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ABSTRACT  

Background: Although accurate identification of gender identity in the electronic health record 

(EHR) is crucial for providing equitable health care, particularly for transgender and gender 

diverse (TGD) populations, it remains a challenging task due to incomplete gender information 

in structured EHR fields. 

Objective: To develop a deep learning classifier to accurately identify patient gender identity 

using patient-level EHR data, including free-text notes. 

Methods: This study included adult patients in a large healthcare system in Boston, MA, 

between 4/1/2017 to 4/1/2022. To identify relevant information from massive clinical notes and 

to denoise, we compiled a list of gender-related keywords through expert curation, literature 

review, and expansion via a fine-tuned BioWordVec model. This keyword list was used to pre-

screen potential TGD individuals and create two datasets for model training, testing, and 

validation. Dataset I was a balanced dataset that contained clinician-confirmed TGD patients 

and cases without keywords. Dataset II contained cases with keywords. The performance of the 

deep learning model was compared to traditional machine learning and rule-based algorithms. 

Results: The final keyword list consists of 109 keywords, of which 58 (53.2%) were expanded 

by the BioWordVec model. Dataset I contained 3,150 patients (50% TGD) while Dataset II 

contained 200 patients (90% TGD). On Dataset I the deep learning model achieved a F1 score 

of 0.917, sensitivity of 0.854, and a precision of 0.980; and on Dataset II a F1 score of 0.969, 

sensitivity of 0.967, and precision of 0.972. The deep learning model significantly 

outperformed rule-based algorithms. 

Conclusion: This is the first study to show that deep learning algorithms can accurately identify 

gender identity using EHR data. Future work should leverage and evaluate additional diverse 

data sources to generate more generalizable algorithms.  
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Abbreviations: 

BERT: Bidirectional Encoder Representations from Transformers 

EHR: Electronic Health Records 

MGB: Mass General Brigham 

NLP: Natural Language Processing 

TGD: Transgender and Gender Diverse  

SVM: Support Vector Machine 

TF-IDF: Term Frequency-Inverse Document Frequency 



1. INTRODUCTION 

The transgender and gender-diverse (TGD) population is growing, with estimates ranging from 

0.5-4.5% among adults and 2.5-8.4% among children and adolescents [1,2]. TGD populations 

experience health inequities and barriers to care, and are underrepresented in research studies 

[3–5].  

Accurate and complete sex and gender data in electronic health records (EHR) is 

broadly recognized as a prerequisite for improving patient safety and advancing health equity 

for TGD populations [6]. However, structured sex and gender information are commonly 

missing in EHR data, which impedes patient safety efforts and prevents high-quality TGD 

health research using EHR data [7–9]. Despite missingness in structured fields, detailed 

information about a patient's gender identity may be available in free-text notes. Therefore, 

there is an urgent need to develop effective and efficient methods to identify TGD individuals 

within the EHR system. 

Prior studies on methods to identify TGD individuals in EHR clinician notes have 

relied on rule-based natural language processing (NLP) algorithms that utilize a narrow set of 

medical codes and gender-related keywords [10–15]. Although rule-based methods are 

generally easier to understand and implement quickly, they may have lower accuracy than more 

sophisticated approaches using technology like artificial intelligence due to the difficulty of 

identifying complex patterns in human languages [5,8]. Pure keyword-based searches may also 

miss important contextual information in clinical notes, leading to false negatives. 

Deep learning techniques, which are among the most sophisticated types of artificial 

intelligence and involve the utilization of neural networks for the analysis of large datasets, 

have demonstrated significant potential in clinical information studies [16,17]. These 

techniques are capable of learning intricate patterns and relationships within data, surpassing 

traditional machine learning methods in various tasks [18–20]. Furthermore, deep learning-

powered NLP uses text representations to harness the wealth of information in clinical notes, 

making it a popular choice in patient cohort identification in EHR systems [21,22]. However, 

deep learning models must often overcome limitations related to data noise (such as irrelevant 

or inconsistent data across a patient’s EHR) and extensive annotation requirements [23–26]. 

Manual annotation to support sentence level prediction [27] addresses some of these challenges, 

but is inefficient, costly, and lacks scalability.  

The objective of this study was to develop a robust deep learning-aided pipeline that 

leverages both structured EHR data and free-text notes for identifying TGD individuals. 

Through this automated approach, we aimed to reduce resource utilization, improve efficiency, 

and increase accuracy; the resulting applications may improve   researchers’ ability to identify 

samples of TGD individuals in EHR data. 

2. MATERIALS AND METHODS 

2.1. Clinical Setting and Data Sources 

This study was conducted at Mass General Brigham (MGB), a large healthcare delivery system 

in the Northeastern United States. The study population included patients aged ≥18 years with 

at least one encounter at the health system between April 1, 2017, and April 1, 2022. Patient 

EHR data were retrieved from MGB's two clinical databases: the Research Patient Data 

Registry (RPDR) and the Enterprise Data Warehouse (EDW), which together encompass 

patient demographics, healthcare encounters, problem lists, billing and encounter diagnoses, 

procedures, and clinical notes. A.1 details terminology used in this study. Patients who 

identified as "chose not to disclose" for gender identity or sex assigned at birth in the structured 

sex and gender demographic fields were excluded from the study for ethical considerations 

(A.2). 

