in dissemination of clinical research results." Journal of Clinical Epidemiology **67**(10): 1103-1110.

Menzies, D., J. Pasztor, T. Rand and J. Bourbeau (1999). "Germicidal ultraviolet irradiation in air conditioning systems: effect on office worker health and wellbeing: a pilot study." <u>Occupational and Environmental Medicine</u> **56**(6): 397-402.

Menzies, D., J. Popa, J. A. Hanley, T. Rand and D. K. Milton (2003). "Effect of ultraviolet germicidal lights installed in office ventilation systems on workers' health and wellbeing: double-blind multiple crossover trial." <u>The Lancet</u> **362**(9398): 1785-1791.

Myers, N. T., R. J. Laumbach, K. G. Black, P. Ohman-Strickland, S. Alimokhtari, A. Legard, A. De Resende, L. Calderón, F. T. Lu and G. Mainelis (2022). "Portable air cleaners and residential exposure to SARS-CoV-2 aerosols: A real-world study." Indoor Air **32**(4): e13029.

Narita, K., K. Asano, K. Naito, H. Ohashi, M. Sasaki, Y. Morimoto, T. Igarashi and A. Nakane (2020). "Ultraviolet C light with wavelength of 222 nm inactivates a wide spectrum of microbial pathogens." Journal of Hospital Infection **105**(3): 459-467.

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material

Nogrady, S. and S. Furnass (1983). "Ionisers in the management of bronchial asthma." <u>Thorax</u> **38**(12): 919-922.

Noonan, C. W., E. O. Semmens, P. Smith, S. W. Harrar, L. Montrose, E. Weiler, M. McNamara and T. J. Ward (2017). "Randomized trial of interventions to improve childhood asthma in homes with wood-burning stoves." <u>Environmental Health Perspectives</u> **125**(9): 097010.

Oren, I., N. Haddad, R. Finkelstein and J. M. Rowe (2001). "Invasive pulmonary aspergillosis in neutropenic patients during hospital construction: before and after chemoprophylaxis and institution of HEPA filters." <u>American Journal of Hematology</u> **66**(4): 257-262.

Park, H.-K., K.-C. Cheng, A. O. Tetteh, L. M. Hildemann and K. C. Nadeau (2017). "Effectiveness of air purifier on health outcomes and indoor particles in homes of children with allergic diseases in Fresno, California: a pilot study." Journal of Asthma 54(4): 341-346.

Park, H. J., H. Y. Lee, C. H. Suh, H. C. Kim, H. C. Kim, Y.-J. Park and S. W. Lee (2021). "The effect of particulate matter reduction by indoor air filter use on respiratory symptoms and lung function: a systematic review and metaanalysis." <u>Allergy, Asthma & Immunology Research</u> **13**(5): 719.

Park, K. H., S. C. Lee, S. Moon, E. Choe, H. Shin, S. R. Kim, J.-H. Lee, H. H. Park, D. Huh and J.-W. Park (2020). "Effects of air purifiers on patients with allergic rhinitis: a multicenter, randomized, double-blind, and placebo-controlled study." <u>Yonsei Medical Journal</u> **61**(8): 689.

Phipatanakul, W., P. Koutrakis, B. A. Coull, C. R. Petty, J. M. Gaffin, W. J. Sheehan, P. S. Lai, L. M. Bartnikas, C.-M. Kang and J. M. Wolfson (2021). "Effect of school integrated pest management or classroom air filter purifiers on asthma symptoms in students with active asthma: a randomized clinical trial." <u>Journal of American Medical Association</u> **326**(9): 839-850.

Preziosi, P., S. Czernichow, P. Gehanno and S. Hercberg (2004). "Workplace air-conditioning and health services attendance among French middle-aged women: a prospective cohort study." <u>International Journal of Epidemiology</u> **33**(5): 1120-1123.

Reed, N. G. (2010). "The history of ultraviolet germicidal irradiation for air disinfection." <u>Public Health Reports</u> **125**(1): 15-27.

RevMan (2014). Copenhagen: the Nordic Cochrane Centre, the Cochrane collaboration.

Rodríguez, M., M. L. Palop, S. Seseña and A. Rodríguez (2021). "Are the Portable Air Cleaners (PAC) really effective to terminate airborne SARS-CoV-2?" <u>Science of The Total Environment</u> **785**: 147300.

Salam, Z.-H. A., R. B. Karlin, M. L. Ling and K. S. Yang (2010). "The impact of portable high-efficiency particulate air filters on the incidence of invasive aspergillosis in a large acute tertiary-care hospital." <u>American Journal of Infection</u> <u>Control</u> **38**(4): e1-e7.

Savović, J., H. E. Jones, D. G. Altman, R. J. Harris, P. Jüni, J. Pildal, B. Als-Nielsen, E. M. Balk, C. Gluud and L. L. Gluud (2012). "Influence of reported study design characteristics on intervention effect estimates from randomized, controlled trials." <u>Annals of Internal Medicine</u> **157**(6): 429-438.

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material Shao, D., Y. Du, S. Liu, B. Brunekreef, K. Meliefste, Q. Zhao, J. Chen, X. Song, M. Wang and J. Wang (2017). "Cardiorespiratory responses of air filtration: a randomized crossover intervention trial in seniors living in Beijing: Beijing Indoor Air Purifier Study, BIAPSY." <u>Science of the Total Environment</u> **603**: 541-549.

