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Abstract 

Genome-wide association studies (GWAS) have uncovered genetic variants 

susceptible to brain disorders. However, due to the complex pathogenesis of these 

diseases and heterogeneity of the brain tissues, how and through which the genetic 

variants confer risk for brain abnormalities and brain disorders remain elusive, 

especially from a multi-omics perspective and in the context of brain regions. In this 

study, we integrated brain region-specific transcriptomics, proteomics, and imaging 

genetics data by systematically applying transcriptome- and proteome-wide 

association analysis, Mendelian randomization, and Bayesian colocalization methods. 

At both gene expression and protein abundance levels, this integrative study identified 

51 associations linking 42 targets to structural alterations of 10 brain regions. 

Additionally, we validated the causal effects of 20 identified genes on one or more brain 

disorders. Our analysis further illuminated the significant enrichment of 12 targets in 

five main types of brain cells. Overall, this study underscored the utility of a multi-omics 

and region-specific approach in understanding the pathogenesis of complex brain 

abnormalities and brain disorders. 
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INTRODUCTION 

Brain imaging biomarkers significantly contribute to early diagnosis of numerous brain 

disorders, such as Alzheimer's disease (AD) where brain changes can be observed 

years before clinical symptoms arise [1]. Advancements in high-throughput sequencing 

and imaging technologies have fostered the emergence of brain imaging genetics, a 

field exploring the impact of genetic variants on brain imaging quantitative traits (iQTs). 

Genome-wide association studies (GWAS) of brain iQTs have identified numerous 

susceptible genetic variants [2]. However, the molecular mechanisms underlying brain 

tissues and brain diseases are very complicated and cannot be exhaustively explained 

only from the genetics perspective. Many genetic variants exert effects by regulating 

gene expression and protein abundance, moreover, often in a tissue-specific manner. 

Yet, the cost and invasive nature of obtaining brain-specific omics data (e.g., 

transcriptomics and proteomics) presents challenges, especially for conducting large-

scale studies in the context of brain disorders. 

To address the aforementioned problem, recent efforts have been made to 

develop computational and statistical models to estimate the effects of gene 

expression on disease, by integrating expression quantitative trait locus (eQTL) data 

derived from small-size reference panel and summary statistics from large-scale 

GWAS. Transcriptome-wide association study (TWAS) [3] and Mendelian 

randomization (MR) [4] are two main types of approaches utilized extensively to 

discover causal genes implicated in complex diseases. A few studies have applied 

TWAS and/or MR methods as well as their variants and have reported numerous 

causal genes for complex diseases and traits, particularly brain disorders. For example, 

several studies [5–7] applied individual- or summary-based TWAS/MR approaches 

and identified a number of AD risk genes with brain regional specificity. Restuadi et al. 

[8] evaluated the effect of gene expression on Amyotrophic Lateral Sclerosis (ALS) 

using both summary-based MR (SMR) and TWAS, and identified GPX3 and TNIP1. 

Yang et al. [9] used the SMR approach and identified multiple genes across several 

brain regions with pleiotropic associations with major depressive disorder (MDD). 
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Recently, research efforts [10,11] have expanded from mRNA expression to protein 

abundance to discover therapeutic targets for brain diseases at the proteomic level. 

Few integrative studies have focused on investigating causal molecules for brain 

iQTs, and prior studies are mainly dedicated on exploring the molecular relevance 

within gene expression level. For example, Zhao et al. [12] employed UTMOST [13] to 

perform a cross-tissue TWAS analysis of 211 brain structural iQTs and reported 918 

significant gene-iQT associations. Similarly, Mai et al. [14] conducted S-PrediXcan [15], 

a TWAS method, to integrate brain tissue-specific transcriptomics data with brain 

imaging GWAS summary statistics for total brain volume and intracranial volume and 

discovered 10 associated genes. However, to our knowledge, no study has examined 

proteins associated with brain iQTs, despite mRNA and protein complementing each 

other and being both necessary for comprehensive brain understanding.  

To fill this gap, we aimed to uncover brain biomarkers and reveal the molecular 

mechanisms underpinning brain from a multi-omics perspective and in the context of 

brain tissues. We integrated brain tissue-specific transcriptomics, proteomics, and 

imaging genetics data by systematically applying TWAS, PWAS, MR and Bayesian 

colocalization. Particularly, we integrated brain structural meta-GWAS results from the 

Enhancing Neuroimaging Genetics through Meta Analysis (ENIGMA) consortium [16] 

with brain-derived QTLs and molecular weights computed from five cohorts, including 

the Religious Orders Study and Memory and Aging Project (ROSMAP), Mayo RNAseq 

Study (Mayo), NIMH Human Brain Collection Core (HBCC), the CommonMind 

Consortium (CMC) and MSBB for discovery. Genetic colocalization pointed towards 

the significant shared genetic underpinning between gene transcription and protein 

synthesis in the brain. Brain single-cell expression data was employed to examine the 

enrichment of identified genes in brain cell types. Finally, we validated the causal 

effects of candidates on brain disorders using GWAS summary statistics for five brain 

diseases. Figure 1 provides an overview of the analytical pipeline employed in our 

study. 
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MATERIALS AND METHODS 

Brian-derived QTLs and weights data 

We used four brain-derived datasets delineating relationships between genetic 

variants and corresponding genes/proteins, including meta-eQTL of the brain cortex, 

gene expression weights calculated from the neocortical region, pQTLs estimated from 

the dorsolateral prefrontal cortex (DLPFC), and protein abundance weights calculated 

from the DLPFC. Subsequent sections provide a detailed description of each dataset. 

