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Abstract 13 

Population-level vaccine efficacy is a critical component of understanding COVID-19 risk, 14 
informing public health policy, and mitigating disease impacts. Unlike individual-level clinical 15 
trials, population-level analysis characterizes how well vaccines worked in the face of real-world 16 
challenges like emerging variants, differing mobility patterns, and policy changes. In this study, 17 
we analyze the association between time-dependent vaccination rates and COVID-19 health 18 
outcomes for 48 U.S. states. We primarily focus on case-hospitalization risk (CHR) as the 19 

outcome of interest, using it as a population-level proxy for disease burden on healthcare systems. 20 
Performing the analysis using Generalized Additive Models (GAMs) allowed us to incorporate 21 
real-world nonlinearities and control for critical dynamic (time-changing) and static (temporally 22 
constant) factors. Dynamic factors include testing rates, activity-related engagement levels in the 23 
population, underlying population immunity, and policy. Static factors incorporate comorbidities, 24 
social vulnerability, race, and state healthcare expenditures. We used SARS-CoV-2 genomic 25 

surveillance data to model the different COVID-19 variant-driven waves separately, and evaluate 26 
if there is a changing role of the potential drivers of health outcomes across waves. Our study 27 
revealed a strong and statistically significant negative association between vaccine uptake and 28 
COVID-19 CHR across each variant wave, with boosters providing additional protection during 29 
the Omicron wave. Higher underlying population immunity is shown to be associated with 30 
reduced COVID-19 CHR. Additionally, more stringent government policies are generally 31 
associated with decreased CHR. However, the impact of activity-related engagement levels on 32 

COVID-19 health outcomes varied across different waves. Regarding static variables, the social 33 
vulnerability index consistently exhibits positive associations with CHR, while Medicaid 34 
spending per person consistently shows a negative association. However, the impacts of other 35 
static factors vary in magnitude and significance across different waves. This study concludes 36 
that despite the emergence of new variants, vaccines remain highly correlated with reduced 37 
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COVID-19 harm. Therefore, given the ongoing threat posed by COVID-19, vaccines remain a 38 
critical line of defense for protecting the public and reducing the burden on healthcare systems.  39 
 40 
Keywords: COVID-19, vaccination rates, population-level, United States, statistical analysis 41 

 42 
 43 

1. Background 44 

By March 1st, 2023, the COVID-19 pandemic caused over 102 million reported cases and 1.1 45 
million deaths in the United States. Vaccine development and distribution have been at the 46 
forefront of efforts to combat the impact of the disease. Three vaccines are currently available in 47 
the U.S., developed by Pfizer-BioNTech, Moderna, and Johnson & Johnson. Initial randomized 48 
clinical trials demonstrated the safety and efficacy of these vaccines, with vaccine efficacies 49 

against severe disease (hospitalization and death) ranging from 73.1% to 96.7% [1–3]. The 50 
clinical trials were designed to estimate the direct effect of vaccines against severe disease at the 51 
individual level [4]. However, as vaccines roll out to a broader population, uncertainties such as 52 
the emergence of new variants, variable immune responses, the quality of cold-chain storage, and 53 
other confounding factors can impact a vaccine's efficacy [5]. Hence, evaluating real-world 54 
vaccine protection against COVID-19 health outcomes poses a challenge.  55 

Several published studies have attempted to quantify the real-world impact of the COVID-19 56 
vaccines on health outcomes. For example, a study in Qatar assessed the vaccines’ effectiveness 57 
against severe, critical, or fatal Omicron infections using test-negative case-control analysis, and 58 
found previous infections and vaccination are effective against symptomatic Omicron infections 59 

[6]. An observational study conducted in Israel using national surveillance data showed that the 60 
two doses of the Pfizer-BioNTech mRNA vaccines are 97.2% effective in preventing COVID-61 
19-related hospitalizations [7]. A Danish study estimated vaccine effectiveness against COVID-62 
19 hospitalization using a cohort study design, and found that two doses of the vaccine provide 63 
high protection against hospitalization for the Alpha and Delta variant, and even higher 64 
protection against hospitalization for the Omicron variant [8]. A similar cohort study was applied 65 
in Singapore and the United Kingdom to determine whether booster shots reduce the severity of 66 

COVID-19 infections during the Omicron wave, and found consistent results that the risk of 67 
severe COVID-19 outcomes reduced after receiving booster mRNA vaccines [9,10].  68 

Most existing literature on the population-level effects of COVID-19 vaccination is based on 69 
individual-level data and observational studies. Specifically, these studies relied upon detailed 70 

individual-level data to assess the direct effectiveness of vaccination by comparing health 71 
outcomes between vaccinated and unvaccinated individuals exposed to the same environment. 72 
However, these studies may be subject to confounding by unmeasured factors and inconsistent 73 
quality of individual-level data. Further, in the U.S., such high-resolution data is unavailable at 74 
the population-level, so alternative strategies must be engaged to evaluate the impact of vaccine 75 
at a regional level.  76 

One such approach is to rely on compartmental and agent-based models to simulate transmission 77 
and disease outcomes both in the presence and absence of vaccines implementation for the same 78 
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population. Watson et al applied this method to estimate the impact of varying vaccine uptake 79 
rates on mortality across multiple countries and found that vaccines prevented 14·4 million 80 
COVID-19 deaths in 2021 [11]. However, this approach is subject to many assumptions and is 81 
limited in its ability to estimate accurate effectiveness. Alternatively, statistical methods such as 82 

time series and regression analysis can be implemented to evaluate the association between 83 
vaccination coverage and healthcare outcomes across different locations. One study using this 84 
strategy evaluated the association between vaccination coverage and the COVID-19 cases 85 
growth rate for all 50 U.S. states in the U.S. using a structural nested mean model and found a 1% 86 
increase in vaccination coverage was associated with a 1.02% reduction in case growth rate [12]. 87 
However, the scope of this study is limited to cases between March and May 2021. Another 88 

study utilized linear regression to analyze vaccine coverage and natural immunity in relation to 89 
mortality during the Delta and Omicron waves. It found that vaccine coverage reduced COVID-90 
19 mortality, but seroprevalence and prior infection rates were not associated with mortality [13]. 91 
However, this method has limitations in capturing dynamic changes and non-linear relationships 92 
between variables. A different study by Bollyky et al [14] applied regression analysis to 93 
determine how vaccination coverage amongst other factors (e.g., presence of comorbidities, 94 

political partisanship, race, and ethnicity) impacted health outcomes (standardized infections and 95 
deaths) in the U.S. at the state level, and determined that higher vaccination rates were associated 96 
with lower death rates. The scope of this study varies from ours in its focus on the association 97 
between static variables and COVID-19 health outcomes for a fixed time window between 98 
January 1st, 2020, and July 31st, 2022, while our study expands the analysis by incorporating 99 
novel dynamic variables to capture behavioral changes over time, and explicitly evaluating the 100 

different variants independently. A recent study evaluated the time-varying relationship between 101 
vaccination, mobility, and COVID-19 health outcomes before and after the Omicron waves [15]. 102 
They found the significance of the vaccine’s impact in reducing case rates diminished during the 103 
Omicron surge, while its efficacy in lowering case-fatality rates remained substantial throughout 104 
the pandemic.  105 

Our study contributes to the existing literature by prioritizing case-hospitalization risk as the 106 

outcome variable, breaking aggregated mobility into activity-related engagement levels, 107 
modeling previous infections as a dynamic variable, including an interaction between the 108 
completed primary series and booster rate for the Omicron wave, and considering the critical 109 
static factors such as comorbidities, social vulnerability, race, and state healthcare expenditures. 110 
Despite numerous studies assessing the effectiveness of vaccines, most have not accounted for 111 

the relative impact of vaccines across different populations and variant waves, while considering 112 
dynamic potential confounding factors. Therefore, a more comprehensive understanding of 113 
vaccines' impact across diverse populations and COVID-19 waves is crucial in developing 114 
informed public health policies that can effectively mitigate the spread of the virus and ensure 115 
equitable distribution of healthcare resources.  116 

