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Abstract

This paper presents the results of the Data001
Science for Digital Health (DS4DH) group in002
the MEDIQA-Chat Tasks at ACL-ClinicalNLP003
2023. Our study combines the power of a004
classical machine learning method, Support005
Vector Machine, for classifying medical dia-006
logues, along with the implementation of one-007
shot prompts using GPT-3.5. We employ dia-008
logues and summaries from the same category009
as prompts to generate summaries for novel010
dialogues. Our findings exceed the average011
benchmark score, offering a robust reference012
for assessing performance in this field.013

1 Introduction014

The unprecedented size of textual data in electronic015

health records has led to the information overload016

phenomenon (Stead and Lin, 2009), which inter-017

feres with healthcare workers’ information process-018

ing capabilities, diminishes their productivity, and019

prevents them from acquiring timely knowledge.020

Records of complex patients, such as those chron-021

ically ill, are particularly difficult to organize and022

to present concisely (Christensen and Grimsmo,023

2008), requiring physicians to read many clinical024

notes during a regular medical visit, which is often025

unfeasible. Studies have shown that information026

overload can increase task demand and mental ef-027

fort, which potentially impairs healthcare worker’s028

understanding of patients’ medical conditions and029

hinders optimal medical decisions, leading some-030

times to fatal consequences (McDonald, 1976; Mc-031

Donald et al., 2014; Karsh et al., 2006).032

To tackle information overload phenomena, clin-033

ical text summarization methods have been pro-034

posed to support healthcare workers’ textual data035

workflow interaction (Karsh et al., 2006; Moen036

et al., 2016; Pivovarov and Elhadad, 2015). Clini-037

cal text summarization generates concise represen-038

tations of documents using NLP methods (Manuel039

and Moreno, 2014). By doing so, it helps health- 040

care workers focus on the relevant information, 041

which enhances medical decision-making and thus 042

healthcare quality. Indeed, usability studies con- 043

ducted with physicians for EHR summarization 044

indicated the effectiveness of reading automatically 045

generated summaries as compared to raw records 046

(Wang et al., 2021). 047

To support efficient doctor decision-making, in 048

this paper we investigate a novel approach that 049

combines a traditional machine learning method, 050

Support Vector Machines (SVM) (Cortes and Vap- 051

nik, 1995), with a cutting-edge language model, 052

GPT-3.5 (Brown et al., 2020b), to effectively ex- 053

tract valuable information for the creation of doctor- 054

patient dialogue summaries. We implemented a 055

SVM model for short medical dialogue classifica- 056

tion, exploring its potential on a new task to distin- 057

guish between different categories of doctor-patient 058

encounters. Advanced generative language models 059

have shown remarkable capabilities in text genera- 060

tion and reasoning. We incorporated GPT-3.5 with 061

one-shot prompts, using dialogues and summaries 062

from the same category as prompts to generate 063

summaries for new dialogues. 1 064

2 Related Work 065

We discuss two key aspects of the current state of 066

the art: (1) text classification, particularly in medi- 067

cal dialogue classification, and (2) summarization, 068

with a special focus on abstractive summarization. 069

Text Classification Text classification is a well- 070

studied problem in natural language processing, 071

with various algorithms and techniques proposed 072

for different domains. Traditional machine learning 073

methods, such as Naive Bayes (John and Langley, 074

1995), Decision Trees (Breiman, 1984), k-Nearest 075

Neighbors (k-NN) (Altman, 1992; Teodoro et al., 076

1The code is available at https://github.com/
tinaboya/MEDIQA-Chat-2023-ds4dh

1

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 12, 2023. ; https://doi.org/10.1101/2023.06.08.23291121doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://github.com/tinaboya/MEDIQA-Chat-2023-ds4dh
https://github.com/tinaboya/MEDIQA-Chat-2023-ds4dh
https://doi.org/10.1101/2023.06.08.23291121
http://creativecommons.org/licenses/by/4.0/