Cortex meta-eQTL. The eQTL data were sourced from a large-scale brain eQTL meta-

analysis (N=1 433) [17]. Briefly, Sieberts et al. first generated cerebral cortical eQTL 

data from four individual cohorts, including ROSMAP and Mayo RNAseq Study (Mayo) 

from the Accelerating Medicines Partnership for Alzheimer’s Disease (AMP-AD) 

Consortium, and MSSM-Penn-Pitt study and NIMH Human Brain Collection Core 

(HBCC) from the CommonMind Consortium (CMC). They subsequently performed a 

meta-analysis using cortical eQTL results derived from ROSMAP DLPFC, Mayo 

temporal cortex, MSSM-Penn-Pitt and HBCC. We downloaded the meta-eQTL 

summary statistics from Synapse (https://doi.org/10.7303/syn16984815.1). This 

comprehensive cis-eQTL data included 100 080 618 SNP-gene expression pairs. A 

significant threshold of P-value < 5E-8 was employed, reducing it to 1 403 800 cis-

eQTLs included in the MR analysis. 

Neocortical gene expression weight. The TWAS weights across multiple neocortical 

regions were derived from the combined ROSMAP, Mayo, and MSBB cohorts [5]. A 

training dataset was constructed comprising 790 individual genotype profiles paired 

with 888 RNA-Sequencing (RNA-Seq) samples originated from 6 neocortical regions: 

temporal cortex, prefrontal cortex, inferior frontal gyrus, superior temporal gyrus, 

parahippocampal cortex, and DLPFC. The FUSION software [3] was tailored to 

accommodate multiple RNA-Seq profiles from different regions of a single individual, 

by grouping all samples from a given individual into a single cross-validation fold during 

the training and optimization process. Five TWAS models (top1, blup, lasso, enet and 

bslmm) were utilized to train and yield SNP weights for each gene. We retrieved the 
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TWAS weights from Synapse (https://doi.org/10.7303/syn2580853) that included a 

total of 6 780 trained weights in the form of RData. 

DLPFC pQTL. Wingo et al. [18] employed a linear regression model, as implemented 

in Plink [19], to estimate cis-pQTLs from the DLPFC proteomes and corresponding 

genotyping data for 376 individuals in the ROSMAP study. To reduce the effects of 

linkage disequilibrium (LD), only SNPs present in an LD reference panel provided by 

FUSION were considered in the analysis. After preprocessing and quality control, 8 

356 proteins and 1 190 321 SNPs were retained. Detailed information about the 

preprocessing and quality control steps for both the proteomics and genetics data is 

available in [18]. The summary statistics of the ROSMAP pQTL can be accessed at 

Synapse (https://doi.org/10.7303/syn23627957), including a total of 928 865 SNP-

protein pairs. For our analysis, we applied a significant level of P < 5E-8, resulting a 

total of 14 221 pQTLs incorporated into the MR analysis. 

DLPFC protein expression weight. Protein expression weights specific to the 

DLPFC were also derived from the ROSMAP study [18]. As mentioned above, 376 

subjects with matched DLPFC proteome profiles and genotyping data were included. 

The heritability for each protein was quantified using both proteomics and genetics 

data. Proteins exhibiting significant heritability (P < 0.01) were investigated further, by 

applying the FUSION approach to estimate the influence of genetic variants on protein 

abundance. Five predictive models (top1, blup, lasso, enet and bslmm) were employed, 

and protein weights from the model that yielded the highest predictive value were 

selected. The trained weights were obtained from Synapse 

(https://doi.org/10.7303/syn23627957), with a total of 1 761 weight files in RData 

format. For more detailed information, please refer to [18]. 

GWAS summary statistics data 

We used GWAS summary statistics of brain imaging traits to infer risk molecular 

markers associated with brain tissues. The findings were subsequently validated by 

evaluating their causal effects on five brain disorders. 
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GWAS of brain structural iQTs. We employed summary meta-GWAS statistics of 

human cortical structures from the ENIGMA-3 study conducted by Grasby et al. [16]. 

This study executed a principal meta-GWAS on brain magnetic resonance imaging 

(MRI) data from 33 992 participants of European ancestry. In brief, the surface area 

(SA) and averaged thickness (aTH) of 34 individual cortical regions, as defined by the 

Desikan-Killiany (DK) atlas, were extracted from the MRI scans. For each cohort, 

GWAS was performed for each of the 68 iQTs, with global measure of SA or aTH 

included as covariates. The principal meta-analysis incorporated GWAS results from 

33 992 participants, including 23 909 from 49 cohorts involved in ENIGMA consortium 

and 10 083 from the UK Biobank (http://www.ukbiobank.ac.uk/resources/) [20]. The 

cortical GWAS summary statistics were acquired from the ENIGMA consortium, 

encompassing a total of 34 GWAS of regional SA and 34 GWAS of regional aTH. 

Given that part of the brain derived QTLs and weights data was specific to the 

PFC region, our investigation will focus on identifying functional multi-omic factors 

specific to this area, rather than the entire brain. To this end, we diligently handpicked 

10 ROIs located within the PFC region, yielding 20 iQT GWAS (out of the original 68) 

that were selected. The detailed list of these selected iQTs can be found in 

Supplementary Table 1. 

GWAS of brain disorders. We used meta-GWAS summary statistics from five brain 

disorders (AD, Schizophrenia (SCZ), Major depressive disorder (MDD), Bipolar 

disorder (BP), and Attention-deficit/hyperactivity disorder (ADHD)) to demonstrate the 

potential of brain tissue-specific causal factors for providing a contextual 

understanding of complex brain diseases. Specifically, we sourced the AD GWAS 

summary statistics from the International Genomics of Alzheimer’s Project (IGAP) 

GWAS Stage 1 (N = 21 982 cases, 41 944 controls), conducted by Kunkle et al. [21]. 