 117 
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2. Methods 118 

2.1 Study design 119 

The primary objective of this study is to analyze the association between COVID-19 vaccination 120 
rates and COVID-19 case-hospitalization risk (CHR) in the U.S. while controlling for potential 121 
confounding effects. Time-dependent COVID-19 CHR is chosen as the modeled response 122 
variable to gain insights into the factors influencing COVID-19 harm; CHR serves as both a 123 

proxy for disease severity at an individual level, and captures the burden on the healthcare 124 
system at a population level. We use Generalized Additive Models (GAMs) to perform the 125 
analysis because of their ability to capture nonlinear dynamics. Data used include novel dynamic 126 
covariates that may potentially contribute to COVID-19 CHR, such as naturally derived 127 
immunity from prior COVID-19 infection, local healthcare infrastructure, activity-related 128 
engagement levels in the population, and government policies, alongside various static variables 129 

that have been identified to be significant in previous studies [14,16,17] such as comorbidities, 130 
social vulnerability index (SVI), race, and state healthcare expenditures. By controlling for these 131 
factors, we aim to provide a more comprehensive understanding of the association between 132 
vaccination rate and COVID-19 CHR at the population level. To further elucidate the role of 133 
potential driving factors, we also model reported case incidence rates (CIR) as a separate 134 
response variable and compared the factors associated with COVID-19 transmission versus those 135 

associated with COVID-19 CHR. Our framework explicitly captures the spatial variation in the 136 
modeled relative associations through a variable transformation procedure (discussed in detail in 137 
the methods section). The study was conducted for 48 states in the U.S. for the period between 138 
April 19th, 2021, the date at which the vaccines were approved for all adults in the U.S., to March 139 
1st, 2022. This period covers the pre-Delta (characterized by the predominance of the Alpha 140 
variant and other variants), Delta, and Omicron waves of COVID-19, which are each evaluated 141 
independently. To distinguish between COVID-19 variant-driven waves, we utilized SARS-142 

CoV-2 genomic surveillance data and identified the dominant variant for each state and point in 143 
time, to determine time windows so the distinct variant-driven waves can be modeled 144 
independently. For the Omicron wave, we also considered the added benefit of booster doses on 145 
COVID-19 health outcomes. Specifically, we evaluated the interaction between the completed 146 
primary series and booster rate on reducing COVID-19 CHR. Results from this analysis help 147 
improve our understanding of the real-world relative impact of the available COVID-19 vaccines 148 

against COVID-19 CHR at the population-level over time, and can help inform future public 149 
health policies to reduce harm.  150 

 151 

2.2 Data sources and collection 152 

We collected state-level time-series data and static variables from publicly available databases. 153 
All time-series data were aggregated to the weekly level. A summary of the variables and their 154 

respective sources are listed in Table 1, and detailed explanations of each variable are provided 155 
in Appendix section 1.2. A 3-week moving average was applied to all time-series variables to 156 
mitigate the effects of potential noise and reporting issues, with the exception of the government 157 
policy index. 158 
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 159 
Table 1. Summary of dynamic variables in the model.  160 

Variable Name Variable Description  Source 

Output variables 

Case-hospitalization rate 
(CHR)  

Weekly new admissions of patient with confirmed 
COVID-19 normalized by reported cases for each 
state.   

[18], 
[19] 

Reported case-incidence rate 
(CIR) 

Weekly number of confirmed cases normalized by 
state population.    

[18] 

Dynamic input variables 

Partial vaccination rate Percentage of the total population that received at 
least one dose of COVID-19 vaccine approved or 
authorized for use in the United States. 

[20] 

Completed primary series rate Percentage of the population that received the second 
dose in a two-dose COVID-19 vaccines primary 
series or one dose of a single-dose COVID-19 
vaccine primary series approved or authorized for 
use in the United States. 

[20] 

Booster vaccination rate Percentage of the total population that received an 
updated (bivalent) booster dose. 

[21] 

Weekly testing rate Total number of weekly tests conducted for each 
state normalized by population. 

[22] 

Gym visits Number of weekly visits to gyms per person. [23,24] 

University visits Number of weekly visits to universities per person. [23,24] 

Physician visits Number of weekly visits to physicians per person.  [23,24] 

Government policy index Quantitative measure of government policies 
implemented in response to the COVID-19 
pandemic across various domains including health, 
social, and economic policies.  

[25] 

Previous infections Infections reported within a time window preceding 
the modeled output, e.g., sum from 4 to 16 weeks 
ahead of the output variables.  

[18] 

 161 
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 162 
Table 2. Summary of static variables in the model.  163 
Static input 
variables 
 

Description Mean St.d. Min Max Source 

Black 
proportion 

The proportion of the 
population identified as 
Black.  

0.112 0.019 0.006 0.378 [26] 

Social 
vulnerability 
index (SVI) 

The Social Vulnerability 
Index utilizes data from 
the U.S. Census to assess 
the relative level of social 
vulnerability in each 
census tract. By analyzing 
14 social factors, the SVI 
categorizes tracts into 
four closely interrelated 
themes and then 
aggregates them as a 
single indicator of social 
vulnerability. 
 

0.468 0.152 0.137 0.771 [27] 

Adults at 
high risk 

The proportion of the 
population over 18 years 
old is at high risk of 
serious illness if infected 
with Coronavirus. 

0.383 0.036 0.300 0.493 [28] 

Medicaid 
spending 

Total Medicaid spending 
in thousands of dollars for 
each state normalized by 
the population. 

1.807 0.550 0.860 3.099 [29] 

 164 

2.3 Dynamic variable transformation 165 

To ensure the precise estimation of each dynamic variable's impact, a variable transformation 166 
mechanism must be used to account for the effects of time trends in the data. For example, the 167 
completed primary series rate is always increasing with time for all locations modeled, hence it 168 
can be difficult to distinguish how much of the observed associations between vaccination rate 169 

and COVID-19 health outcomes are due to the variable interaction or the passage of time. 170 
Moreover, the main focus of this study lies in modeling spatial differences and considering 171 
location-specific variations that influence the observed associations. Consequently, we applied 172 
the following transformation to all dynamic variables to remove the time trend and redefine the 173 

relative variable (���
�): 174 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 29, 2023. ; https://doi.org/10.1101/2023.06.14.23291388doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.14.23291388
http://creativecommons.org/licenses/by-nc-nd/4.0/


���
�  �  

��
�

1
�

∑ ��
�

�

 

Where ���
� represents the transformed variable for state � at week 	, ��

�represents the original 175 

variable for state �  at week 	  without the transformation, 
�

�
∑ ��

�
�  represents the mean of the 176 

original variable at week 	, over all locations being modeled n, e.g., the national mean across the 177 

U.S. A ���
� larger than one indicates that state � has a higher variable value compared to the 178 

national mean at week t, while ���
� lower than one indicates that state � has a lower variable 179 

value compared to the national mean, at week t. After normalization, the final set of time-180 

dependent variables included in the analysis are: Relative case-hospitalization rates (�
���
�), 181 

relative reported case-incidence rate (�
���
�),  relative completed primary series rate (�
���

�), 182 

relative booster rate (����
�), relative weekly testing rate (�����

�), relative gym visits (����
�), 183 

relative physician visits (���
�), relative university visits (����

�), relative previous infection 184 

(���
�), and relative government policy (���

�). These newly transformed variables enable an 185 

explicit evaluation of the relative association between each of them and the COVID-19 health 186 

outcome of interest within a single multi-state model. Moreover, this variable transformation 187 
procedure facilitates assessing individual state's performance relative to national dynamics. It 188 
emphasizes evaluating the expected outcomes when a state's performance diverges from the 189 
national average. 190 
The dynamic variables, with and without variable transformation, are visually depicted in 191 

Appendix figure S2. Among all the variables, the rankings of �
���
� remain relatively stable 192 

across time, as seen in Appendix figure S2b2. This stability indicates a more consistent spatial-193 
temporal pattern of variation among vaccination rates across states. On the other hand, all other 194 
dynamic variables exhibit more noticeable spatial ranking changes over time. The changing 195 
spatial-temporal rankings of other dynamic variables highlight the importance of considering 196 

spatial differences through time and evaluating their influence on COVID-19 health outcomes. 197 