2010) and SVM (Cortes and Vapnik, 1995), have077

been extensively used for text classification tasks078

(Hartmann et al., 2019). In the medical domain,079

these techniques have been employed to categorize080

clinical notes, medical dialogues, and other types081

of health-related text (Obeid et al., 2019).082

Deep learning approaches like Convolutional083

Neural Networks (CNN) (Lecun et al., 1998;084

Teodoro et al., 2020), Recurrent Neural Networks085

(RNN) (Rumelhart et al., 1986), Long Short-086

Term Memory Networks (LSTM) (Hochreiter and087

Schmidhuber, 1997), and Transformer-based ar-088

chitectures (Vaswani et al., 2017), including pre-089

trained language models such as BERT (Devlin090

et al., 2018), RoBERTa (Liu et al., 2019), and XL-091

Net (Yang et al., 2019), have demonstrated state-092

of-the-art efficacy in a diverse range of domains093

(Knafou et al., 2023). Leveraging the hierarchi-094

cal structure of documents, graph neural networks095

(GNNs) have also been effectively proposed to as-096

sign categories to biomedical documents (Ferdowsi097

et al., 2023, 2022, 2021). Compared to deep learn-098

ing models, SVM requires lower computational099

resources and training time and is a more efficient100

choice for certain applications (Sakr et al., 2016).101

Abstractive Summarization Automatic text102

summarization includes extractive and abstractive103

summarization. Extractive summarization identi-104

fies and selects important phrases or sentences from105

the original text. Abstractive summarization gen-106

erates summaries by creating novel sentences that107

capture the core information (Gupta and Gupta,108

2019; Widyassari et al., 2022).109

Abstractive summarization helps in generating110

concise representations of clinical notes, medi-111

cal dialogues, and scientific articles (Joshi et al.,112

2020b; Cai et al., 2022). Sequence-to-sequence113

(seq2seq) models utilizing RNNs (Nallapati et al.,114

2016; Kouris et al., 2021) and Transformer archi-115

tectures (Su et al., 2020; Wang et al., 2020; Laskar116

et al., 2022) are utilized in the abstractive summa-117

rization. The development of pre-trained language118

models, such as Bidirectional Encoder Represen-119

tations from Transformers (BERT) (Devlin et al.,120

2019), Generative Pre-trained Transformer (GPT)121

(Brown et al., 2020a), and Text-to-Text Transfer122

Transformer (T5) (Raffel et al., 2020), has further123

advanced the state-of-the-art of this field (Ramina124

et al., 2020; Ma et al., 2022; Koh et al., 2022). Re-125

cent studies have explored the use of fine-tuned126

versions of GPT-based models for medical text127

summarization, showing promising results (Chin- 128

tagunta et al., 2021). Our work extends this line 129

of research by employing GPT-3.5 with one-shot 130

prompts for medical dialogue summarization, aim- 131

ing to enhance performance and practicality. 132

Medical Dialogue Summarization More re- 133

cently, the summarization of medical dialogues has 134

started to gain momentum. (Molenaar et al., 2020) 135

use a knowledge-intensive approach, combining on- 136

tologies, guidelines and knowledge graphs to create 137

a dialogue summarization system. The extracted 138

triples are used to create a subjective-objective- 139

assessment-plan (SOAP)-like report. The model 140

achieves relatively high precision but low recall 141

for relevant summary items. (Krishna et al., 2021) 142

attempted the generation of complete SOAP notes 143

from doctor-patient conversations by first extract- 144

ing and clustering noteworthy utterances and then 145

leveraging LSTM and transformer models to gen- 146

erate a single sentence summary from each clus- 147

ter. (Joshi et al., 2020a) showed that the quality of 148

generated summaries can be improved by encour- 149

aging copying in the pointer-generator network. 150

Lastly, (Zhang et al., 2021) describe an abstractive 151

approach based on BART, in which a two-stage 152

summary model is created. The resulting mod- 153

els greatly surpass the performance of an average 154

human annotator and the quality of previously pub- 155

lished work for the task. 156

3 Methods 157

We address Task A of MEDIQA-Chat 2023 (Ben 158

Abacha et al., 2023a), which focuses on Dia- 159

logue2Note Summarization in short dialogue classi- 160

fication and summarization. The objective of Task 161

A is to accurately predict the summarization and 162

section header (as shown in Table 1) for the given 163

test set instances. The predictions are made based 164

on the information available in the dialogue, with 165

the token counts of the training set displayed in 166

Figure 1. 167

3.1 Dataset 168

The MTS-Dialog dataset (Ben Abacha et al., 169

2023b) is a comprehensive and diverse collection 170

of medical dialogues from doctor-patient encoun- 171

ters. We were provided with a dataset comprising 172

1201 training instances, 100 validation instances, 173

and 200 test instances in the competition. Each in- 174

stance in the dataset included an identifier, section 175

header, dialogue, and summary. 176
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Label Description
GENHX General History
LABS Laboratory Results
ROS Review of Systems
FAM/SOCHX Family and Social His-

tory
PASTMEDICALHX Past Medical History
CC Chief Complaint
ALLERGY Allergies
MEDICATIONS Medications
EXAM Examination
PASTSURGICAL Past Surgical History
ASSESSMENT Assessment
IMAGING Imaging Results
DIAGNOSIS Diagnosis
EDCOURSE Emergency Depart-

ment Course
DISPOSITION Disposition
IMMUNIZATIONS Immunizations
GYNHX Gynecologic History
PROCEDURES Procedures
OTHER_HISTORY Other History
PLAN Plan

Table 1: Section headers and their descriptions in medi-
cal documents.