 



2.2. Overview of the Workflow 

Figure 1 illustrates the workflow for developing and evaluating a deep learning-aided pipeline 

for TGD patient identification, which consisted of three steps. First, we compiled a 

comprehensive list of TGD keywords from three sources (expert input, published literature, and 

a BioWordVec model) to extract relevant information from the EHR. Next, using the keywords, 

we created a “screening cohort” from MGB’s EHR and split this cohort into potential non-TGD 

and TGD patients for model development and evaluation. For model development, we further 

created a balanced training dataset by leveraging an internally generated TGD patient cohort 

previously confirmed by clinicians. Finally, we trained a deep learning-based TGD classifier 

compared with several machine learning algorithms. We evaluated the effectiveness of each 

component of our pipeline.  

Figure 1. Transgender and gender diverse identification algorithm pipeline 

 

2.3. TGD Keyword Identification 

Developing keyword lists is a crucial step when building input corpora for deep learning models 

from patient-level EHR data. As the length of the input increases, so does the computation time 

and data noise. In our case, we selected the BERT architecture, which presents a maximum 

sequence length limitation of 512 tokens. To ensure that the most significant information is 

retained within this limit and with minimal noise, a list of keywords was compiled to pre-screen 

patient data.  

To meet our objective of minimizing false negatives and maximizing prediction model 

accuracy, developed a comprehensive keyword list to pre-screen potential TGD individuals 

using three sources in sequence: expert input, published literature, and a BioWordVec model 



finetuned on a self-narrative corpus. Initially, a group of clinicians experienced in transgender 

healthcare created a list of keywords. We then identified additional keywords from relevant 

articles on this subject [10–12,14]. The expert-curated list and literature-reported list were then 

merged to form a base list, which was subsequently edited to eliminate duplicates, acronyms, 

and words that may introduce false positives, such as MTF (which is frequently used to refer to 

military treatment facility), identifies as (often followed by religious beliefs), body dysmorphia 

and bisexual (which are not closely related to TGD and may introduce bias), etc. In some cases, 

related keywords were grouped together (e.g., transvestic disorder, transvestic fetish, and 

transvestite were grouped under transvest), while others were not if they were not closely 

related to TGD or had high rates of false positives (e.g., gender identity disorder and gender 

identity issue were not combined with gender identity). Some of the keywords reflect 

stigmatizing terminology that was previously used to describe identities and behaviors in the 

TGD population, including ICD codes that have since been replaced with updated terms.  

We then employed word embedding techniques to expand the base list. We used 

BioWordVec [28], a pre-trained word embedding model designed specifically for biomedical 

NLP tasks. This model used neural networks to analyze word associations in the training data 
and assigned each word a vector representation. For the TGD identification task, we fine-tuned 

the BioWordVec on a corpus of transgender-related texts [29] to create a new word embedding 

model. The transgender corpus contained self-narratives collected from the asktransgender 

subreddit channel. To the best of our knowledge, it is the most extensive public corpus on 

transgender-related topics. We then removed stop words (defined as words that carry little or 

no information in a language), generated unigrams, bigrams, and trigrams from the remaining 

text, added a new vocabulary to the BioWordVec model’s dictionary, and trained the model 

with three epochs.  

Using the fine-tuned BioWordVec model, we extended the base list by identifying the 

top 30 similar phrases for each keyword in the list. Each of these phrases was manually 

reviewed, and those were removed if they were stop words (e.g., hello, sis), directly unrelated 

to TGD (e.g., depression, anxiety), or likely to produce false positives in keyword matching. 

Since the BioWordVec model was fine-tuned on a social media corpus, we further filtered it by 

matching the keywords against the set of clinician-verified clinical notes from TGD patients to 

ensure that the expanded list of keywords was relevant to our clinical context. Any keywords 

not appearing in notes were removed from the list.   

To make the keyword list usable without deep learning models, we divided it into a 

main list and a complementary list. The main list's keywords are directly TGD-related, while 

the complementary list contains phrases that frequently appear with TGD terms in our dataset 

but are less directly related to TGD, such as procedures that non-TGD patients can receive (e.g., 

breast augmentation, voice modification, etc.). While we separated them for the readers, we 

used both lists in our pipeline because it includes a BERT model, which makes predictions 

based on contextual information. We recommend not using the complementary list without a 

contextual model to avoid algorithm bias. 

2.4. Data Preparation 

2.4.1. Creation of development and validation datasets 

The study population comprised three groups: the cohort of clinician-confirmed TGD patients 

seen at the health system, potential TGD patients, and potential non-TGD patients. The latter 

two were selected based on the presence of TGD-related keywords in diagnoses, procedures, 

and notes, as well as any indication of diverse gender identity in the gender identity fields. The 

clinician-confirmed TGD group and the potential non-TGD group were used to create a 

balanced dataset for model development and evaluation, as described below. The potential 

TGD group was used for further evaluation of the model. 



 To develop and evaluate the TGD classifier, we created two datasets: Dataset I for 

model development, and Dataset II for further testing the model's performance on keyword-

preselected patients. 