2.4 Statistical analysis 198 

The generalized additive model (GAM) was selected as the statistical model for this analysis 199 
because of its ability to capture complex and nonlinear relationships between the set of 200 

covariates and the outcome variables of interest in each state. We independently model each 201 
variant-driven wave during the study period to allow for different driving factors for different 202 
variants. To define the variant waves, we clustered each state-week pair based on the dominant 203 
circulating variant based on SARS-CoV-2 genomic surveillance data downloaded from GISAID 204 
[30]. The three waves are classified as: 1) Pre-Delta Wave, 2) Delta Wave, 3) Omicron Wave, 205 
and each state is labeled with its most dominant variant each week to define the windows. 206 
Details of this classification are described in Appendix section 1.1, and the assignment of state-207 

week pairs is shown in Appendix figure S1.  208 
The primary set of models treat weekly state-level RCHR as the response variable, with separate 209 
models generated independently for each variant wave, namely Pre-Delta-RCHR, Delta-RCHR, 210 
and Omicron-RCHR. These three models have the form: 211 
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 213 
Where � represents the intercept, "� represent the parametric coefficients of each static variable, 214 

and ! are spline smooth functions of the relative dynamic variables. Additionally, a model is 215 

constructed for the Omicron wave, incorporating an interaction between completed primary 216 
series and booster rate (Omicron-Booster-RCHR). The Omicron-Booster-RCHR has the form: 217 
 218 

�
���
�  �  �������, �� 

log��� �  �   !���
���
���, ����

����  !�������
����   !������

����   !	����
���� 

 !
�����
����   !�����

����   !�����
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     "������   "��Adults at high risk�   "	�Medicaid spending�   
 219 

Where !� represent a smooth interaction function between �
���
��� and ����

���. For all the 220 

mentioned models above, the weekly state-level RCHR is assumed to follow a Gamma 221 

distribution with a log link. This choice of the Gamma family accounts for the positively skewed 222 
distribution of the outcome variable. We use thin plate regression splines as the smoothing basis 223 
for all ! and set the basis dimension to three to maximize the interpretability of the models. The 224 

basis dimension refers to the maximum possible complexity of each smooth term; a large basis 225 
dimension could overfit the data and result in highly non-linear relationships between input and 226 
outcome variables. 227 
To consider the sequential process of infection leading to hospitalization we introduce a time lag 228 
between each of the input variables relative to the outcome variable, which is denoted by the 229 

superscript. The timeline of this model is introduced as follows: the modeled relative case-230 

hospitalizations rate ( �
���
� ), occur at time t. Infections resulting in hospitalization, are 231 

assumed to occur at time t-2, to account for a one week incubation period [31], and one 232 

additional week between symptoms onset and hospitalization [32]. Note, this timeline aligns with 233 
the definition of the CHR variable, which is normalized by the number of reported infections one 234 
week prior, which assumes a one week delay between when infection occurred and when it is 235 
reported. To accurately reflect the conditions presented at the time of infection, each of the 236 

variables related to vaccination (�
���
��� ), activity-related engagememnt levels (����

��� , 237 

���
��� , ����

��� ), policy (���
���), and testing (�����

��� ) are also lagged by two weeks 238 

relative to the case-hospitalization risk. Lastly, the past infections variable, defined as stated 239 
above to capture the role of recently acquired immunity from infection in protecting from severe 240 

disease upon reinfection, is equal to the total infection rate in the population summed over the 241 

prior 4 to 16 weeks. This time window is explicit in the definition of ���
� (see Appendix section 242 

1.2).  243 
A secondary set of analogous models treats RCIR as the response variable, namely the Pre-244 

Delta-RCIR, the Delta-RCIR, the Omicron-RCIR, and the Omicron-Booster-RCIR. The first 245 
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three models adopt the same form as equation (1), while the Omicron-Booster-RCIR follows the246 
same form as equation (2). To account for the sequential process leading to infections, all lags247 
between dynamic covariates, and RCIR have been reduced by one week. This results in eight248 
models, with four models fit to RCHR, and four models fit to RCIR. The exact formulation of249 

models with RCIR as outcome variable are documented in Appendix section 2.6. 250 
The selection of covariates for each model relies on correlation-based feature selection, taking251 
into account both Pearson’s correlation between variables and the concurvity measures derived252 
from GAMs. Details regarding feature selection can be found in Appendix sections 2.1 and 2.2.253 
The impact of each dynamic variable is quantified by computing the Accumulated Local effects254 
(ALE) of each smooth term on outcome variables. The local effect refers to the change in model255 

output when a particular input feature is changed while keeping all other features constant. The256 
ALE method aggregates the local effects of each input feature across its entire range. By257 
accumulating these local effects, we gain insight into how changes in each input variable258 
influence the outcome variable across its entire range. Data processing, visualization, and259 
analysis were carried out using R 4·0 and Python 3·8. 260 
 261 

3. Results 262 

3.1 GAMs analysis for the relative case-hospitalization rate (RCHR) as the outcome 263 
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Figure 1: Results for the Pre-Delta-RCHR (Blue), the Delta-RCHR (Orange), and the Omicron-265 
RCHR (Red). a-g: Accumulated local effects (ALE) of dynamic variables. Shaded areas in each 266 
plot indicate 95% confidence intervals. h-k: Estimated slopes for each static variables, the upper 267 
and lower band indicate 95% confidence intervals. l: Deviance explained for each model. ‘***’: 268 

variable significant at p<0.001. ‘**’: variable significant at p<0.01. ‘*’: variable significant at 269 
p<0.05. ‘’: variable significant at p>0.05. 270 

In our analysis, we evaluated goodness-of-fit based on several metrics. For models with relative 271 
case-hospitalization risk (RCHR) as the outcome variable, the deviance explained ranges 272 

between 46.8% and 72.3% (Figure 1l) for each variant wave. Moreover, we assessed the 273 
correlation between observed RCHR and predicted RCHR, which exhibited strong positive 274 
correlations ranging from 0.67 to 0.81 (Appendix section 3.1). These findings provide 275 
compelling evidence of the models' effectiveness in capturing and predicting the case-276 
hospitalization rate. 277 

The relative completed primary series rate, and relative previous infections consistently 278 

displayed strong negative associations with RCHR across different waves (Figures 1a and 1b). 279 
Of particular note is that relative previous infections consistently ranked the highest in terms of 280 
ALE across the different waves. Figure 1c reveals the impact of the relative government 281 
response index gradually flattening out from the pre-Delta to the Omicron wave. Regarding 282 

activity-related engagement levels, their effects on RCHR appear inconsistent across different 283 
waves, as exemplified by the relative physician visits, which slightly changed from negative to 284 
positive effects as the analysis progressed from the pre-Delta to the Omicron wave (Figure 1e). 285 
Lastly, the relative weekly testing rate served as a control variable to address the state-level 286 
differences in testing rates. The result revealed a negative correlation between the relative 287 
weekly testing rate and RCHR. Nevertheless, it is noteworthy that this association exhibited a 288 
decrease from the pre-Delta wave to the Omicron wave, as illustrated in Figure 1g.  289 

Regarding the static variables, adults at high risk exhibited a declining positive association with 290 
RCHR. Additionally, states with higher Social Vulnerability Index (SVI) consistently showed 291 
higher RCHR. Among racial groups, the proportion of Black positively associated with RCHR 292 
during the Pre-Delta wave but did not exhibit a significant impact since the Delta wave. With 293 

healthcare systems variables, Medicaid spending per person consistently showed a negative 294 
association with RCHR. 295 