The GWAS results of SCZ were reported by Trubetskoy et al. [22], with a sample size 

of 53 386 cases and 77 258 controls. The MDD GWAS summary statistics (N = 53 386 

cases and 77 258 controls) were acquired from Howard et al. [23]. We obtained the 

GWAS summary statistics of BP (N = 41 917 cases, 371 549 controls) from Mullins et 
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al. [24]. The ADHD GWAS statistics were from Demontis et al. [25] with a sample size 

of 20 183 cases and 35 191 controls. 

Statistical analysis 

Transcriptome- and proteome-wide association study. We applied the FUSION 

software to conduct TWAS and PWAS for each iQT to estimate the associations of 

each gene and each protein to each brain phenotype. Specifically, the summary-based 

TWAS model was applied to compute gene-iQT association as the weighted linear sum 

of SNP-iQT standardized effects (i.e., iQT meta-GWAS z-scores) with the predicted 

gene-brain effects (i.e., neocortical gene expression weights). Similarly, PWAS was 

performed by computing the weighted sum of SNP-iQT standardized effects with the 

pre-computed protein-brain effects (i.e., DLPFC protein abundance weights). We used 

a threshold of P < 1E-3 for both TWAS and PWAS results to define significance. 

Hereafter, the joint analysis of TWAS and PWAS that identify overlapping findings will 

be referred to as “TPWAS” for convenience. 

Transcriptome- and proteome-wide Mendelian randomization analysis. We 

conducted summary-based transcriptome- and proteome-wide Mendelian 

randomization (TWMR/PWMR) analysis using the two-sample MR method 

implemented in the “TwoSampleMR” R package (version 0.5.6, available at 

mrcieu.github.io/TwoSampleMR). MR analysis investigates the causal relationship 

between an exposure  and an outcome , using genetic variants as instrumental 

variables (IVs) . Leveraging the effect sizes of the IVs on both  ( ) and  ( ), 

the MR framework applies the Wald estimate to compute the causal effect of  on : = / . In a two-sample MR, it is important to acknowledge that statistics may 

be derived from distinct sample sets. In this study, we integrated the cortical meta-

eQTL and DLPFC pQTL data with large-scale iQT GWAS results, to pinpoint risk genes 

and proteins influencing brain structural alterations. Additionally, we conducted multiple 

comparison corrections to control for the FDR. Hereafter, the joint analysis of TWMR 

and PWMR will be referred to as “TPWMR” for convenience. 

Gene-based analysis of iQT GWAS. To demonstrate the detection capabilities of 
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TPWAS and TPWMR, we compared our findings to the gene-based outcomes derived 

from applying MAGMA [26] to each of the 20 iQT GWAS datasets. More specifically, 

we utilized the European samples from the 1 000 Genomes dataset as an LD reference 

and deployed the SNP-wise mean model to test of the mean SNP associations. A 

relaxed significance threshold was set at P < 1E-4 for fair comparisons. 

Bayesian colocalization analysis. Bayesian colocalization [27] leverages Bayesian 

inference to assess the presence of shared genetic variants across two or more traits. 

It involves analyzing the posterior probability that a variant exhibiting individual 

associations with each trait or demonstrating a joint association, thereby qualifying as 

a colocalizing variant. Our analysis incorporated this approach to assess the shared 

genetic architecture between gene expression and protein abundance in the brain, 

employing eQTLs and pQTLs extracted from identified genes and proteins. We used 

the R “coloc” package (https://cran.r-project.org/web/packages/coloc) for testing 

colocalization, adopting default prior probabilities (i.e., = 1 × 10 , = 1 × 10 , 

and = 1 × 10  ). Here   and   present the probabilities of a specific variant 

being associated with gene expression and protein expression, respectively, while  

indicates the likelihood of a given variant simultaneously influencing both gene and 

protein expressions. A total of five hypotheses (H0~H4) were tested, with H4 

representing the existence of a single causal variant for both traits. We characterized 

the traits as colocalized when the posterior probability for H4 exceeded 0.8 (i.e., PPH4 > 

0.8) [28,29]. 

Cell-type specificity analysis. The cell type-specific analysis of identified genes was 

further expanded, focusing on their expression levels in human brain cells. For this 

purpose, we used single-cell RNA-Seq data from the PFC, as profiled by Mathys et al. 

[30]. We retrieved the raw data and applied the Seurat package for quality control (QC), 

normalization, and scaling. To be more specific, the initial dataset contained 70 634 

single-nucleus transcriptomes. This data was QCed by filtering cells that have unique 

feature counts over 2 500 or less than 200, as well as genes with fewer than 3 counts 

in a cell. Global-scaling normalization method “LogNormalize” was employed to 
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normalize the feature expression measurements for each cell by the total expression, 

and then a linear transformation was used to scale the expression of each gene such 

that the mean expression across cells for each gene is 0 and the variance is 1. After 

pre-processing, the cleaned data comprised 17 775 genes across 53 083 cells. We 

focused on five main cell types: Excitatory neurons, Inhibitory neurons, 

Oligodendrocytes, Microglia, and Astrocytes. Subsequently, we performed differential 

expression (DE) analysis for the candidate genes to test if they exhibit significantly 

higher expressions in certain cell types relative to others. A fold change threshold of 

0.25 (i.e., logFC > 0.25) and the Bonferroni corrected P-value of 0.05 (adjusted for 17 

775 genes) were applied. 