Dataset I consisted of the clinician-confirmed TGD patients as positive cases, as well 

as an equal number of potential non-TGD patients as negative cases. Those negative cases were 

randomly sampled by year among all potential non-TGD patients. We conducted a manual chart 

review, detailed below, on 150 randomly selected non-TGD cases and found that 146 (97.3%) 

were confirmed to be non-TGD patients; the remaining four patients did not have sufficient 

records for assessment. 

Dataset II consists of a randomly selected sample of 200 potential TGD patients and 

was used to evaluate the ability of the trained model to predict gender identity on the remainder 

of the dataset.  

2.4.2. Chart review 

A manual chart review was conducted to provide gold-standard labels of gender identity (TGD 

or non-TGD). The review was performed by two authors (Y.H. and V.N.) and consisted of 

examining demographic fields, progress notes, diagnoses and procedures, and problem lists 

related to gender within the EHR to determine TGD labels. Any discrepancies between the two 

reviewers were adjudicated by a third reviewer (D.F.). The purpose of the manual chart review 

was to provide accurate labels for use in training and evaluating the TGD classifier. 

2.4.3. Generating corpora 

We extracted structured and unstructured EHR data for individual patients and converted it into 

a free-text format suitable for use with deep learning algorithms. However, the BERT model 

has a limited processing capacity, typically processing up to 512 tokens. As patient notes often 

exceed this limit, we employed several strategies commonly seen in various text pre-processing 

tasks [27,30] to shorten note length. In detail, we extracted sentences containing at least one 

keyword, removed duplicate sentences, and concatenated the remaining sentences in their 

original order. Then, regular expressions were used to remove unrelated information such as 

dates, times, patient identifiers, zip codes, numbers with more than three digits, parentheses and 

their contents, and known health system locations, such as hospital names and locations. If the 

notes were still longer than 400 words, we segmented the text into sentences and selected as 

many sentences as possible in their original order within 400 words. This process allowed us 

to classify the gender identity of patients based on their EHR data using the BERT model. 

To incorporate structured EHR data (such as the sex and gender demographic fields, 

diagnoses, and procedures) into the deep learning pipeline for TGD identification, we converted 

the structured data into free text. This was done by inserting the names and values of the data 

into template sentences and then concatenating the resulting text with the processed notes. For 

example, the template sentences for diagnoses and procedures could be in the following format: 

1. The patient was diagnosed with: DIAGNOSIS1, DIAGNOSIS2, …, DIAGNOSISn. 

2. The patient received: PROCEDURE1, PROCEDURE2, …, PROCEDUREm.  

Here, DIAGNOSIS and PROCEDURE are unique names of the diagnosis and procedure code, 

and n and m are the number of diagnoses and procedures, respectively.  

Similarly, for we converted patient sex and gender demographic field information using the 

template sentence: “The patient’s sex at birth is SEX_AT_BIRTH; legal sex is LEGAL_SEX; 

gender identity is GENDER_IDENTITY”. 

Our final corpus for the model consists of patient notes concatenated from sentences 

of individual patients in the following order: 1) diagnoses and procedures, 2) sex and gender 

demographics, and 3) extracted note sentences. 

 

 



2.5. Classification Models 

2.5.1. Deep learning-based classifier 

To classify patients as transgender or cisgender, we built a linear classification model, in which 

we used Bio_ClinicalBERT [31], a variant of bidirectional encoder representations from 

transformers (BERT) [32] that has been further trained on extensive biomedical data, to encode 

the processed patient notes. We added a linear classifier after the ClinicalBERT embedding 

layers and froze all but the last layer to prevent overfitting. Then, we trained the model on a 

binary classification task of identifying transgender patients, utilizing binary cross-entropy loss. 

Given the small size of our data sets, we froze all but the last three layers of the 

Bio_ClinicalBERT model before fine-tuning. We set the maximum length of tokens to 512, 

and both the training and validation batch sizes to 8. The model was trained using a learning 

rate of 3e-5 for four epochs, and its performance was evaluated every 100 training steps. 

Training and validation typically took 8 to 10 minutes on an NVIDIA Quadro p6000 GPU with 

24 GB of memory.  

2.5.2. Baselines 

We conducted several experiments to evaluate the performance of our model by comparing it 

with several baseline approaches, including rule-based and statistical machine learning 

algorithms. While a few studies have reported the use of rule-based approaches in TGD 

identification, none of them, to the best of our knowledge, have used machine learning-based 

approaches. For the rule-based approaches, we used the best single- and combined-rule 

algorithm proposed by Guo et al [14].  

We also tested traditional statistical machine learning methods. We transformed the 

text into n-grams (unigrams, bigrams, and trigrams) and used the term frequency-inverse 

document frequency (TF-IDF) [33,34], a widely adopted method to measure the relevance of 

n-grams to a document across a collection of documents, to encode the texts. We applied 

XGBoost, support vector machine (SVM), random forest, and logistic regression to classify the 

encoded texts using the Scikit-learn package. The parameters of the classic machine learning 

models were optimized using a grid search on the training set. 

Additionally, to evaluate the performance of the keyword expansion module, we 

compared the pipeline's performance in two different settings: (1) using only the baseline 

keyword list (i.e., literature-reported keywords and expert-curated keywords), and 2) using the 

expanded keyword list, but without the classification module. We considered patients with any 

keyword matches in any data fields (e.g., notes, diagnosis, and procedures) as TGD. 