 296 
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297 

Figure 2: Results of Omicron-Booster-RCHR for just the Omicron wave with the additional298 
inclusion of an interaction effect between the relative completed primary series rate and the299 
relative booster rate. a: Two-dimensional contour plot for the interaction between relative300 
completed primary series rate and relative booster rate. The deeper red indicates a more positive301 

effect on the RCHR, and the deeper blue indicates a more negative effect to the RCHR. b-g:302 
Accumulated local effects (ALE) of dynamic variables. Shaded areas in each plot indicate 95%303 
confidence intervals. h: Estimated slopes for each static variables, the upper and lower band304 
indicate 95% condifence intervals. ‘***’: variable significant at p<0.001. ‘**’: variable305 
significant at p<0.01. ‘*’: variable significant at p<0.05. ‘’: variable significant at p>0.05. 306 

With the exception of the completed primary series rate, the effects of all other variables307 

modeled in the Omicron-Booster-RCHR remained consistent with the results for the Omicron-308 
RCHR shown in Figure 1. Figures 2a show the interaction between two vaccine-related variables309 
in a two-dimensional variable space. The solid black lines represent the contour lines. The310 
contour lines correspond to points that have an equivalent impact on the hospitalization rate, with311 
the values marked on each line indicating the actual interaction effect of these points on the312 

RCHR. Figure 2a reveals that the RCHR decreases along the direction of increasing the relative313 
booster rate and the relative completed primary series rate.  314 

 315 
3.2 GAMs analysis for the relative reported case-incidence rate (RCIR) as the outcome 316 
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317 

Figure 3: Results for the Pre-Delta-RCIR (Blue), the Delta-RCIR (Orange), and the Omicron-318 
RCIR (Red). a-g: Accumulated local effects (ALE) of dynamic variables. Shaded areas in each319 

plot indicate 95% confidence intervals. h-k: Estimated slopes for each static variables, the upper320 
and lower band indicate 95% condifence intervals. l: Deviance explained for each model. ‘***’:321 
variable significant at p<0.001. ‘**’: variable significant at p<0.01. ‘*’: variable significant at322 
p<0.05. ‘’: variable significant at p>0.05. 323 

The GAMs using relative reported case-incidence rate (RCIR) as the outcome variable324 

consistently demonstrate lower performance than those GAMs with RCHR as the outcome325 
variable. Specifically, all GAMs for RCIR have deviance explained values below 40%, and326 
correlations between observed RCIR and predicted RCIR range from 0.43 to 0.61 (Appendix327 
section 3.2). The observed performance pattern indicates a more intricate and dynamic328 
relationship concerning COVID-19 transmission, particularly evident during the Omicron wave.  329 

Figure 3a illustrates a strong negative association between the relative completed primary series330 
rate and RCIR during the Pre-Delta and Delta waves. However, this association vanished during331 
the Omicron wave, coinciding with a decline in model performance (Figure 3l). The ALE plot of332 
the relative previous infection rate (Figure 2b) revealed an insignificant association between333 
previous infection and RCIR during the pre-Delta and Delta waves but a significant negative334 

association during the Omicron wave. Additionally, when the relative government policy index335 
is greater than one, the ALE plots demonstrate a negative trend; however, the magnitude of this336 
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effect is relatively smaller compared to other dynamic variables examined in the analysis.337 
Similar to GAMs for RCHR, the activity-related engagement levels exhibited inconsistent338 
patterns across different waves. Notably, the ALE of relative university visits reverses direction339 
from negative to positive between the pre-Delta wave and the later two waves.  340 

For the static variables, adults at high risk were consistently positively associated with RCIR341 
across different waves. However, the other static variables, including racial groups, SVI, and342 
healthcare expenditures, do not show a consistent or significant impact across different waves. 343 

Figure 4 illustrates the results of the Omicron-Booster-RCIR for just the Omicron wave with the344 

additional inclusion of an interaction effect between the completed primary series rate and the345 
relative booster rate. This interaction effect is presented as a dimension contour map in figure 4a.346 

347 

Figure 4: Results of the Omicron-Booster-RCIR for just the Omicron wave with the additional348 

inclusion of an interaction effect between the relative completed primary series rate and the349 
relative booster rate. a: Two-dimensional contour plot for the interaction between relative350 
completed primary series rate and relative booster rate. b-g: Accumulated local effects (ALE) of351 
dynamic variables. Shaded areas in each plot indicate 95% confidence intervals. h: Estimated352 
slopes for each static variables, the upper and lower band indicate 95% condifence intervals.353 
‘***’: variable significant at p<0.001. ‘**’: variable significant at p<0.01. ‘*’: variable354 

significant at p<0.05. ‘’: variable significant at p>0.05. 355 
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The incorporation of the relative booster rate does not result in an improvement in the model fit; 356 
the deviance explained for Model Omicron-Booster-RCIR remains at 17%. As depicted in Figure 357 
4a, it is evident that only states with both a high relative completed primary series rate and a high 358 
relative booster rate exhibits a slightly negative impact, approximately -0.1, on the RCIR. The 359 

findings from Model Omicron-RCIR, when combined with Omicron-Booster-RCIR, suggest that 360 
the covariates examined in this study do not contribute significantly to explaining the variation in 361 
RCIR during the Omicron wave. These results highlight the need for further research to identify 362 
other factors that may better capture the dynamics of COVID-19 transmission during this 363 
specific period. 364 

 365 

4. Discussion 366 

This analysis aims to characterize the relationship between population-level COVID-19 vaccine 367 
administration and pandemic-induced healthcare burdens, taking into account essential and 368 
confounding real-world processes. Our results point to three significant conclusions: 369 

• Population-level vaccination is always significantly associated with reduced COVID-19 370 

case-hospitalization risk. 371 

• Increased recent (1-4 months prior) infections are also consistently and strongly 372 

associated with reduced case-hospitalization risk. 373 

• Local factors, activity-related engagement levels, and policy measures are important to 374 

the model’s explanatory power, supporting the importance of considering these factors on 375 
population-level outcomes. However, their associations are inconsistent over time and 376 
across different variants. 377 

Each of these conclusions is explained in more detail in the sections below. In each section, we 378 

discuss the findings regarding case-hospitalization risk and compare them with the results related 379 
to the reported case incidence rate. In general, our results strongly support the importance of 380 
population-level vaccination and align with extant research on the role of acquired immunity in 381 
reducing severe outcomes. However, it should be noted that the case incidence rate has a reduced 382 
association with vaccination during the Omicron wave and much less consistently meaningful 383 
associations with previous infection rates. Additionally, our analysis reflects the complexity of 384 

the evolution of human behavior during the pandemic, given the dynamic role of activity-related 385 
engagement levels and policy. It also supports the recognition of the epidemiological 386 
vulnerability of socially and economically underserved communities. 387 

4.1 Vaccines protect against COVID-19 case-hospitalization risk for pre-Delta, Delta and 388 

Omicron waves 389 

Our study reveals a strong and statistically significant association between vaccine uptake rates 390 
and reduced COVID-19 case-hospitalization risk. This relationship was consistent across each of 391 
the variant waves modeled, and is consistent with earlier findings that vaccine protection against 392 

severe illnesses does not significantly wane in response to new variants. In contrast, when we 393 
modeled reported case-incidence rates as the response variable, we observed a decreasing effect 394 
of vaccines from the pre-Delta to the Omicron wave (Figure 3a). This outcome aligns with 395 
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existing literature highlighting the rapid waning of the vaccines’ effectiveness against infection 396 
[33,34]. Nonetheless, while vaccines may offer reduced protection against infection, our results 397 
indicate that they continue to provide substantial protection against hospitalization risk and help 398 
alleviate the burden on healthcare systems. Additionally, although the value of booster shots for 399 

protection against severe cases of COVID-19 is still being studied [35], results from our analysis 400 
provide evidence supporting the effectiveness of booster doses against hospitalization risk 401 
caused by the Omicron variant (Figure 2). Conversely, the findings obtained from our Omicron-402 
Booster-RCIR model reveal that the interaction between the booster and completed primary 403 
series rates has a relatively limited impact on Omicron infection (Figure 4). However, it is 404 
crucial to emphasize that despite the diminished effectiveness of mRNA boosters against 405 

Omicron infections, vaccines still serve the essential purpose of reducing the harm of COVID-19 406 
in the face of emerging variants. 407 