Causal relationships between brain targets and brain disorders. Prioritizing brain 

region-specific causal factors could offer insightful perspectives into the complex 

pathophysiology underlying complex brain disorders, potentially informing more 

effective therapeutic strategies. Therefore, we further evaluated the potential causal 

relationships of brain PFC-specific targets on five different brain disorders by 

performing both TPWAS and TPWMR analyses using GWAS of brain disorders and 

brain-derived QTLs and weights data. We additionally applied Bonferroni correction to 

each type of analysis for controlling the multiple comparisons. 

Results 

We conducted the brain tissue-specific TPWAS and TPWMR to pinpoint functional 

elements influencing brain regions at both gene and protein expression levels. We then 

evaluated the identified genes and proteins through colocalization analysis and cell-

type-specific enrichment. To validate our findings, we further assessed their relevance 

to five brain disorders including AD, SCZ, BP, MDD, and ADHD.  

TPWAS identifies 16 targets associated with PFC iQTs. We utilized meta-GWAS 

summary statistics of 20 iQTs and employed the summary-based TWAS model trained 

on neocortical expression data, to estimate the effects of gene expression on PFC 

ROIs. For each brain iQT, we examined a total of 6 780 genes to determine their 

associations with the corresponding brain ROIs. Similarly, we applied the PWAS model 
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trained on DLPFC to explore the effects of 1 761 proteins on 20 iQTs.  

TWAS and PWAS identified 18 gene-iQT and 8 protein-iQT associations at a false 

discovery rate (FDR) of 0.05, respectively. In our endeavor to simultaneously explore 

biomolecules affecting brain regions from both gene expression and protein expression 

perspectives, we adopted a relatively lenient threshold for circumventing the potential 

omission of biologically meaningful findings. Using a significance threshold of P < 1E-

3, the TWAS detected a total of 415 gene-iQT associations, which included 356 genes 

and 20 iQTs. Simultaneously, the PWAS identified 94 protein-iQT associations 

between 78 proteins and 20 iQTs. Upon integrating the TWAS and PWAS results, we 

derived a list of 19 gene/protein-iQT associations between 16 genes/proteins and 12 

iQTs that demonstrated significance in both studies (Table 1).  

TPWMR identifies 30 targets associated with PFC ROIs. In our summary-based 

MR analysis, we integrated meta-GWAS data from 20 iQTs with brain cortical eQTLs 

and DLPFC-derived pQTLs, respectively, aiming to discover genes and proteins whose 

expression alterations impact brain structures through eQTL or pQTL SNPs. 

Particularly, the Wald ratio was applied for proposed instruments with one SNP and 

the inverse variance weighted (IVW) test was employed for proposed instruments with 

more than one SNP. TWMR and PWMR identified 3 642 gene-iQT and 61 protein-iQT 

associations at FDR < 0.01, respectively. Upon integrating TWMR and PWMR, we 

compiled a list of 35 gene/protein-iQT associations between 30 genes/proteins and 15 

iQTs that demonstrated significance in TPWMR (Table 1).  

Joint TPWAS-TPWMR identifies 42 targets associated with 19 PFC ROIs. We 

obtained 51 gene/protein-iQT associations by integrating findings from TPWAS and 

TPWMR. Table 1 and Supplementary Table 2 illustrate the details of identified 

gene/protein-iQT associations. This comprehensive analysis led to the discovery of 42 

distinct genes associated with 10 ROIs across 19 iQTs. Figure 2 depicted the pairwised 

associations between all of the 42 targets and the 19 iQTs as determined by both the 

TPWAS and TPWMR methods. Of the 51 significant findings, 1) three (5.8%) 

associations were reported by both TPWAS and TPWMR analyses, including the 
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association between LACTB2 with the surface area of pars opercularis, the association 

between SRR with the surface area of the rostral middle frontal lobe, and the 

association between UMPS with the cortical thickness of caudal anterior cingulate; 2) 

one gene (SULT1A1) was identified through two distinct methods, with each method 

associating with different iQTs. In the TPWMR analysis, SULT1A1 was found to be 

associated with the cortical thickness of the superior frontal lobe, while the TPWAS 

analysis linked SULT1A1 to the surface area of the caudal middle frontal gyrus; and 3) 

five genes (12%) demonstrated significant associations with more than one 

neuroimaging traits in either TPWAS or TPWMR analysis, including ATP13A2, 

LACTB2, PAWR, PSMD9, and TRPV2. Amongst the 51 identified associations, we 

discovered that only 11 findings, accounting for 21.6%, were detected by MAGMA as 

shown in Table 1.  

Colocalization of gene and protein expressions. The colocalization analysis was 

carried out for 42 identified targets, with the detailed results presented in Table 2. Our 

study found that 32 (76.2%) genes/proteins exhibited signs of sharing causal variants 

in their gene and protein expression (i.e., with a PPH4 > 0.8). The Locuszoom plots 

(http://locuszoom.org/ [31]) highlighted the evidence of colocalization between genetic 

loci and their corresponding gene and protein expressions. See Supplementary Figure 

1 for detailed Locuszoom plots.  