2.5.4. Evaluation metrics and strategy 

We used the F1 score, a metric that combines precision and recall, to evaluate the 

performance of our model. In addition to the F1 score, we also report the mean and standard 

deviation of sensitivity, specificity, positive predictive value (PPV), negative predictive value 

(NPV), accuracy, area under the receiver operating characteristic curve (AUROC), and area 

under the precision-recall curve (AUPRC), which were calculated based on five-fold cross-

validation. This allowed us to assess the stability and robustness of our results and to determine 

the overall performance of the model. 

To ensure the model could accurately predict the gender identity of patients with 

missing structured gender demographic information, we conducted a sub-analysis to assess the 

model’s performance on a subset of patients who had missing values in the gender fields in 

both the development and evaluation datasets. Only patients whose gender identity values were 

“unknown” were included in this sub-analysis. Patients with a “chose to not disclose” value 

were excluded, consistent with the main analysis. 

We also conducted an error analysis on both datasets to gain a deeper understanding of 

where the model is likely to fail. Specifically, we aimed to identify the types of errors made by 



the model as well as the characteristics of the patients for whom the model demonstrated poor 

performance. 

3. RESULTS  

3.1. TGD Keyword Identification 

The expert-curated keyword list contained 27 keywords and the literature-reported keyword list 

contained 53 keywords (table 1). After merging the two lists and removing any misused 

keywords, there were 51 unique keywords. Following keyword expansion, the total number of 

keywords in the expanded list reached 364. Among these, 109 (29.9%) keywords—including 

58 novel ones—were referenced at least once in the clinical notes of the study group, and thus 

were incorporated into our final expanded keyword list. 

Table 1. TGD-related Keyword lists 

Source keywords 

Keyword list I (clinician-curated) 

\bF to M\b, \bM to F\b, binary titles, bottom surgery, female to 

male, female to male, gender change, gender dysphori gender 

identity disorder, gender reassignment, gender surgery, gender 

transition, genderqueer, male to female, male-to-female, non 

binary, non-binary, nonbinary, sex change, sex reassignment, 

top surgery, trans female, trans male, trans-gender, 

transfeminine, transgender, transmasculine, transsexual 

Keyword list 

II (identified 

from the 

literature) 

Roblin et al. 

(2016) 

Female-to-male, gender dysphoria, gender identity disorder, 

gender reassignment, male-to-female, sex reassignment, trans-

gender, transsexual, transvest 

Xie et al. (2021) 

Female to male, gender change, gender dysphoria, gender 

identity disorder, gender reassignment, gender transformation, 

male to female, sex change, sex reassignment, sex 

transformation, transgender, transition to female, transition to 

male, transsexual, transvest 

Guo et al. (2021) 

\bF to M\b, \bgay\b , \bM to F\b, agender, ambiguous 

genitalia, assigned female, assigned gender, assigned male, 

assigned sex, bigender, binary titles, binary trans, biological 

female, biological male, biologically female, biologically male, 

birth sex, bottom surgery, breast augmentation, changed name, 

chest binding, cross dress, cross gender, cross sex, crossdress, 

dead name, deadname, demifemale, demimale, desired gender, 

female to male, female-to-male, male to female, male-to-

female, trans-sexual, transsexual 

Keyword list 

III (combined 

from lists I 

and II, and 

expanded by 

BioWordVec-

TGD) 

The main list 

\bF to M\b, \bgay\b, \bM to F\b, agender, assigned female, 

assigned gender, assigned male, assigned sex, binary trans, 

biological female, biological male, biologically female, 

biologically male , birth sex, cross gender, cross sex, dead 

name, deadname, desired gender, female to male, female-to-

male*, feminization*, feminizing hormone therapy*, feminizing 

vaginoplasty*, gender affirm*, gender assigned*, gender 

binary*, gender change, gender confirmation*, gender 

creative*, gender disorder*, gender dysphoria, gender fluid*, 

gender identity disorder, gender identity issues*, gender 

identity uncertain*, gender incongruence*, gender issues*, 

gender neutral*, gender non-conform*, gender nonconform*, 

gender presentation*, gender pronoun*, gender queer*, 

gender reassignment, gender surgery, gender transition, 

genderfluid*, genderqueer, hormonal transition*, intersex*, 

male to female, male-to-female*, masculinization*, 



masculinizing hormone therapy*, misgender*, non binary, 

non-binary, nonbinary, null gender*, reassignment surgery*, 

sex change, sex reassignment, they/them*, theythem*,  

trans female, trans male, trans men*, trans people*, trans 

women*, trans-gender, transfeminine, transgender, 

transgender surgery*, transhealth*, transition to female, 

transition to male, transmasculine, transmen*, transsexual, 

transvest, transwomen* 

The 

complementary 

list 

ambiguous genitalia, augmentation mammoplasty*, bottom 

surgery, breast augmentation, changed name, chest binding, 

cross dress, crossdress, facial feminization*, gender 

expression*, gender unknown*, hysterectomy*, 

metoidioplasty*, orchiectomy*, permanent hair removal*, 

original birth*, preferred pronoun*, questioning gender*, sex 

unknown*, two spirit*, tomboy*, top surgery, unknown 

gender*, unknown sex*, vaginectomy*, vaginoplasty*, vocal 

feminization*, voice modification* 

Abbreviations: F to M, female to male; M to F. male to female. 