3.2 Short Dialogue Classification177

We utilized an SVM text classifier (Cortes and178

Vapnik, 1995) with scikit-learn (Pedregosa et al.,179

2011). We used CountVectorizer to transform the180

text into a token count matrix, considering a maxi-181

mum document frequency of 0.5, a minimum doc-182

ument frequency of 5, and both unigrams and bi-183

grams. Then, the token count matrix was converted184

into a term frequency-inverse document frequency185

(TF-IDF) (Salton and Buckley, 1988) representa-186

tion. We employed a Stochastic Gradient Descent187

(SGD) (Robbins and Monro, 1951) optimization188

algorithm, with hinge loss, L2 penalty, and an al-189

pha value of 1e-5. Finally, we calibrated the clas-190

sifier using the Calibrated Classifier CV wrapper191

(Niculescu-Mizil and Caruana, 2005), enabling the192

provision of probability estimates.193

3.3 Short Dialogue Summarization194

Run 1 For the first run, we employed OpenAI’s195

GPT-3.5 model "gpt-3.5-turbo" 2 of 175 billion196

parameters to generate summaries based on the197

2https://platform.openai.com/docs/models/
gpt-3-5

Figure 1: Token Count Distribution in the Dialogues.

classified dialogues. We selected a random training 198

instance with the same predicted section header as 199

the instance in the test set. We then constructed 200

three messages as input for the GPT-3.5 model. 201

• A user message with the content "summarize" 202

followed by the dialogue from the selected 203

training row. 204

• An assistant message containing the section 205

text of the selected training row. 206

• A user message with the content "summarize" 207

followed by the dialogue from the current test 208

row. 209

The implementation was based on the OpenAI 210

Chat API3 and supplied the constructed messages 211

as input. The API returned a generated summary 212

as part of its response. 213

Run 2 For the second run, we fine-tuned the GPT- 214

3 curie 4 model (345 million parameters) on the 215

training set. For each test instance, we extracted the 216

dialogue text as the prompt. We used OpenAI Chat 217

API with the fine-tuned Curie model. The output 218

length was determined by adjusting the summary 219

length based on the input text. We generated one 220

completion for each input prompt with the upper 221

limit for token length as
⌈
2⌈log2

tokenlength(input)
2.5

⌉
⌉

. 222

In our training dataset, the average number of to- 223

kens in the dialogue is 2.5 times greater than in 224

the summary. We transform the upper limit to the 225

3https://platform.openai.com/docs/guides/chat
4https://platform.openai.com/docs/models/

gpt-3

3
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Run # Accuracy
1/2 0.70
Best Participants 0.78
Average Participants 0.56

Table 2: Official results of MEDIQA-Chat 2023:
DS4DH runs for the MEDIQA-Chat Dialogue2Note
Summarization task (TaskA Header Classification).