Cell-type-specific enrichment in PFC. We examined the cell-type specificity of 

reported genes by incorporating human brain single-cell RNA-Seq data. Of the 42 

genes considered, the dataset contained information for 19. Our study uncovered over-

expression patterns of 12 causal genes in various types of brain cells, ascertained at 

a Bonferroni corrected P < 0.05 and logFC > 0.25. Specifically, the genes ACP6, 

ALDH2, CAT and HDDC2 were found to be enriched in astrocytes, while RCSD1 was 

enriched in microglia. In oligodendrocytes, four genes (CBR1, CORO1C, STXBP6 and 

TMCC2) were observed to be overexpressed, among which STXBP6 was also found 

to be enriched in inhibitory neurons. ATP13A2, EXOC6 and KCNJ9 were found to be 

enriched in excitatory neurons, whereas ATP13A2 also showed enrichment in 
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inhibitory neurons. Detailed information was shown in Figure 3 and Supplementary 

Table 3.  

Associations of iQT targets with brain disorders. The exploration of brain region-

specific causal factors holds considerable promise in providing a nuanced 

comprehension of intricate neurological diseases. Our investigation yielded a total of 

38 disease-gene/protein associations involving 20 unique molecular entities across all 

five brain disorders, as detailed in Table 3. Among these significant associations we 

identified, three were detected via TWAS or PWAS, while the remaining 35 were 

detected by the MR method. More specifically, 1) we validated varying numbers of 

targets for each brain disorder: 6 for AD, 6 for ADHD, 7 for BP, 4 for MDD, and 8 for 

SCZ; 2) five genes (ARSA, GSTZ1, L3HYPDH, RFT1 and TYW5) were found to be 

associated with more than one brain disease; 3) four genes were each associated with 

a singular disorder yet were supported by more than one analytical methods, including 

ACP6-MDD, C15orf40-BP, CBR3-SCZ and PDLIM4-MDD associations; and 4) three 

genes (RAB7L1, SCFD1 and SRR) demonstrated associations with multiple brain 

diseases and were additionally corroborated by more than one type of analysis. 

Summarized results and detailed information regarding comparison correction were 

presented in Supplementary Table 4 and Supplementary Table 5. 

Discussion 

Emphasizing the role of brain region-specific factors may afford substantial insights 

into the intricate pathophysiological underpinnings of complex brain disorders, which 

could subsequently guide the development of more effective therapeutic interventions. 

In this study, we systematically integrated brain tissue-specific multi-omics data by 

comprehensively applying TWAS, PWAS, MR, and Bayesian colocalization. In 

summary, we discovered 51 gene-iQT associations that linked 42 targets with 10 brain 

prefrontal cortical regions, at both transcriptome and proteome levels. Colocalization 

between gene and protein expressions pointed towards a significant shared genetic 

underpinning between gene transcription and protein synthesis in the brain, thereby 

unveiling a substantial biological interdependence.  
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Of the 51 identified associations, 40 gene-iQT relationships were not discovered 

by the GWAS of the same ENIGMA study. This suggests that exclusively relying on 

GWAS or post-GWAS screening may not be sufficient for effectively identifying genes 

of relevance to brain functions or disorders. This highlights the necessity for 

diversification and supplementation of methods in gene identification processes. 

The validation of the causal effects of 20 (out of 42) brain targets on complex brain 

disorders emphasizes the potential of investigating brain structural alterations in the 

study of neuropsychiatric diseases. Future study could explore the relationships 

among these identified genes/proteins, brain regional structures and various brain 

disorders, for example, the mediating role of brain regions between gene/protein 

expression and brain diseases. Meanwhile, for the 22 targets showing no explicit 

disease relevance, further investigation into their regulatory mechanisms influencing 

brain changes could be valuable. This is especially important considering the extensive 

pathways from gene to cognitive conditions, as well as the complex mechanisms 

intertwining brain alteration and disease development.  

Our analysis implicates a set of genes that have been previously investigated in 

relation to diverse brain phenotypes and brain disorders. For example, ACP6, a 

lysophosphatidic acid phosphatase that regulates mitochondrial lipid biosynthesis, is 

associated with cerebral impairment-induced visual disorder [32], Parkinson's disease 

(PD) [33] and autism spectrum disorders [34]. ALDH2 is one of the major ALDH 

isozymes that catalyze the oxidation of dopamine. Impairment or inactivation of ALDH2 

would accumulate a higher level of toxic dopamine metabolite, consequently 

contributing to neurocognitive dysfunction [35,36]. Brain atrophy and AD biomarkers 

changes were also observed from Aldh2-/- mice model [37]. SRR has been reported 

to be the principal enzyme responsible for D-serine production in the mouse forebrain, 

the latter plays an important role in mammalian brain neurotransmission [38]. RAB7L1, 

the second PD-associated gene, has been linked to the induction of neuronal 

apoptosis and damage, as well as learning and cognitive dysfunctions, which 

highlights its possible implication in neurodegenerative and cognitive disorders [39–
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41]. Dysregulation or loss of ATP13A2 function can affect numerous regions within the 

nervous system, leading to a wide range of symptoms, including dementia, spasticity, 

and parkinsonism [42,43]. Additionally, ATP13A2 presents reduced protein levels in 

brain tissue of cases with Lewy bodies [42]. This convergence of findings reinforces 

the potential role of these genes in the pathophysiology of neurological impairments 

and provides an expanded platform for further research and therapeutic development. 

We also suggest the potential roles of candidate findings in various cell types, some of 

which have been previously explored. For example, the expression of CAT in 

astrocytes may play a role in protecting the brain from oxidative stress and damage 

[44].  