* Expanded keywords from BioWordVec-TGD. 

\b represents a leading/trailing whitespace.  

Authors note: As detailed in the methods, this list was compiled to include terminology that would 

maximally capture data from the sources used. As a result, this this list contains terminology that is 

stigmatizing and outdated. 

3.2. Dataset Characteristics 

Dataset I contained 3,150 patients, of whom 1575 (50%) were clinician-confirmed TGD 

patients. Dataset II contained 200 patients, of which 180 (90%) were TGD patients. Table 2 

displays the key characteristics of the datasets as well as the TGD and non-TGD patients in 

each dataset. TGD keywords were more frequently identified in clinical notes than in the 

diagnosis field, while the procedure field had the lowest frequency.  For example, TGD 

keywords were mentioned in 89.02% of the TGD patients’ notes in Dataset I and 95.56% of 

the TGD patients’ notes in Dataset II. In contrast, in Dataset I, keywords were only mentioned 

in 60.76% and 26.8% of the TGD patients’ diagnoses and procedures, respectively. Similarly, 

in Dataset II, only 103 (57.22%) TGD patients had keywords in  their diagnosis fields, and 10 

(5.56%) in procedure fields. Out of 200 randomly selected patients with keyword matches, 20 

were found to be non-TGD. Among these false positives, 3 (15%) had procedure matches, and 

17 (85%) had note matches. We identified high missingness in the structured gender 

demographic fields: in Dataset I, 1247 (39.59%) patients had missing gender identity values, 

and in Dataset II, 99 (49.5%) patients had missing values.  

Table 2. Summary of two datasets for model development and evaluation 

 Dataset I 

(N = 3150) 

Dataset II 

(N = 200) 

 Clinician-

confirmed 

TGD patients 

(N=1575) 

n (%) 

Non-TGD patients 

filtered by keyword 

search 

(N=1575) 

n (%) 

TGD patients by 

chart review 

 

(N=180) 

n (%) 

Non-TGD 

patients by 

chart review 

(N=20) 

n (%) 

Age, mean (SD) year 35.94 (16.04) 60.92 (18.0) 34.52 (15.48) 57.85 (20.27) 

Race, n (%)    

   Asian 77 (4.89) 37 (2.35) 8 (4.44) 1 (5.0) 

   Black 116 (7.37) 84 (5.33) 12 (6.67) 2 (10.0) 

   More than one race 50 (2.54) 6 (0.38) 6 (3.33) 0 (0.0) 



   Other  177 (11.24) 116 (7.37) 24 (13.33) 2 (10.0) 

   White 1155 (73.33) 1332 (84.57) 130 (72.22) 15 (75.0) 

Ethnicity   

   Hispanic  22 (1.40) 41 (2.60) 9 (5.0) 1 (5.0) 

   Non-Hispanic  1351 (85.78) 1321 (83.87) 146 (81.11) 15 (75.0) 

   Other  415 (12.83) 213 (13.52) 25 (13.89) 4 (20.0) 

Patients with 

keywords, n (%) 

  

    Diagnoses 957 (60.76) 0 103 (57.22) 0 

    Procedures 422 (26.8) 0 10 (5.56) 3 (15.0) 

    Clinical notes 1402 (89.02) 0 172 (95.56) 17 (85.0) 

Patients with missing 

gender fields, n (%) 

884 (56.13) 691 (43.87%) 84 (46.67) 15 (75.0) 

 
3.3. Model Performances on Dataset I 

Table 3 shows the performance of our models on dataset I. Bio_ClinicalBERT_TGD achieved 

an F1 score of 0.917, a sensitivity of 0.854, and a precision of 0.980, which significantly 

outperformed the rule-based baseline algorithms. Compared to other machine learning 

algorithms, Bio_ClinicalBERT_TGD achieved slightly better performance, with an AUROC of 

0.913 (95% CI, 0.891, 0.935) and an AUPRC of 0.956 (95% CI, 0.941, 0.970). 

 The augmented match algorithm, which relies on a single rule based on the presence 

or absence of any keywords, achieved an F1 score of 0.857 and a sensitivity of 0.883, 

outperforming previously published best-combined rules approach in [14].  

Finally, traditional machine learning classifiers on TF-IDF encoded text features had 

comparable performance to Bio_ClinicalBERT_TGD, with only a 0.2 to 0.3 sacrifice in F1. 

Table 4 presents the algorithms’ performance on the subset of patients from Dataset I 

with missing structured gender field values. Bio_ClinicalBERT_TGD remained the best-

performing model, achieving the highest F1 score of 0.923, the highest sensitivity of 0.906 and 

AUROC of 0.940. Bio_ClinicalBERT_TGD significantly outperformed the rule-based 

algorithms in terms of F1 score, sensitivity, specificity, precision, NPV, and accuracy. 