Skulberg, K., K. Skyberg, K. Kruse, W. Eduard, F. Levy, J. Kongerud and P. Djupesland (2005). "The effects of intervention with local electrostatic air cleaners on airborne dust and the health of office employees." <u>Indoor Air</u> **15**(3): 152-159.

Thiam, D. G. Y., F. T. Chew, S. H. Lim, L. Zhang and L. Bee-Wah (1999). "An evaluation of mattress encasings and high efficiency particulate filters on asthma control in the tropics." <u>Asian Pacific Journal of Allergy and Immunology</u> **17**(3): 169.

Thiese, M. S. (2014). "Observational and interventional study design types; an overview." <u>Biochemia Medica</u> **24**(2): 199-210.

Thornley, C. N., N. A. Emslie, T. W. Sprott, G. E. Greening and J. P. Rapana (2011). "Recurring norovirus transmission on an airplane." <u>Clinical infectious diseases</u> **53**(6): 515-520.

Thornton, G. M., B. A. Fleck, N. Fleck, E. Kroeker, D. Dandnayak, L. Zhong and L. Hartling (2022). "The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of ultraviolet radiation." <u>PLoS One</u> **17**(4): e0266487.

Ulmair. (2021, Jul 11). "Free state of Bavaria subsidises room air cleaners in the classroom." from https://www.ulmair.de/en/blog/2021/07/11/freistaat-bayern-bezuschusst-raumluftreiniger-im-klassenzimmer/.

US Department of Energy. (2005, December). "Specification for HEPA Filters Used by DOE Contractors ", from https://www.standards.doe.gov/standards-documents/3000/3020-astd-2015.

Villaveces, J., H. Rosengren and J. Evans (1977). "Use of laminar air flow portable filter in asthmatic children." <u>Annals</u> of <u>Allergy</u> **38**(6): 400-404.

Vokurka, S., E. Bystrická, T. Svoboda, I. K. Škoda Gorican, M. Sever, E. Mazur, A. Kopinska, V. Pavlicová, O. Mocanu and A. Tanase (2014). "The availability of HEPA-filtered rooms and the incidence of pneumonia in patients after haematopoietic stem cell transplantation (HSCT): results from a prospective, multicentre, eastern E uropean study." Journal of Clinical Nursing **23**(11-12): 1648-1652.

Walker, E. S., E. O. Semmens, A. Belcourt, B. B. Boyer, E. Erdei, J. Graham, S. E. Hopkins, J. L. Lewis, P. G. Smith and D. Ware (2022). "Efficacy of air filtration and education interventions on indoor fine particulate matter and child lower respiratory tract infections among rural US homes heated with wood stoves: results from the KidsAIR randomized trial." <u>Environmental Health Perspectives</u> **130**(4): 047002.

Warburton, C., R. M. Niven, C. Pickering, A. Fletcher, J. Hepworth and H. Francis (1994). "Domiciliary air filtration units, symptoms and lung function in atopic asthmatics." <u>Respiratory Medicine</u> **88**(10): 771-776.

Warner, J., J. Marchant and J. Warner (1993). "Double blind trial of ionisers in children with asthma sensitive to the house dust mite." <u>Thorax</u> **48**(4): 330-333.

Air treatment to stop respiratory or gastrointestinal viruses: Supplemental Material Wells, G. A., B. Shea, D. O'Connell, J. Peterson, V. Welch, M. Losos and P. Tugwell. (2000). "The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses." from https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.

White, D. W., C. E. Feigley, R. E. McKeown, J. J. Hout and J. R. Hebert (2011). "Association between barracks type and acute respiratory infection in a gender integrated Army basic combat training population." <u>Military Medicine</u> **176**(8): 909-914.

Wightwick, A. (2021, Sep 2). "Wales' £3.3m plan to give schools ozone cleaners called 'absurd' as ministers backtrack." from <u>https://www.walesonline.co.uk/news/education/wales-33m-plan-give-schools-21457305</u>.

Wood, L., M. Egger, L. L. Gluud, K. F. Schulz, P. Jüni, D. G. Altman, C. Gluud, R. M. Martin, A. J. Wood and J. A. Sterne (2008). "Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study." <u>British Medical Journal</u> **336**(7644): 601-605.

Zhang, C., H. Cui, C. Zhang, Z. Chen, X. Jiang, J. Liu, Z. Wan, J. Li, J. Liu and Y. Gao (2022). "Aerosol Transmission of the Pandemic SARS-CoV-2 and Influenza A Virus Was Blocked by Negative Ions." <u>Frontiers in Cellular and Infection</u> <u>Microbiology</u>: 506.

Zimmer, A. (2021, Aug 19). "NYC schools will put 2 air purifiers in each classroom. Did they pick the best device?", from https://ny.chalkbeat.org/2021/8/18/22630636/air-purifiers-hepa-nyc-schools-covid.

Zuraimi, M., K. Tham, F. Chew and P. Ooi (2007). "The effect of ventilation strategies of child care centers on indoor air quality and respiratory health of children in Singapore." Indoor Air **17**(4): 317-327.