Linking the brain tissue-specific causal factors to brain disorders holds 

considerable promise in providing a nuanced comprehension of intricate neurological 

diseases. Our explorations implicate a set of genes for their possible broad-spectrum 

involvement in neural pathology. Moreover, the multi-method support further 

strengthens the likelihood of some identified associations. Collectively, these 

validations underscore the complexity of gene-disease associations in brain disorders 

and the utility of multi-omics and systematical approaches in unveiling these 

relationships. Recognizing the unique contributions of distinct brain regions to overall 

neural function, it is reasonable to hypothesize that the pathogenesis of 

neurophysiological disorders may be tightly linked with dysfunctions or dysregulations 

localized to specific regions. Therefore, a contextual approach that prioritizes region-

specific etiological factors could offer insightful perspectives into the complex 

pathophysiology underlying these disorders, potentially informing more effective 

therapeutic strategies. 

In conclusion, we provide a novel sight into integrating multi-omics data to explore 

the molecular mechanisms underlying the brain. Neuroimaging serves as a pivotal 

biomarker for early diagnosis of brain disorders, thereby rendering the omics research 

of brain imaging of profound significance. This is particularly relevant given our 

deployment of various methodologies for the systematic integration of multiple omics 
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data. The advancements in omics technologies and the enrichment of omics data set 

stage for the future execution of multi-omics inference research across a wider range 

of brain tissues. This endeavor will require a transition from single-omics to a more 

comprehensive pan-omics approach, further incorporating dynamic omics studies that 

span the entirety of the life course. These integrative strategies promise to yield 

insights into the complex temporal and spatial dynamics of neurological development 

and function. 
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Figure legends 

Figure 1. Flowchart illustrating the design of the brain tissue-specific multi-

omics integration study. 

Figure. 2 Heatmaps of gene associations on imaging quantitative traits (iQTs). 

The heatmap was generated by extracting associations between 42 genes and 19 

iQTs from the TWAS, PWAS, TWMR and PWMR results. Heatmap cells are marked 

with “*”, “**” or “***” signifying significance levels of 0.001 < P < 0.01, 0.0001 < P < 

0.001, and P < 0.0001, respectively. Cells corresponding to NAN values are shaded 

gray. 

Figure. 3 Prefrontal cortex cell-type-specific enrichment of causal genes. 

Single-cell expression enrichment identified over-expression of 12 causal genes in 

brain cell types. Left and right panels showed fold change and P-value respectively.  
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Table 1. TPWMR and TPWAS identified a total of 51 gene/protein-iQT 

associations. This led to the discovery of 42 distinct targets associated with 19 iQTs 

across 10 prefrontal cortical regions. 11 out of the 51 findings were detected by the 

MAGMA with a significant P < 1E-4. Detailed information is available in Supplementary 

Table 1. 