Bio_ClinicalBERT_TGD slightly outperformed machine learning models in all the metrics 

except specificity and precision. The rule-based baseline models all showed a decrease in 

performance compared to the performance in the entire Dataset I. In contrast, the machine 

learning and deep learning models showed a slight improvement in performance.  

Table 3. Performance of TGD identification algorithms on Dataset I (development set) 

    F1 Sensitivity Specificity Precision NPV Accuracy 
AUROC  

(95% CI) 

AUPRC  

(95% CI) 

Rule-based 

Exact Match 0.586 0.980 0.962 0.730 0.728 0.796 N/A N/A 

Augmented Match 0.857 0.883 0.882 0.858 0.869 0.870 N/A N/A 

Guo et al. (single)1* 0.816 0.723 0.952 0.936 0.777 0.838 N/A N/A 

Guo et al. (combined)2* 0.843 0.766 0.951 0.939 0.804 0.859 N/A N/A 

Machine 

Learning 
Random Forest 0.892 0.832 0.976 0.972 0.860 0.904 

0.904  

(0.880, 0.926) 

0.944  

(0.926, 0959) 



Support Vector Machine 0.886 0.808 0.993 0.991 0.844 0.900 
0.900  

(0.876, 0.923) 

0.947  

(0.932, 0.961) 

Linear Regression 0.882 0.799 0.994 0.991 0.837 0.896 
0.896  

(0.872, 0.919) 

0.946  

(0.931, 0.959) 

XGBoost 0.892 0.828 0.978 0.975 0.858 0.903 
0.903  

(0.879, 0.926) 

0.945  

(0.927, 0.960) 

Deep 

Learning 
Bio_ClinicalBERT_TGD 0.917 0.854 0.983 0.980 0.865 0.912 

0.913  

(0.891, 0.935) 

0.956  

(0.941, 0.970) 
1Best single-rule algorithm was based on ≥2 diagnosis codes and ≥1 keyword(s) 
2Best combined rule was either gender field indicates transgender or ≥1 diagnosis code(s) plus ≥1 TGD 

keyword(s) 

*Codes and keywords can be found in the paper by Guo et al. [17]. 

 

Table 4.  Sub-analysis of patients with missing structured sex and gender demographics in Dataset I 

    F1 Sensitivity Specificity Precision NPV Accuracy 

AUROC  

(95% CI) 

AUPRC  

(95% CI) 

Rule-based 

Exact Match 0.254 0.983 0.852 0.770 0.391 0.777 N/A N/A 

Augmented Match 0.658 0.908 0.756 0.860 0.703 0.833 N/A N/A 

Guo et al. (single) 0.766 0.674 0.951 0.887 0.837 0.851 N/A N/A 

Guo et al. (combined) 0.788 0.706 0.951 0.892 0.850 0.862 N/A N/A 

Machine 

Learning 

Random Forest 0.901 0.837 0.957 0.977 0.728 0.874 
0.897  

(0.870, 0.923) 

0.963  

(0.949, 0.975) 

Support Vector Machine 0.900 0.827 0.979 0.988 0.721 0.874 
0.903  

(0.878, 0.926) 

0.967  

(0.956, 0.977) 

Linear Regression 0.889 0.811 0.971 0.984 0.701 0.861 
0.891 

(0.865, 0.916) 

0.962  

(0.950, 0.973) 

XGBoost 0.901 0.837 0.957 0.977 0.728 0.874 
0.897  

(0.870, 0.923) 

0.963  

(0.949, 0.975) 

Deep 

Learning 
Bio_ClinicalBERT_TGD  

0.923 0.906 0.975 0.940 0.960 0.954 

0.940  

(0.912, 0.964) 

0.937  

(0.908, 0.961) 

1Best single-rule algorithm was based on ≥2 diagnosis codes and ≥1 keyword(s) 
2Best combined rule was either gender field indicates transgender or ≥1 diagnosis code(s) plus ≥1 TGD 

keyword(s) 

3.4. Bio_ClinicalBERT_TGD on Dataset II 

Table 5 shows Bio_ClinicalBERT_TGD's performance on Dataset II, the patients randomly 

sampled from the potential TGD patient group (Figure 1). Bio_ClinicalBERT_TGD had an F1 
score of 0.977, with a higher sensitivity of 0.967 and a higher precision of 0.988 compared to 

its performance on Dataset I. The mode’s specificity and NPV dropped to 0.80 and 0.75, 

respectively, indicating that it was better at identifying true positive cases than true negative 

cases.  

In the sub-analysis set of patients missing structured gender demographics, the model 

experienced a 0.007 decrease in the F1 score. The NPV increased to 0.857, suggesting that 

among patients with missing structured gender demographic data, the model achieved better 

balance in predicting true positive and true negative cases. 

 

 

 

 



Table 5. Performance of Bio_ClinicalBERT_TGD on Dataset II. 

3.5. Error Analysis 

A manual chart review of the false classifications by Bio_ClinicalBERT_TGD on Datasets I 

and II was conducted to summarize the root causes behind the false positives and negatives 

(Figure 2). 

For Dataset I, which consisted of five validations, 149 false negatives and 39 false 

positives were found. Most false negatives (91.95%, n=137) were attributed to an absence of 

sufficient information to conclusively determine a patient's gender identity. This issue primarily 

arose in cases where patients had not selected any notes and the available sex and gender 

demographics were insufficient for accurate identification. A further 12 patients (8.05%) were 

identified via the pronoun "they/them" but the model failed to predict their gender, likely due 

to an inadequate number of training samples containing these pronouns. 