nearest higher power of 2 by applying the base-2226

logarithm.227

In conclusion, both runs involved a two-stage228

pipeline that integrated dialogue classification and229

dialogue summarization, as depicted in Figure 2.230

Dialogue SVM Headers

GPT3

Abstractive 
Summarization

Figure 2: Two-Stage Pipeline for Dialogue Classifica-
tion and Summarization

4 Experimental Results231

In the following, we present the official results of232

our experiments on the MEDIQA-Chat 2023 Task233

A.234

4.1 Short Dialogue Classification235

Table 2 shows the results of our dialogue classifi-236

cation pipeline. Our model achieved an accuracy237

of 0.70. Although this result is below the best par-238

ticipant’s accuracy of 0.78, it surpasses the average239

participant’s accuracy of 0.56.240

4.2 Short Dialogue Summarization241

In dialogue summarization, the perfomance of our242

model was evaluated using the ROUGE-1 (Lin,243

2004), BERTScore F1 (Zhang and Ng, 2019), and244

BLEURT metrics (Sellam et al., 2020). Each eval-245

uation metric captured different aspects of sum-246

marization quality. ROUGE-1 measures the over-247

lap of unigrams between the generated summary248

and the reference summary, focusing on content249

similarity. BERTScore F1 evaluates the contex-250

tual embeddings of the generated and reference251

summaries, capturing both content and semantic252

similarity. BLEURT measures the summary qual- 253

ity by comparing the generated summary to the 254

reference summary using a pre-trained language 255

model, aiming to capture more complex semantic 256

relationships. The aggregate score is calculated as 257

the average of these three metrics. 258

Table 3 compares our two runs with the best and 259

average participants’ scores across the ROUGE- 260

1, BERTScore F1, BLEURT, and aggregate score 261

metrics. Results show that the strategy adopted in 262

Run 1 yields better performance compared to Run 263

2 (ROUGE-1: 0.3080, BERTScore F1: 0.6644, and 264

BLEURT: 0.5206), resulting in an aggregate score 265

of 0.4977, which also outperforms the average per- 266

formance of the task participants by 2.4 percentage 267

points. This indicates that the model provided rela- 268

tively good alignment with the reference summary 269

in terms of content, semantics, and complex re- 270

lationships. Run 2 scored lower, with ROUGE-1 271

at 0.2937, BERTScore F1 at 0.6179, BLEURT at 272

0.3887, and an aggregate score of 0.4334. Never- 273

theless, our best model is outperformed by the top 274

ranked run by 8 percentage points, similarly to the 275

classification results, in which our models are also 276

outperformed by 8 percentage points. 277

5 Discussion 278

5.1 Short Dialogue Classification 279

We analysed the performance of text classification 280

model using the validation set, as ground truth la- 281

bels for the test set are unavailable for post-hoc 282

analyses. In the validation set, the model achieved 283

a performance of 67%, which is 3% lower than the 284

reported 70% on the test set. This discrepancy in 285

performance can be attributed to the test set con- 286

taining twice as many data points as the validation 287

set. Despite the difference, the results imply that 288

the model demonstrates good generalizability and 289

avoids overfitting the training data. The relatively 290

small performance gap between the validation and 291

test sets suggests that the model is likely to perform 292

well on unseen data which is a desirable trait. 293

Upon examining the results of the validation set 294

as shown in the confusion matrix (Figure 3), we ob- 295

serve that the performance of the model was highly 296

variable across different classes. Some classes, 297

such as FAM/SOCHX and GENHX, showed a high 298

degree of accurate predictions, while other classes, 299

such as ASSESSMENT and CC, exhibited lower 300

accuracy. This variability in performance high- 301

lights the need for further improvement and fine- 302

4
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Run # ROUGE-1 BERTScore F1 BLEURT Aggregate Score
1 0.3080 0.6644 0.5206 0.4977
2 0.2937 0.6179 0.3887 0.4334
Best Participants 0.4466 0.7307 0.5593 0.5789
Average Participants 0.3114 0.6460 0.4630 0.4734

Table 3: Official results of MEDIQA-Chat 2023: DS4DH runs for the MEDIQA-Chat Dialogue2Note Summariza-
tion task (TaskA Dialogue Summarization).