ID Analysis Gene Chr iQT 
P-value 

gene-iQT protein-iQT MAGMA 

1 

TPWMR 

ACP6 1 ParsTriangularis_aTH 1.21E-5 1.21E-5 3.02E-4 

2 ALDH2 12 SuperiorFrontal_aTH 4.72E-8 1.77E-6 2.18E-7 

3 ARSA 22 ParsOpercularis_aTH 4.84E-6 4.84E-6 5.24E-3 

4 ATIC 2 SuperiorFrontal_aTH 1.58E-4 1.58E-4 6.39E-2 

5 C15orf40 15 RostralMiddleFrontal_aTH 1.26E-4 1.26E-4 3.94E-2 

6 CAT 11 ParsOrbitalis_aTH 9.83E-5 8.74E-5 1.15E-4 

7 CBR1 21 RostralMiddleFrontal_SA 6.40E-5 6.40E-5 1.01E-2 

8 CBR3 21 RostralMiddleFrontal_SA 6.40E-5 6.40E-5 1.62E-2 

9 CORO1C 12 SuperiorFrontal_aTH 3.06E-6 1.19E-6 7.74E-5 

10 CPNE1 20 SuperiorFrontal_aTH 1.03E-5 9.62E-5 3.54E-3 

11 EXOC6 10 RostralMiddleFrontal_SA 1.57E-4 1.96E-4 2.89E-2 

12 GIMAP4 7 CaudalMiddleFrontal_aTH 8.81E-6 8.81E-6 3.25E-4 

13 GSTZ1 14 LateralOrbitoFrontal_aTH 1.01E-4 1.01E-4 1.62E-2 

14 HDDC2 6 SuperiorFrontal_SA 2.25E-7 1.20E-6 3.13E-4 

15 INPP5E 9 SuperiorFrontal_aTH 4.84E-6 1.82E-5 6.26E-5 

16 KCNJ9 1 RostralMiddleFrontal_aTH 3.09E-5 3.09E-5 4.23E-3 

17 L3HYPDH 14 ParsOpercularis_SA 8.37E-5 1.36E-4 2.36E-2 

18 LACTB2 8 ParsTriangularis_SA 1.70E-5 5.53E-5 2.01E-4 

19 LACTB2 8 RostralMiddleFrontal_SA 5.92E-5 7.88E-5 6.87E-4 

20 MFF 2 SuperiorFrontal_SA 1.22E-4 1.68E-4 1.40E-2 

21 PDLIM4 5 ParsTriangularis_SA 2.85E-6 3.55E-5 1.26E-3 

22 PSMD9 12 SuperiorFrontal_SA 5.94E-5 6.29E-5 3.18E-4 

23 PSMD9 12 CaudalMiddleFrontal_aTH 2.42E-5 1.07E-4 1.83E-3 

24 RAB7L1 1 RostralMiddleFrontal_SA 1.02E-6 1.02E-6 4.85E-5 

25 RCSD1 1 ParsOrbitalis_aTH 7.13E-4 2.89E-5 3.59E-2 

26 SRR 17 RostralAnteriorCingulate_aTH 1.10E-4 1.15E-4 2.52E-3 

27 STXBP6 14 SuperiorFrontal_SA 2.21E-5 2.21E-5 7.00E-2 

28 SULT1A1 16 SuperiorFrontal_aTH 2.71E-7 6.33E-5 5.87E-3 

29 THEM4 1 CaudalAnteriorCingulate_SA 1.93E-4 1.93E-4 3.83E-2 

30 TMCC2 1 ParsOpercularis_SA 3.62E-5 1.93E-4 4.42E-4 

31 TRPV2 17 CaudalAnteriorCingulate_SA 4.04E-5 1.42E-4 1.86E-1 

32 TRPV2 17 RostralAnteriorCingulate_SA 8.16E-8 1.30E-4 3.43E-1 

33 
TPWAS 

AP3D1 19 ParsOpercularis_aTH 6.98E-4 5.32E-5 3.26E-5 

34 ATP13A2 1 ParsOpercularis_SA 9.57E-4 3.75E-6 5.73E-7 
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ID Analysis Gene Chr iQT 
P-value 

gene-iQT protein-iQT MAGMA 

35 

TPWAS 

ATP13A2 1 RostralMiddleFrontal_SA 4.48E-4 1.25E-6 5.40E-8 

36 CENPV 17 RostralAnteriorCingulate_SA 1.31E-4 4.36E-4 2.33E-3 

37 ERCC2 19 SuperiorFrontal_SA 6.11E-7 3.20E-4 2.65E-5 

38 FTSJ3 17 RostralMiddleFrontal_SA 7.58E-4 2.92E-4 1.35E-3 

39 IGFBP2 2 RostralMiddleFrontal_SA 7.09E-5 6.55E-5 5.99E-2 

40 MRPS27 5 RostralMiddleFrontal_aTH 4.11E-4 7.49E-5 1.51E-2 

41 PAWR 12 ParsOrbitalis_SA 5.15E-5 2.29E-5 3.08E-2 

42 PAWR 12 SuperiorFrontal_SA 1.23E-5 5.47E-6 2.57E-3 

43 RFT1 3 RostralAnteriorCingulate_SA 5.50E-4 7.57E-4 2.10E-2 

44 SCFD1 14 MedialOrbitoFrontal_aTH 8.37E-6 4.02E-4 1.55E-5 

45 SRR 17 ParsOpercularis_SA 6.17E-4 3.17E-4 4.73E-3 

46 STX6 1 RostralAnteriorCingulate_aTH 3.77E-5 6.57E-5 7.28E-5 

47 SULT1A1 16 CaudalMiddleFrontal_SA 1.82E-4 4.90E-4 2.26E-2 

48 TYW5 2 MedialOrbitoFrontal_SA 5.57E-4 3.93E-4 8.80E-4 

49 

TPWMR, 

TPWAS 

LACTB2 8 ParsOpercularis_SA 
3.86E-8, 

9.71E-6 

3.86E-8, 

7.87E-8 
4.70E-7 

50 SRR 17 RostralMiddleFrontal_SA 
3.47E-5, 

5.33E-4 

3.79E-5,  

4.84E-4 
2.81E-4 

51 UMPS 3 CaudalAnteriorCingulate_aTH 
9.62E-5, 

1.72E-4 

1.51E-4,  

1.41E-4 
5.95E-4 
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Table 2. Results of the colocalization analysis for the 42 candidate genes and 

their corresponding protein expressions. Genes/proteins demonstrating a posterior 

probability greater than 0.8 for hypothesis 4 (i.e., PPH4 > 0.8) are highlighted in bold. 

Gene Chr Start End nsnps PPH0 PPH1 PPH2 PPH3 PPH4 

ACP6 1 147101453 147142618 127 0.000  0.000  0.000  1.000  0.000  

ALDH2 12 112204691 112247782 61 0.000  0.000  0.000  0.027  0.973  

AP3D1 19 2100988 2164464 72 0.000  0.127  0.000  0.008  0.865  

ARSA 22 51061182 51066607 99 0.000  0.000  0.000  0.008  0.992  

ATIC 2 216176540 216214487 130 0.000  0.000  0.000  0.000  1.000  

ATP13A2 1 17312453 17338423 113 0.000  0.023  0.000  0.004  0.973  

C15orf40 15 83657193 83680393 69 0.000  0.000  0.000  1.000  0.000  

CAT 11 34460472 34493609 188 0.000  0.000  0.000  0.006  0.994  

CBR1 21 37442239 37445464 115 0.000  0.000  0.000  0.034  0.966  

CBR3 21 37507210 37518864 122 0.000  0.000  0.000  0.003  0.997  

CENPV 17 16245848 16256970 73 0.000  0.000  0.000  0.007  0.993  

CORO1C 12 109038885 109125372 121 0.000  0.000  0.000  0.010  0.990  

CPNE1 20 34213953 34252878 84 0.000  0.000  0.000  0.002  0.998  

ERCC2 19 45853095 45874176 63 0.000  0.612  0.000  0.149  0.239  

EXOC6 10 94590935 94819250 218 0.000  0.000  0.000  0.019  0.981  

FTSJ3 17 61896793 61907372 68 0.000  0.000  0.000  0.039  0.961  

GIMAP4 7 150264365 150271041 114 0.000  0.000  0.000  0.997  0.003  

GSTZ1 14 77787227 77797940 128 0.000  0.000  0.000  0.073  0.927  

HDDC2 6 125541108 125623282 135 0.000  0.000  0.000  0.002  0.998  

IGFBP2 2 217497551 217529159 119 0.000  0.006  0.000  0.002  0.992  

INPP5E 9 139323071 139334274 107 0.000  0.009  0.000  0.980  0.011  

KCNJ9 1 160051360 160060353 139 0.000  0.000  0.000  0.145  0.855  

L3HYPDH 14 59927081 59951148 111 0.000  0.000  0.000  0.025  0.975  

LACTB2 8 71547553 71581409 67 0.000  0.000  0.000  0.887  0.113  

MFF 2 228189867 228222550 108 0.000  0.000  0.000  0.999  0.001  
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Gene Chr Start End nsnps PPH0 PPH1 PPH2 PPH3 PPH4 