The false positives in Dataset I were mainly triggered by keywords found within a 

complementary list. Three instances highlighted the sole keyword “hysterectomy” and two 

instances presented the keyword “vaginectomy.” This suggests a misinterpretation by the 

model, inferring a likely TGD identity for patients who had undergone a hysterectomy or 

vaginectomy. This bias may be the result of insufficient negative training samples containing 

details about these procedures, causing the model to form an overgeneralized association 

between these procedures and TGD identities. Additional false positives were found with 

confusing or contradictory information. For example, three patients had gender identity listed 

as unknown in structured demographics but mentioned they were biologically female or make 

in notes; one instance contained contradictory information, with the sex assigned at birth 

recorded as “male,” while the patient note indicated “biologically female." 

Dataset II yielded six false negatives and two false positives. All false negatives were 

related to evidence from pronouns: two instances were unable to correctly associate "preferred 

pronouns: they/them" with TGD individuals, three instances contained "preferred pronouns: 

she they," and one instance showed “preferred pronouns are: he/him, they/their”. Both false 

positives were associated with mentions of hysterectomy. 

 

 

 

 

 

 

 

  
F1 Sensitivity Specificity Precision NPV Accuracy 

AUROC  

(95% CI) 

AUPRC  

(95% CI) 

All patients 
0.977 0.967 0.900 0.988 0.750 0.960 

0.858  

(0.755, 0.954) 

0.984  

(0.970, 0.996) 

Patients with 

missing structured 

sex and gender 

demographics 

0.970 0.976 0.800 0.964 0.857 0.939 
0.865  

(0.770, 0.960) 

0.988  

(0.974, 1.000) 



Figure 2. Error analysis for false classification groups in Dataset I and II. Dataset I had 149 

false negatives and 39 false positives. Dataset II had six false negatives and two false positives. 

 

4. DISCUSSION 

In this study, we developed an accurate and efficient method for transgender and gender 

diverse identification in an EHR. In doing so, we were able to overcome some of the limitations 

of prior methods that relied on structured EHR data and rule-based algorithms. Overall, 

identification of this group has been a difficult problem which needs to be solved to deliver 

better care to these populations. We were able to develop multiple classification models, based 

on different machine learning-based NLP approaches, that leverage rich clinical data to achieve 

high performance. 

This study represents a significant advancement in the identification of TGD 

individuals in EHRs by pioneering the use of machine learning to aid the process. The robust 

deep learning-aided pipeline effectively outperforms the previously predominant 

methodologies which relied on rule-based algorithms and a limited set of gender-related 

keywords and medical codes. These conventional methodologies often were limited in accuracy 

and lacked the pattern recognition capabilities inherent in deep learning techniques. We 

specifically benchmarked our models against the work of Guo et al. [14], a previously published 

comprehensive TGD phenotyping and identification work. Our results indicate that our 

algorithms consistently outperform their best rule-based approaches, thereby demonstrating the 

tangible benefits of our deep learning application in TGD identification. 

The research pipeline we constructed, which includes a broad keyword list and multiple 

machine learning models, made a substantial contribution to the superb performance of gender 

identity detection. Across all metrics—F1 scores, accuracy, sensitivity, precision, PPV, and 

NPV—our methods excelled in both datasets compared to rule-based baselines. Algorithm 

evaluation across two datasets and two sub-analyses on patients without explicit sex and gender 

demographics demonstrated the superior accuracy of our machine learning-based algorithms. 

Moreover, they proved to be less vulnerable to gaps in sex and gender demographics, 

demonstrating their robustness in the face of data scarcity. Notably, the pipeline proved to be 

feasible and stable in classifying patient gender at the patient level, which is widely recognized 

as the most challenging level for prediction. Moreover, it is adaptable to note-, section-, or 

sentence-level predictions, although these levels require more labeling work. In doing so, our 

work helps to overcome a major barrier to EHR-based tools for population-level research and 

patient-level care, particularly given the large missing data in structured sex and gender fields. 

Specifically, these models could provide more complete information for downstream tasks that 

already rely on the gender fields, such as laboratories, rooming modules, preventative screening, 

population health programs, risk calculators and other applications. Future studies may 
compare patient-oriented outcomes in these areas using these models compared to current 

methods. 



In addition to the Bio_ClinicalBERT_TGD model, our experiments indicated that 

random forest and XG-Boost, using TF-IDF encoded text features as input, also performed 

reasonably well on Dataset I and the sub-analysis. While BERT models are generally 

considered state-of-the-art for text classification tasks, they may not always be the most 

practical solution due to their high computational requirements and the need for large amounts 

of training data. In contrast, random forest and XG-Boost have lower computational resource 

requirements and faster computation speeds, which make them more suitable for classifying 

large numbers of patients in the EHR database. Depending on the specific needs and available 

resources, these traditional machine learning models could be a suitable alternative to BERT. 