tuning of the model to achieve optimal performance303

across all classes.304

Figure 3: Confusion Matrix for Text Classification
Model on the Validation Set

An example of the section header classifier is305

illustrated in Figure 4. The model displays high306

confidence (0.69) that the input text belongs to307

the "PASTMEDICALHX" (Past Medical History)308

class. Words such as "medical", "diagnosis", "con-309

ditions", "history", and "visit" positively contribute310

to the prediction. The word "medical" has the high-311

est positive score, if omitted, the model will pre-312

dict the label "PASTMEDICALHX" with a prob-313

ability reduction of 0.22, leading to a confidence314

score of 0.47. The word "new" is negative for315

class "PASTMEDICALHX". This example demon-316

strates the model’s ability to identify relevant key-317

words and distinguish between various section318

headers, thereby accurately classifying the input319

text into the appropriate category.320

5.2 Short Dialogue Summarization321

5.2.1 Qualitative Analyses322

Table 5 displays an example in the validation set,323

featuring the Run 1, Run 2, and Golden summaries.324

These summaries are compared to evaluate their 325

ability to effectively convey essential information. 326

The Run 1 summary offers a concise and clear 327

account of the patient’s condition and history. It 328

highlights the patient’s low back pain that started 329

eight years ago due to a fall in an ABC store, the 330

persistence of the pain at varying degrees, the treat- 331

ments received (electrical stimulation and heat ther- 332

apy), and the follow-up appointment with another 333

doctor. 334

In contrast, the Run 2 summary appears less co- 335

herent, with fragmented sentences and a less orga- 336

nized presentation of information. It covers the fall 337

in October 2007, pregnancy in 2008, and the wors- 338

ening of back pain following another fall in 2008, 339

but the details are not as clearly conveyed as in the 340

Run 1 summary. Moreover, the Run 2 summary 341

lacks clarity regarding the follow-up appointment. 342

The Golden summary is the most comprehen- 343

sive of the three, providing specific dates, treat- 344

ments, and events. It outlines the patient’s history 345

of low back pain, the treatments received, and the 346

follow-up appointment, while also emphasizing the 347

patient’s childbirth, which may be relevant to the 348

case. 349

In conclusion, the Run 1 summary, generated 350

by the gpt-3.5-turbo model using a single prompt 351

and the same header class for both train and test 352

sets, provides a concise and clear account of the 353

patient’s situation. In contrast, the Run 2 summary, 354

produced by the fine-tuned GPT-3 curie model us- 355

ing all available training data points, is less coher- 356

ent and organized. This comparison highlights the 357

potential of the gpt-3.5-turbo model to outperform 358

the fine-tuned GPT-3 curie model, despite the latter 359

using all available training data. 360

5.2.2 Quantitative Analyses 361

Table 4 presents the results of the summarization 362

task on the validation set, comparing the gpt-3.5- 363

turbo 5 and GPT-3 curie models across various 364

5The oracle results for the GPT-3.5-turbo, in which the
ground truth class is utilized for selecting the one-shot prompt,

5
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Prediction probabilities

0.69PMHX

0.07FAM/SOCHX

0.05ROS

0.05CC

0.14Other

NOT PMHX PMHX
medical

0.22
new

0.11
diagnosed

0.11
conditions

0.09
history

0.08
visit

0.06

Text with highlighted words

Doctor: Has anything changed in your medical 
history since you last visit on April fifteenth 
two thousand five? Patient: What do you mean 
by that? Doctor: Have you been diagnosed 
with any new medical conditions, or are you 
experiencing any new symptoms? Patient: Oh, 
no, nothing like that.

Figure 4: An Example for Interpreting Prediction: Header Classified as PMHX (Past Medical History)

Table 4: Results on the validation set for the summarization task.

Name Prompt Strategy ROUGE-1 BERTScore F1 BLEURT Aggregate Score
gpt-3.5-turbo Random section header 0.2636 0.6393 0.514 0.4723
gpt-3.5-turbo Same section header 0.3282 0.6695 0.5498 0.5158
GPT-3 curie - 0.2945 0.6122 0.3856 0.4308

prompt strategies and evaluation metrics, includ-365

ing ROUGE-1, BERTScore F1, BLEURT, and an366

aggregate score.367

For the gpt-3.5-turbo model, the choice of368

prompt strategy significantly impacts its perfor-369

mance. When using a random section header as370

the prompt strategy, the model yields a ROUGE-371

1 score of 0.2636, BERTScore F1 of 0.6393,372

BLEURT of 0.514, and an aggregate score of373

0.4723. However, by changing the prompt strat-374

egy to using the same section header, the gpt-3.5-375

turbo model exhibits improved performance, with376

a ROUGE-1 score of 0.3282, BERTScore F1 of377

0.6695, BLEURT of 0.5498, and an aggregate score378

of 0.5158. In comparison, the GPT-3 curie model,379

which has been fine-tuned on the available data,380

achieves a ROUGE-1 score of 0.2945, BERTScore381

F1 of 0.6122, BLEURT of 0.3856, and an aggre-382

gate score of 0.4308. These results indicate that383

the gpt-3.5-turbo model, when utilizing the same384

section header prompt strategy, outperforms the385

fine-tuned GPT-3 curie model across all evaluation386

metrics. Furthermore, the comparison between the387

different prompt strategies for the gpt-3.5-turbo388

model highlights the importance of selecting an ap-389

propriate prompt strategy to enhance performance390

in the medical summarization task.391

Upon comparing the oracle results from the de-392

velopment set with the actual results from the test393

set, we find that the test set results lie within394

the range between the upper bound (same sec-395

tion header) and the lower bound (random section396

as opposed to a predicted class.