MRPS27 5 71515236 71616473 113 0.000  0.017  0.000  0.004  0.979  

PAWR 12 79968759 80084877 65 0.000  0.101  0.000  0.040  0.858  

PDLIM4 5 131593364 131609147 123 0.000  0.000  0.000  0.000  1.000  

PSMD9 12 122326637 122356203 89 0.000  0.000  0.000  0.011  0.989  

RAB7L1 1 205737114 205744588 92 0.000  0.000  0.000  0.001  0.998  

RCSD1 1 167599330 167675486 197 0.000  0.000  0.155  0.184  0.661  

RFT1 3 53122499 53164478 88 0.000  0.000  0.000  0.006  0.994  

SCFD1 14 31091318 31205018 136 0.000  0.000  0.000  0.010  0.990  

SRR 17 2206677 2228554 112 0.000  0.000  0.000  0.000  1.000  

STX6 1 180941861 180992047 115 0.000  0.001  0.000  0.007  0.992  

STXBP6 14 25278862 25519503 283 0.000  0.000  0.000  0.000  1.000  

SULT1A1 16 28616903 28634946 44 0.000  0.000  0.000  0.077  0.923  

THEM4 1 151846060 151882284 104 0.000  0.000  0.000  1.000  0.000  

TMCC2 1 205197304 205242471 121 0.000  0.000  0.000  0.027  0.972  

TRPV2 17 16318856 16340317 82 0.000  0.000  0.000  0.001  0.999  

TYW5 2 200794698 200820459 74 0.000  0.232  0.000  0.044  0.724  

UMPS 3 124449213 124464040 145 0.000  0.000  0.000  0.005  0.995  
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Table 3. Validation of associations between 20 iQT targets with five brain 

disorders.  

Brain 

disorder 
Analysis Gene Chr Start End z P-value 

AD 

TWMR FTSJ3 17 61896793 61907372 4.097 4.19E-05 

TWMR MFF 2 228189867 228222550 -3.626 2.88E-04 

TWMR MRPS27 5 71515236 71616473 -3.591 3.30E-04 

TWMR SRR 17 2206677 2228554 3.958 7.54E-05 

TWMR STX6 1 180941861 180992047 3.497 4.71E-04 

TWMR TYW5 2 200794698 200820459 -4.497 6.88E-06 

ADHD 

TWMR ALDH2 12 112204691 112247782 -4.684 2.81E-06 

PWMR GSTZ1 14 77787227 77797940 -4.102 4.09E-05 

TWMR L3HYPDH 14 59927081 59951148 -3.799 1.45E-04 

PWMR SCFD1 14 31091318 31205018 -3.727 1.94E-04 

TWMR SRR 17 2206677 2228554 -4.585 4.53E-06 

TWMR SULT1A1 16 28616903 28634946 -4.614 3.94E-06 

BP 

 

TWMR ARSA 22 51061182 51066607 4.306 1.66E-05 

PWMR C15orf40 15 83657193 83680393 5.522 3.35E-08 

TWAS C15orf40 15 83657193 83680393 4.984 6.24E-07 

TWMR GSTZ1 14 77787227 77797940 -3.734 1.89E-04 

PWMR L3HYPDH 14 59927081 59951148 3.528 4.18E-04 

PWAS RAB7L1 1 205737114 205744588 3.841 1.23E-04 

PWMR RAB7L1 1 205737114 205744588 3.841 1.23E-04 

PWMR RFT1 3 53122499 53164478 3.408 6.55E-04 

PWMR SRR 17 2206677 2228554 -4.094 4.24E-05 

TWMR SRR 17 2206677 2228554 -3.891 9.99E-05 

MDD 

 

PWMR ACP6 1 147101453 147142618 -3.744 1.81E-04 

TWMR ACP6 1 147101453 147142618 -3.744 1.81E-04 

PWMR PDLIM4 5 131593364 131609147 -3.790 1.50E-04 

TWMR PDLIM4 5 131593364 131609147 -3.984 6.78E-05 

TWMR RAB7L1 1 205737114 205744588 4.227 2.37E-05 

TWMR RFT1 3 53122499 53164478 4.327 1.51E-05 

SCZ 

 

TWMR AP3D1 19 2100988 2164464 3.977 6.99E-05 

TWMR ARSA 22 51061182 51066607 5.374 7.71E-08 

PWMR CBR3 21 37507210 37518864 -4.330 1.49E-05 

TWMR CBR3 21 37507210 37518864 -3.885 1.02E-04 

PWMR L3HYPDH 14 59927081 59951148 3.378 7.30E-04 

PWMR SCFD1 14 31091318 31205018 -3.708 2.09E-04 

TWMR SCFD1 14 31091318 31205018 -3.708 2.09E-04 

PWMR SRR 17 2206677 2228554 -5.348 8.91E-08 

TWAS TYW5 2 200794698 200820459 -4.476 7.60E-06 

PWMR UMPS 3 124449213 124464040 -3.413 6.42E-04 
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