4.2 Immunity from recent infection protects against COVID-19 case-hospitalization risk upon 408 
reinfection 409 

Higher past COVID-19 infection levels in a population are associated with a decrease in 410 
COVID-19 case-hospitalization risk, indicating immunity gained from infection can provide 411 
some protection against severe disease in the event of reinfection in the future, but only for a 412 
limited period of time. Our study utilized the total number of cases reported in a 12-week 413 

window, ranging from 4 to 16 weeks prior to the time period modeled, as a proxy for recently 414 
acquired immunity, and found a strong negative association between the previous infection rate 415 
and future case-hospitalization risk. These results were consistent across the different variant 416 
waves. This finding aligns with other case-control studies that found previous infections showed 417 
strong effectiveness against severe, critical, or fatal COVID-19 [6,36]. Our analysis indicates that 418 
prior infections from up to 6 months ahead are associated with decreased hospitalization risk, but 419 
4 to 16 weeks has the strongest effect (see Appendix sections 2.4 and 2.5 for this sensitivity 420 

analysis). While the waning of natural immunity has been established in molecular and clinical 421 
research [37], our analysis provides additional insight at the population-level. In our models with 422 
case-incidence rate as the outcome variable, we found an insignificant association between 423 
previous infection and case-incidence rate during the pre-Delta and Delta waves. However, 424 
during the Omicron wave, there was a significant negative association (Figure 3b). This finding 425 
contrasts with existing literature that found, at the individual level, previous infection protected 426 

against infection pre-Omicron, but this effectiveness decreases substantially during the Omicron 427 
wave [38]. Nevertheless, at the population level, the number of infected individuals is 428 
considerably higher during the Omicron wave than earlier, while a smaller proportion remains 429 
susceptible. Consequently, the cumulative impact of previous infections becomes more 430 
pronounced. These results highlight that previous infections have a variable and inconsistent 431 
impact on reinfection at the individual and population levels. 432 

4.3 Local factors contribute to variation in COVID-19 health outcomes 433 

Existing clinical and statistical studies [14,16,17] have identified critical indicators for COVID-434 

19 health outcomes including demographics, comorbidities, social vulnerability index (SVI), and 435 
healthcare expenditures. Results from our model using RCHR as outcome variables indicate that 436 
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the SVI is positively associated with COVID-19 case-hospitalization risk across all variant 437 
waves (Figure 1i). This finding is consistent with existing literature [14,17], which suggests that 438 
individuals from socially vulnerable regions are more likely to experience harmful COVID-19 439 
outcomes. For each new variant wave, the proportion of adults at high risk was less associated 440 

with case-hospitalization risk than for the prior wave (Figure 1h). This result aligns with a cohort 441 
study that the hazard ratio of hospital admissions with the Omicron variant, compared to the 442 
Delta variant, showed a more significant drop in the elder age group compared to individuals 443 
younger than 20 [39]. Our results reveal an insignificant association between black proportion 444 
and case-hospitalization risk during the Delta and Omicron waves, which differs from previously 445 
identified positive associations across all waves [14]. In the United States, the eligibility for 446 

Medicaid varies by state, but generally, individuals and families with incomes up to 138% of the 447 
federal poverty level may qualify for coverage [40]. Our results reveal a consistent negative 448 
association between state-level Medicaid spending per person and COVID-19 case-449 
hospitalization risk (Figure 1k), which indicates the potential protective effect of healthcare 450 
expenditures in mitigating the impact of the pandemic on vulnerable groups.  In contrast to the 451 
case-hospitalization risk models, the case-incidence rate models indicate that there is no evidence 452 

for consistent or significant associations with demographics, SVI, or healthcare expenditures 453 
across variant waves, except for adults at high risk consistently positively associated with case-454 
incidence rate (Figure 3). These results suggest that dynamic COVID-19 infection risk is 455 
complex and changes over time, and the factors contributing to transmission vary across waves. 456 
Further research is needed for a more comprehensive understanding of the complex and evolving 457 
nature of COVID-19 transmission.  458 

4.4 Activity-related engagement levels are associated with COVID-19 health outcomes 459 

At the beginning of the pandemic, several studies evaluated the association between mobility and 460 
COVID-19 transmission with inconsistent findings [41,42]. One possible reason for this 461 

inconsistency is that aggregated mobility data may not accurately reflect the risk of dynamically 462 
changing human behaviors, given that a minority of travel activities could be accountable for a 463 
significant majority of infections [43]. Furthermore, the connection between mobility and 464 
harmful health outcomes remains unclear. Our study uses disaggregated mobility patterns to 465 
capture diverse behaviors between populations, specifically relative activity-related engagement 466 
levels, to explore the association between these variables and COVID-19 severity. To achieve 467 

this, we divided activities into subcategories based on their purpose. University visits were used 468 
to represent school-related activities, gym visits to signify high-risk indoor activities, and 469 
physician visits to indicate healthcare-related visits.  470 

Results shown in Figure 1d indicate that the state-week pairs with relatively higher gym visits 471 

are expected to observe higher case-hospitalization risk during the Pre-Delta wave. However, 472 
this association did not reach statistical significance during the Delta and Omicron waves. In 473 
contrast, when we modeled the case-incidence rate as the outcome variable, our analysis revealed 474 
a minor effect of gym visits, as shown in Figure 3d. The positive impact of gym visits during the 475 
Pre-Delta wave may be linked to infections among unvaccinated individuals engaging in indoor 476 
activities. It is supported by existing research that unvaccinated individuals have a 2.6 times 477 
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higher likelihood of contracting SARS-CoV-2 than vaccinated individuals during indoor 478 
activities [44]. Moreover, unvaccinated individuals exhibit a higher likelihood of hospitalization  479 
[45], leading to a strong positive association between gym visits and case-hospitalization risk 480 
during the initial phases of vaccination distribution. In addition to indoor activity, we also 481 

observed a significant association between case-hospitalization risk and overall visits to hospitals, 482 
medical centers, and Outpatient Care Centers. Unlike indoor activity, this association 483 
transitioned from negative to positive between the pre-Delta to Omicron wave. One possible 484 
explanation for this finding is that as the pandemic evolved, the public became more familiar 485 
with the disease and more tolerant of at-home symptom management; thus, those COVID-19 486 
patients that sought medical care were more likely to be those with more severe symptoms. 487 

Finally, visits to the university were found to have a relatively minor impact on case-488 
hospitalization risk. We hypothesize that this is due to the young and relatively healthy 489 
demographic that frequents visiting schools, while still vulnerable to contracting the SARS-CoV-490 
2 virus, they are less likely to experience severe outcomes from COVID-19 infection. This 491 
hypothesis is further supported by the findings from the case-incidence rate model, which 492 
identified a positive association with university visits during the Delta and Omicron waves 493 

(Figure 3d). It is worth noting that during the Pre-Delta wave, school visits negatively impacted 494 
the case-hospitalization risk. However, this impact changed to a positive association for the later 495 
waves. These observations align with existing research, which has demonstrated that the younger 496 
population exhibits the highest increase in susceptibility to the Delta variant compared to the pre-497 
Delta variant [46]. 498 

4.5 More stringent government public health policy is associated with reduced COVID-19 499 

case-hospitalization risk 500 

Our results indicate that more stringent government policies were associated with reduced 501 
COVID-19 case-hospitalization risk during the Pre-Delta and Delta wave. This is consistent with 502 

previous studies [47]. In particular, we found that state-week pairs with a significantly high 503 
government response index (indicating stricter policy) have a stronger negative effect on the 504 
case-hospitalization risk (Figure 1c). However, this negative effect decreased over time, and was 505 
least evident during the Omicron wave. The reduced effect of the policy during Omicron is likely 506 
due to a complex combination of factors, including the increasing population level immunity 507 
from both widespread adoptions of vaccines and prior exposure providing more protection from 508 

severe disease during this period, combined with a reduction in the government's response to the 509 
pandemic over time.  510 