Our literature review of TGD identification enabled us to detect and correct several 

inaccuracies in previous conventions. We removed terms and acronyms that could result in 

erroneous diagnoses from the literature-reported list, such as "MTF (male to female)", 

"identifies as", "body dysmorphia", and "bisexual". In our examination, "MTF" is often used to 

denote Military Treatment Facilities in clinical notes, while "identifies as" is commonly linked 

to religious convictions, and the last two terms are not strongly associated with TGD. 

Additionally, we observed that acronyms are typically employed after the full term has been 
introduced. Finally, we partitioned our keyword list into a primary and supplementary list, 

acknowledging that the supplementary list may lead to a high rate of false positives and 

emphasizing the importance of sufficient training data to differentiate between complementary 

keywords and definite indications of TGD. Together, these efforts support portability and 

generalizability.  

The generalizability of deep learning models is largely limited due to Health Insurance 

Portability and Accountability Act (HIPAA) restrictions on sharing labeled patient-level data. 

To overcome this limitation, our method incorporates a partially reusable component, 

specifically the keyword extension for data denoising, which can be applied across different 

institutions. Furthermore, the model-building process in our approach is designed to be 

straightforward, allowing for easy implementation and adaptation in various healthcare settings. 

Lastly, our approach can be applied to other case identification and phenotyping tasks using 

her data.  

5. LIMITATIONS 

Our study has several limitations that need to be acknowledged. Firstly, the BioWordVec model 

used to generate TGD keywords was primarily trained on PubMed data and social media posts. 

As a result, it might be biased towards these data sources and may not capture a complete set 

of keywords used in clinical notes. This limitation could have affected the model's ability to 

accurately identify and classify TGD-related content in clinical notes. Secondly, our study 

relied on training and test sets from a single institution, which lacks external validity. Future 

research could benefit from utilizing larger and more diverse datasets collected from multiple 

institutions to improve the model's performance and validate it across different healthcare 

settings. Thirdly, our positive and negative samples were heterogeneous, potentially limiting 

the diversity of the final training set. This lack of diversity may have hindered the model's 

ability to fully understand all the keywords and concepts related to TGD. Our error analysis 

revealed that Bio_ClinicalBERT_TGD was often confused with hysterectomy and they/them. 

This confusion may be attributed to the lack of training samples with the they/them keyword 

for the model to effectively learn the relationship between these pronouns and TGD, and that 

we excluded any keyword matches in the negative cohort to reduce labeling work. Finally, 

some patients did not have information in their notes that matched TGD-related information. 

We attempted to identify potentially relevant information using the trained 

Bio_ClinicalBERT_TGD model and a simple clustering pipeline in a previous framework [35]. 

However, it did not improve classification performance; more specifically designed techniques 

such as iteratively the most informative instances through semi-supervised learning should be 

investigated in future work.  

 



6. CONCLUSION 

We utilized machine learning-based NLP techniques that include both clinical notes and 

structured EHR data to identify gender identity. Better approaches to doing this will be helpful 

in addressing the needs of gender diverse populations.  Future work should focus on addressing 

improving performance by incorporating additional diverse and representative data sources, 

increasing training and test set sizes, and ensuring balanced sample distribution models that are 

generalizable and actionable for the clinical domain. 
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A. Appendices 

A.1. Study terminology* 

Transgender and Gender Diverse (TGD) 

Persons who have a gender identity that differs from the sex that they were assigned at birth, 

including transgender and gender fluid.  In this study, persons who are not sure about their 

gender identities are included in the term “gender non-binary,” among TGD persons. 

Sex and Gender Demographics Fields (Appendix B) 

Refers to patient sex information and gender information. In the EHR system studied, sex and 

gender demographics fields consist of three subfields: (1) sex assigned at birth, (2) legal sex, 

and (3) gender identity. Sex at birth refers to the sex an individual was assigned at birth. Legal 

sex refers to the registered or administrative sex. Gender identity refers to an individual's 

recorded gender identity. Legal Sex is a required field for patient registration; the other two 

fields are optional and may be patient-, provider-, or administratively recorded. Field values 

for each term are detailed in Appendix A. 

Sexual Orientation and Gender Identity (SOGI) 

An umbrella term that includes EHR-based demographic information related to sexual 

orientation as well as gender and sex demographics. Sexual orientation is not a required field 

and is not assumed to be correlated with sex and gender demographics. This study does not 

examine sexual orientation data. 

*Terminology can be fluid and may vary across patients and change over time. This study used 

cross-sectional data and therefore reflects a single data point for each participant. 
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A.2. Sex and gender demographics fields in the EHR system 

Gender (Legal Sex) 

Female 

Male 

Unknown 

X (Non-Binary)* 

Gender Identity 

Chose not to disclose 

Female 

Male 

Non-binary* 

Other* 

Queer/Genderqueer* 

Questioning/Unsure* 

Transgender Female (Male-to-Female)* 

Transgender Male (Female-to-Male)* 

Unknown 

Sex at Birth 

Chose not to disclose 

Female 

Male 

Uncertain* 

Unknown 

*Structured values considered as TGD, if available. Patient with a field value of “chose not to disclose” for gender 

identity or sex at birth were excluded from the study. “Unknown” was not considered a TGD indication because it 

does not contain determinant information. Terminology reflects the field options in the EHR at the time of data 

entry. 

 

 