header) of the development set. The variability 397

within this range can be attributed to errors intro- 398

duced by the classifier and helps to partially explain 399

the gap in performance between our best model and 400

the top-1 performance in the challenge. 401

5.3 Limitations 402

While our two-stage pipeline, which combines di- 403

alogue classification and dialogue summarization, 404

has shown competitive performance compared to 405

other participants, there are several limitations that 406

need to be addressed for further improvement. First, 407

both the classification and summarization tasks 408

could benefit from enhancements in their respective 409

models. For classification, exploring other machine 410

learning algorithms or fine-tuning language mod- 411

els specifically for medical dialogue classification 412

could potentially yield better results. Additionally, 413

investigating the incorporation of domain-specific 414

knowledge or leveraging external resources, like 415

medical ontologies, might improve classification 416

accuracy. Regarding summarization, refining the 417

prompt strategies and experimenting with differ- 418

ent configurations could lead to more coherent 419

and informative summaries. This may involve ex- 420

ploring various prompt templates, incorporating 421

more context from dialogues, or applying chain- 422

of-thought reasoning to extract relevant informa- 423

tion. Furthermore, fine-tuning the language model 424

on a domain-specific corpus or using multi-task 425

learning that incorporates related tasks, such as 426

question-answering or information extraction, may 427

contribute to better summarization performance. 428

Finally, the evaluation metrics used in this study 429

6
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Run Summarization
Run 1 The patient has been experiencing low

back pain for the last eight years. The
pain started after a fall in an ABC store.
The patient has received only electrical
stimulation and heat therapy from phys-
ical therapy. The pain has been continu-
ous but at varying degrees. The patient
has a child and fell four or five days
ago, worsening the low back pain. The
patient has seen another doctor for this
issue and has a follow-up appointment
scheduled.

Run 2 Fall in October 2007 resulted in low
back pain for 8 years. Pregnancy in
2008 and low back pain since. She was
evaluated by a specialist in early Jan-
uary 2009 and is scheduled to return in
2/10/09. Back pain began when she fell
in an ABC store in fall 2007; had been
good periodically since. She had back
pain suddenly worsened when she fell
4/10/08. Since back in October 2008,
most recently

Golden The patient is a 26-year-old female, re-
ferred to Physical Therapy for low back
pain. The patient has a history of trau-
matic injury to low back. The patient
stated initial injury occurred eight years
ago, when she fell at a ABC Store.
The patient stated she received physi-
cal therapy, one to two visits and re-
ceived modality treatment only, specif-
ically electrical stimulation and heat
pack per patient recollection. The pa-
tient stated that she has had continuous
low-back pain at varying degrees for
the past eight years since that fall. The
patient gave birth in August 2008 and
since the childbirth, has experienced
low back pain. The patient also states
that she fell four to five days ago, while
mopping her floor. The patient stated
that she landed on her tailbone and
symptoms have increased since that fall.
The patient stated that her initial physi-
cian examination with Dr. X was on
01/10/09, and has a followup appoint-
ment on 02/10/09.

Table 5: Example Summarizations: Run 1, Run 2, and
Golden Summary Comparison

may not fully capture the quality of the gener- 430

ated summaries. It is important to acknowledge 431

that automated evaluation metrics, like ROUGE-1, 432

BERTScore F1, and BLEURT, might not be fully 433

aligned with human judgments. Therefore, con- 434

ducting user studies with medical professionals 435

could provide valuable insights into the utility and 436

accuracy of the generated summaries in real-world 437

clinical settings. 438

6 Conclusion 439

Our study demonstrates the effectiveness of com- 440

bining traditional machine learning techniques, 441

such as SVM, with advanced language models, 442

like GPT-3.5, for medical dialogue summariza- 443

tion. This hybrid methodology has the potential 444

to improve documentation procedures during pa- 445

tient care and facilitate informed decision-making 446

for healthcare professionals by classifying medical 447

dialogues and generating concise summaries. 448

For future work, we plan to address the limi- 449

tations identified in this study. For classification, 450

we will experiment with model configurations and 451

explore alternative machine learning algorithms. 452

For summarization, we will refine prompt strate- 453

gies, incorporate domain-specific knowledge, and 454

investigate various fine-tuning techniques. Lastly, 455

conducting user studies with medical professionals 456

will provide valuable feedback to assess the util- 457

ity and accuracy of our generated summaries in 458

real-world clinical settings and further refine our 459

approach. 460
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