Additionally, weekly testing rates were shown to be negatively associated with case-511 
hospitalization risk. While this result does not imply a causative relationship between testing rate 512 

and COVID-19 severity, there are various reasons why testing rates may be linked to case-513 
hospitalization risk. Firstly, it represents a proxy input feature to capture the level of healthcare 514 
infrastructure available to a population. Second, it directly impacts the reported case incidence 515 
rate, as the number of reported cases in a region is a direct function of local testing availability, 516 
thus increased testing will lead to higher reported case rates, and lower case-hospitalization risk. 517 
Third, increased testing can lead to more cases being identified, and thus impact people’s 518 
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awareness and behavior during an outbreak. For these reasons testing rate is included as a 519 
potential control factor in our model. 520 

 521 

4.6 Limitations 522 

As with all modeling studies, this work is subject to several limitations. Firstly, this study was 523 

primarily designed to determine the association between various potential risk factors and 524 
COVID-19 outcomes, rather than to establish causality between these variables. Thus, our 525 
findings may reflect the role of unobserved confounding factors excluded from our study. 526 
Another potential limitation is due to the application at the state-level. The aggregation of the 527 
data to the state-level is unable to capture the heterogeneities of the communities within each 528 

state, and it is possible that different associations exist at the local level, than are identified at the 529 
state-level. Additionally, while we believe the use of the case-hospitalization risk in a given state 530 
at a given time is a plausible choice as a proxy for disease severity at an individual-level, and 531 
captures the burden on the healthcare system at a population-level. However, it is subject to 532 
variable case reporting and data quality across states, which may arise due to uneven testing 533 
capacity, reporting delays or at-home testing. Lastly, it is important to acknowledge that our 534 

variable transformation, while facilitating a deeper understanding of relative changes, does come 535 
with the inherent consequence of diminishing the original meaning these variables initially 536 
conveyed.  537 

5. Conclusions 538 

This research utilizes publicly available real-world data to provide robust evidence of the 539 
efficacy of vaccines against COVID-19 case-hospitalization risk across various variant waves in 540 
the United States. More importantly, this paper concludes that booster shots offer additional 541 
protection against severe COVID-19 during the Omicron waves. Despite the emergence of new 542 
variants, vaccines remain the most effective intervention for mitigating the harm of COVID-19 543 

and reducing burden on healthcare systems. Therefore, given the ongoing threat posed by 544 
COVID-19 and its potential variants, vaccines continue to be the best line of defense for 545 
protecting public health and preventing the further spread of the virus. 546 
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 746 

1. Supplementary Data 747 
1.1 Preprocessing of genomic data 748 
All genomic data were collected from GISAID [1] on October 27th, 2022. GISAID is a publicly accessible repository749 
of dataset that sharing of genomic data on various pathogens, including influenza and COVID-19. We analyzed the750 
available set of sequences, to determine the proportion of each variant theoretically in circulation. Specifically, we751 
calculated the proportion of each variant for each week in each state from March 1st, 2021, to March 1st, 2022. To752 
identify the most dominant variant for each state-week pair during the analyzed period, we labeled the state-week753 
pairs based on the variant with the highest proportion. This enables us to track the dominant variant in each state and754 
cluster the state-week pairs based on the most dominant variant. The assignment of state-week pairs is shown in755 
Appendix figure S1 below: 756 

 757 

758 

 759 

Appendix figure S1: State-week group assignment based on the dominant variant. The x-axis represents each week,760 
the y-axis represents each state, and the color represents the assignment of each state-week pair. 761 
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 762 
 763 
 764 
 765 
 766 
 767 
1.2 Variables description 768 
Outcome variable 769 

Case-hospitalization risk: In this study we used case-hospitalization risk (����
�) as the outcome variable of interest 770 

for our model. COVID-19 case-hospitalization risk represent both the severity of COVID-19 disease at an individual 771 
level and the burden it places on the healthcare system. Case-hospitalization risk (C���

�) for each state � and week � 772 
is defined as follow: 773 

����
� �  

�
�

�

�
�

���
, 774 

where ��
� is the number of hospitalizations for state � and week � and ��

��� is the number of confirmed cases for 775 
state � and week � � 1. We applied a one-week lag between reported confirmed cases and hospitalizations to account 776 
for the time between symptom onset and hospital admission [2]. Weekly state-level ����

�  was treated as the 777 
outcome variable in this analysis and served as an indicator for the burden of COVID-19 risk for a given time and 778 
location.  779 
 780 
Dynamic Covariates 781 

Vaccination rate: In this analysis, the weekly cumulative COVID-19 vaccination rate is the primary variable under 782 
examination, as we hypothesize it to be a critical determinant in protecting populations against severe COVID-19 783 
disease. The completed primary series rate was chosen over the partial vaccination rate because it represents the 784 
recommended dosage by the U.S. CDC. To address the fact that vaccine eligibility was not available to all U.S. 785 
adults until April 19th, 2021, we also ran the model using the partial vaccination rate for the pre-Delta waves, and the 786 
results are consistent with the completed primary series rate (results are presented in Appendix section 2.3). As 787 
booster shots became widely available during the Omicron wave, we also include the booster vaccination rate as a 788 
covariate to investigate its potential impact on COVID-19 health outcomes. Due to errors and anomalies in the data, 789 
the vaccination data excludes West Virginia and New Hampshire, while the booster vaccination data excludes West 790 
Virginia, New Hampshire, and North Carolina. As a result, West Virginia and New Hampshire are excluded from all 791 
analyses, and North Carolina is excluded from the booster analysis for the Omicron wave.  792 

Activity-related engagement level: We adapted multiple mobility-derived metrics from a previous study [3] to 793 
represent destination-specific travel behaviors and activity-related engagement levels for specific types of activities, 794 
namely gym, university, and physician visits. Specifically, the engagement levels represent the weekly number of 795 
visits to a given destination of interest per person per week. This variable allows us to compare the relative 796 
frequency of visits to each point of interest across states and to investigate their potential impact on COVID-19 797 
health outcomes. The metrics were generated based on anonymized mobility data from Safegraph [4], which tracks 798 
the number of visits to different types of destinations for a sample of the population at the census tract level in the 799 
U.S. Examples of destinations include full-service restaurants, gyms, and grocery stores.  The original Safegraph 800 
dataset includes over 20 destination categories; thus, to reduce the complexity of the model we identified a smaller 801 
representative set of destinations to include as input in the final model. This was accomplished by first organizing 802 
the destination categories into six distinct destination groups based on the first two digits of the NAICS code [5], 803 
namely Retail Trade (44-45), Education Services (61), Healthcare and Social Assistance (62), Arts, Entertainment, 804 
and Recreation (71), Accommodation and Food Services (72), and Other Services (81). From each group, we 805 
selected one destination category as the representative variable for the group based on the correlations between other 806 
variables within the group (Details are documented in Appendix section 1.4). Subsequently, we conducted a model 807 
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selection process to identify the most appropriate subset of mobility variables from these six to be included in the 808 
final model based on concurvity and significane level (details are documented in Appendix section 2.2).  809 

Previous infection rates: Several studies have demonstrated the effectiveness of previous infections against 810 
reinfections and severe COVID-19 outcomes. Studies have illustrated that individuals retain a substantial level of 811 
natural immunity for six months after infection [6–8]. To attempt to account for the role of recently acquired 812 
immunity from infection in protecting from severe disease upon reinfection in our study we generate a variable to 813 
represent the total population infected and recovered within a recent window, i.e., the total infections reported 814 
between weeks (t-16) and (t-4), which allows for time to recover and build up immunity [9] by the time period t at 815 
which the hospitalizations are modeled, but short enough that immunity has not waned. These specific prior 816 
infections variable (
��

�), requires multiple parameters, namely the length of the interval that infections are summed 817 
over and the start and end period of the window. To identify the best window and evaluate the sensitivity of our 818 
analysis to the chosen window length, start and end time, we conducted a sensitivity analysis. The time window with 819 
the largest deviance explained in the GAMs was selected for the final model, which was a three-month window 820 
ranging from 4 to 16 weeks prior to time t. Additional details of this sensitivity analysis and the results are included 821 
in Appendix section 2.4. The mathematical formulation of this metric is defined as follows: 822 


��
�  �  

∑ ��

����
�:���


��
  

where 
��
� represents cumulative infection rate for state � from 16 to 4 weeks prior of week t, ��

�  is the weekly 823 
confirmed cases for state � at week �, and �� is the population for state �. The sum in the numerator defines the 824 
summation of ��

�  for the � � 16 to � � 4 weeks prior to t.  825 

Government policy: The stringency and timing of implementing government policies to mitigate the impacts of 826 
COVID-19, such as school closure, cancellation of public events, and international travel controls, are associated 827 
with different measures of epidemic severity [10]. We selected the government response index from Oxford 828 
Coronavirus Government Response Tracker (OxCGRT) [11] as our indicator for government policy. The index 829 
tracks the diversity of government responses across various policies, ranging from containment measures and 830 
closures to healthcare systems, vaccination strategies, and economic policies. This index reflects the government’s 831 
response level with a number ranging from 0 to 100, the larger the number, the more substantial the response. It is 832 
available for all 50 states in the U.S. at a weekly timescale for the entire period of analysis.  833 

Weekly testing rate: The weekly testing rates were included in the model as a potential confounding factor for 834 
multiple reasons. Firstly, it represents a proxy input feature to capture the level of healthcare infrastructure available 835 
to a population. Second, it directly impacts the case-hospitalization risk through the denominator (i.e., total reported 836 
cases), as the number of reported cases in a region is a direct function of local testing availability, thus increased 837 
testing will lead to higher reported case rates, and lower case-hospitalization risk. For example, in two locations with 838 
the same true case-hospitalization risk (e.g., the likelihood of a COVID-19 infection needing admittance is equal), a 839 
location with twice as much testing will detect more cases, and therefore appear to have a lower case-hospitalization 840 
risk. Third, increased testing can lead to more cases being identified, and thus impact people’s awareness and 841 
behavior during an outbreak. For these reasons testing rate is included as a potential confounding factor in our model. 842 
We normalized the raw weekly total testing count by population to get the weekly testing rate.  843 

 844 
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845 
Appendix figure S2: Visualization of dynamic variales before variable transformation (a1 to h1) and after variable846 
transformation (a2 to h2).  For the y-axis label, the abbreviations signify the following variables: CHR: Case-847 
hospitalization risk, CPSR: Completed primary series rate, PI: Previous infection, GR: Government policy measure,848 
WTR: Weekly testing rate, UV: University visits, GV: Gym visits, PV: Physician visits.  849 
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Static Covariates 865 
Appendix table S1: Full list of static variables. 866 
Variable name Variable description  source 
Static variables 
Black 
proportion 

The proportion of the population identified as non-Hispanic Blacks. [13] 

Medicaid 
spending 

Total Medicaid spending in kilo for each state normalized by the population. [14] 

Healthcare 
spending 

Total Healthcare spending in kilo for each state normalized by the population. [15] 

Poverty rate Percentage of population living below poverty line.  [16] 
Social 
Vulnerability 
Index 

The Social Vulnerability Index utilizes data from the U.S. Census to assess the relative 
level of social vulnerability in each census tract. By analyzing 14 social factors, the SVI 
categorizes tracts into four closely interrelated themes and then aggregates them as a 
single indicator of social vulnerability. 
 

[17] 

HAQI IHME’s healthcare access and quality index. [18] 
Republican 
voters 

Percentage of a state’s voters who voted for the 2020 Republican presidential 
candidate.  

[19] 

Adults at high 
risk 

The proportion of the population over 18 years old is at high risk of serious illness if 
infected with Coronavirus. 

[20] 

Proportion over 
65 

Proportion of population age 65 and older. [20]  

 867 
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 891 
 892 
 893 
 894 
1.3 Preprocessing of mobility data 895 
The 21 mobility destination categories from Safegraph were organized into six distinct industry groups based on the 896 
NAICS code. The relevant groups per the NAICS code are Retail Trade (44-45), Education Services (61), 897 
Healthcare and Social Assistance (62), Arts, Entertainment, and Recreation (71), Accommodation and Food 898 
Services (72), and Other Services (81).2 The details of generating visits to each POI are documented in previous 899 
publication.  900 
 901 
Appendix table S2: Description of each industry group and the corresponding destination categories. 902 
Retail Trade (44-
45) 

Education 
Services (61) 

Healthcare 
and Social 
Assistance 
(62) 

Arts, 
Entertainment, 
and Recreation 
(71) 

Accommodation 
and Food Services 
(72) 

Other Services 
(81) 

Automotive Store 
(441310) 

Elementary 
School 
(611110) 

Office of 
Physician 
(621111) 

Parks (712190) Hotels (721110) Religious 
Organizations 
(813100) 

Hardware Store 
(444130) 

University 
(611310) 

Child Day 
Care (624410) 

Gym (713940) Full-Service 
Restaurant 
(722511) 

 

Grocery Store 
(445110)  

  Cafes, Snacks, Bars 
(722515) 

 

Convenience 
Store (445120) 

 

  Limited-Service 
Restaurant 
(722513) 

 

Pharmacies 
(446110) 

 

    

Gas Station 
(447110) 

 

    

Sporting Goods 
Store (451110) 

 

    

Department Store 
(452210) 

 

    

Other General 
Store (452319)  

    

Used 
Merchandise 
Store (453310) 

 

    

 903 
To reduce the complexity of the model, we selected one destination category as the representative variable for each 904 
industry group. For the industry groups with more than 3 destination categories, we conducted a Pearson’s 905 
correlation analysis and selected the variable that had the highest correlation to the other destination categories in 906 
each group. This method selected Gas Stations and Full-Service Restaurant from the Retail Trade (44-45) and 907 
Accommodation and Food Services (72) as the representative variable for each industry group. For the Educational 908 
Services (61) and Healthcare and Social Assistance (62) groups, we selected University and Office of Physician as 909 
the representative variables based on studies that indicated SARS-CoV-2 infection severity is lower in adolescents 910 
than adults.3 For the Arts, Entertainment, and Recreation (71) industry group, we selected Gym as the representative 911 
variable instead of Parks because studies have identified park use to have a minor effect on COVID-19 transmission 912 
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compared to other mobility destinations.4 Religious Organizations was selected from the Other Services (81)913 
industry group because it is the only destination category present. 914 

2. Supplementary Methods 915 
2.1 Static variables selection 916 
We selected state-level static variables that were found to have association with COVID-19 health outcomes in a917 
recent study [12]. These variables cover a ranging of different factors, such as socioeconomic indicators, racial918 
demographics, age, proxy for comorbidities, political factors, and state-level healthcare expenditures. Then, a919 
correlation analysis is performed within static variables to determine the suitable variables to be included in the920 
model. Full list of static variables included in the correlation analysis are listed in Appendix table S1.  921 

 922 

923 
Appendix figure S3. Pearson’s correlation heatmap between each pair of static variables.  924 
 925 

Based on the correlation analysis, the set of static variables to be incorporated into the models was determined. We926 
selected the black proportion as a representative variable for the race group and the SVI as a proxy for the927 
vulnerable population. The poverty rate was dropped due to its high correlation with SVI. Additionally, we selected928 
adults at high risk as a control variable for population-level comorbidities and dropped the proportion over 65. We929 
also decided to include Medicaid spending over healthcare spending as the state-level proxy for healthcare930 
expenditures. Lastly, we dropped the HAQI and Republican voters variables due to their high correlation with the931 
completed primary series rate. 932 

 933 
 934 
 935 
 936 
2.2 Dynamic variables selection 937 
The GAMs fit outcome variables with smoothed independent variables, allowing the nonlinear relationships938 
between input and output. However, the nonlinear variables smoothing sometimes can result in concurvity issues.939 
Concurvity occurs when some smooth term in a model could be approximated by one or more of the other smooth940 
terms, leading to inaccurate estimates of the effect for given variables. In this section, we conduct model selection to941 
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ensure the validity of our model and to detect and mitigate any concurvity issues that may arise, using mobility data 942 
selected from Appendix section 1.4 and other independent variables. The significance level and the concurvity for 943 
each variable for every model are reported in table S2 below: 944 
 945 
Appendix table S3: Significance level and concurvity for all dynamic variables. 946 
 Pre-Delta wave Delta wave Omicron wave 

Variable Signif Concurvity Signif Concurvity Signif Concurvity 

Relative completed primary series rate *** 0.71 *** 0.79 *** 0.81 
Relative previous infection rate (12 weeks) *** 0.62 *** 0.31 *** 0.41 

Relative full-service restaurant rate  0.82  0.81 * 0.86 
Relative gas station visits  0.91  0.85 ** 0.89 

Relative religious organization visits *** 0.84  0.84 ** 0.87 
Relative gym visits *** 0.69 ** 0.76  0.76 

Relative university visits * 0.80 *** 0.62 *** 0.64 
Relative office of physician visits *** 0.70  0.65 ** 0.68 

Relative weekly testing rate *** 0.81 *** 0.64 *** 0.57 

Relative government response index *** 0.78 *** 0.32  0.27 

Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  947 
 948 
The value of concurvity range from 0 to 1, the higher the concurvity the more a smooth variable can be 949 
approximated by the smooth of other variables. Specifically, a concurvity value above 0.8 generally signals the need 950 
for careful inspection of the model. Based on the results form table S3, we removed relative full-service restaurant, 951 
relative gas station, and relative religious organization visits from the model. This decision was based on their lack 952 
of significance and/or their high concurvity values. The equivalent results for selected variables are presented in 953 
table S3.  954 
 955 
Appendix table S4: Significance level and concurvity for selected variables. 956 
 Pre-Delta wave Delta wave Omicron wave 

Variable Signif Concurvity Signif Concurvity Signif Concurvity 
Relative completed primary series rate *** 0.63 *** 0.61 *** 0.60 

Relative previous infection rate (12 weeks) *** 0.59 *** 0.25 *** 0.35 
Relative gym visits *** 0.54  0.57  0.56 

Relative university visits  0.69 *** 0.49 *** 0.44 
Relative office of physician visits *** 0.66  0.60 ** 0.64 

Relative weekly testing rate *** 0.78 *** 0.51 *** 0.51 

Relative government response index *** 0.72 *** 0.26 * 0.23 

 957 
Significance codes: ‘***’: 0.001, ‘**’: 0.01, ‘*’: 0.05, ‘.’: 0.1, ‘’: > 0.1.  958 
The results from table S4 reveal that each variable exhibits a concurvity value below 0.8 and is significant in at least 959 
one out of three models. 960 
 961 
2.3 Robustness check of vaccination data 962 
We selected the completed primary series rate as the main vaccination variable in the main analysis. To assess the 963 
robustness and validity of our findings, we conducted additional analyses using different vaccination data 964 
(completed primary series rate, and partial vaccination rate) and varying starting dates (March 8th, 2021, and April 965 
19th, 2021) for the analysis. We applied our sensitivity analysis to Model Pre-Delta-RCHR, as it is the only ones that 966 
could be affected by the analysis. The results of four different combination of vaccination data and starting date for 967 
Model Pre-Delta-RCHR are shown in Appendix figure S4 below: 968 
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 969 
Appendix figure S4: Robustness check of vaccination rate with different vaccination data and varying starting date 970 
for Model Pre-Delta-RCHR. 971 
 972 
The finding from this robustness check demonstrated a strong and consistent impact of vaccination, independent of973 
the chosen vaccination data or the starting date of the analysis. This consistency suggests the robustness of our974 
results and highlights the robustness of the completed primary series rate as the main vaccination variable.975 
 976 
2.4 Sensitivity analysis of prior window length for previous infection 977 
In this section, we presented a sensitivity analysis to assess the impact of the prior window length for the previous978 
infection on our analysis. To ensure our results are robust, we fixed all other covariates and a lag of four weeks for979 
previous infections while varying the prior window length for previous infections from 12 to 24 weeks. The results980 
of this sensitivity analysis for each model are shown below: 981 
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Appendix figure S5: Comparison of accumulated local effects of the previous infection rate for Model Pre-Delta-983 
RCHR (a), Delta-RCHR (b), and Omicron-RCHR (c) with different prior window lengths (12, 16, 20 and 24 weeks).984 
 985 

 986 
 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 
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 997 
2.5 Sensitivity analysis of lags for previous infection 998 
This section presents a sensitivity analysis to assess the impact of the prior window length for the previous infection999 
on our analysis. To ensure our results are robust, we fixed all other covariates and a prior window length of 121000 
weeks for previous infections while varying the lag for previous infections from 4 to 16 weeks. The results of this1001 
sensitivity analysis for each model are shown below: 1002 

 1003 

1004 
Appendix figure S6: Comparison of the accumulated local effects of the previous infection rate for Model Pre-Delta-1005 
RCHR (a), Delta-RCHR (b) and Omicron-RCHR (c) with different lags (4, 8, 12, and 16 weeks). 1006 
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 1013 

2.6 GAMs with reported case-incidence rate (RCIR) as the outcome variable  1014 
These GAMs share the same framework as Model Pre-Delta-RCHR, Delta-RCHR, and Omicron-RCHR, while the 1015 
outcome variable is the reported case-incidence rate (RCIR). To account for the sequential process leading to 1016 
infections, all lags between dynamic covariates and RCIR have been reduced by one week. These three GAMs have 1017 
the form: 1018 
 1019 
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 1020 
Where � represents the intercept, &� represent the parametric coefficients of each static variable, and  � are spline 1021 
smooth functions of the relative dynamic variables. Additionally, a model is constructed for the Omicron wave, 1022 
incorporating an interaction between completed primary series and booster rate (Omicron-Booster-RCIR). The 1023 
model Omicron-Booster-RCIR has the form: 1024 
 1025 
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 1026 
Where  � represent a smooth interaction function between ��
!��

��� and �'��
���. For all the mentioned models 1027 

above, the weekly state-level RCHR is assumed to follow a Gamma distribution with a log link. This choice of the 1028 
Gamma family accounts for the positively skewed distribution of the outcome variable. We use thin plate regression 1029 
splines as the smoothing basis for all  � and set the basis dimension to three to maximize the interpretability of the 1030 
models.  1031 
 1032 
 1033 
 1034 
 1035 
 1036 
 1037 
 1038 
 1039 
 1040 

3. Supplementary Results 1041 
3.1 Models evaluation for GAMs with RCHR as outcome variable  1042 

 1043 
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1044 
Appendix figure S7: Model diagnostic plots for Model Pre-Delta-RCHR. The correlation coefficient between fitted 1045 
RCHR and predicted RCHR is 0.78.  1046 
 1047 
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1048 
Appendix figure S8: Model diagnostic plots for Model Delta-RCHR. The correlation coefficient between fitted 1049 
RCHR and predicted RCHR is 0.67.  1050 
 1051 
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1072 
 1073 
Appendix figure S9: Model diagnostic plots for Model Omicron-RCHR. The correlation coefficient between fitted 1074 
RCHR and predicted RCHR is 0.81.  1075 
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1096 
 1097 
Appendix figure S10: Model diagnostic plots for Model Omicron-Booster-RCHR. The correlation coefficient 1098 
between fitted RCHR and predicted RCHR is 0.83.  1099 
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3.2 Models evaluation for GAMs with RCIR as outcome variable  1118 

1119 
Appendix figure S11: Model diagnostic plots for Model Pre-Delta-RCIR. The correlation coefficient between fitted 1120 
RCHR and predicted RCHR is 0.57.  1121 
 1122 
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1142 
Appendix figure S12: Model diagnostic plots for Model Delta-RCIR. The correlation coefficient between fitted 1143 
RCHR and predicted RCHR is 0.61.  1144 
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 1164 
 1165 

1166 
Appendix figure S13: Model diagnostic plots for Model Omicron-RCIR. The correlation coefficient between fitted 1167 
RCHR and predicted RCHR is 0.43.  1168 
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 1188 
 1189 

1190 
Appendix figure S14: Model diagnostic plots for Model Omicron-Booster-RCIR. The correlation coefficient 1191 
between fitted RCHR and predicted RCHR is 0.44.  1192 
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