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ABSTRACT  

PURPOSE 

60-70% of newly diagnosed diffuse large B-cell lymphoma (DLBCL) patients avoid 

events within 24 months of diagnosis (EFS24) and the remainder have poor outcomes. 

Recent genetic and molecular classification of DLBCL has advanced our knowledge of 

disease biology, yet were not designed to predict early events and guide anticipatory 

selection of novel therapies.  To address this unmet need, we used an integrative 

multiomic approach to identify a signature at diagnosis that will identify DLBCL at high 

risk of early clinical failure. 

 

PATIENTS AND METHODS  

Tumor biopsies from 444 newly diagnosed DLBCL were analyzed by WES and 

RNAseq.  A combination of weighted gene correlation network analysis and differential 

gene expression analysis followed by integration with clinical and genomic data was 

used to identify a multiomic signature associated with high risk of early clinical failure. 

 

RESULTS 

Current DLBCL classifiers are unable to discriminate cases who fail EFS24. We 

identified a high risk RNA signature that had a hazard ratio (HR, 18.46 [95% CI 6.51-

52.31] P < .001) in a univariate model, which did not attenuate after adjustment for age, 

IPI and COO (HR, 20.8 [95% CI, 7.14-61.09] P < .001).  Further analysis revealed the 

signature was associated with metabolic reprogramming and a depleted immune 

microenvironment.  Finally, WES data was integrated into the signature and we found 



that inclusion of ARID1A mutations resulted in identification of 45% of cases with an 

early clinical failure which was validated in external DLBCL cohorts. 

 

CONCLUSION 

This novel and integrative approach is the first to identify a signature at diagnosis that 

will identify DLBCL at high risk for early clinical failure and may have significant 

implications for design of therapeutic options.  

 

  



INTRODUCTION  

While the majority of DLBCL patients are potentially cured after standard therapy, there 

remains a subset of patients who do not respond to front line treatment1. The 

approximate 70% of DLBCL patients who avoid retreatment,  progression, relapse,  or 

death within 24 months of diagnosis (termed event-free survival at 24 months or EFS24) 

have a good prognosis while the remaining 30% have a very poor outcome.2 Using 

clinical factors we developed and validated the International Prognostic Index for EFS24 

(IPI24),3 which can be used at diagnosis for personalized risk prediction.3  Beyond 

clinical characteristics,4 molecular features associated with DLBCL prognosis include 

cell-of-origin (COO)5,6 and MYC, BCL2,or BCL6 translocation status, or MYC “double 

hits (DH)”,7-9 with  DH-DLBCL now considered as a distinct entity, High Grade B Cell 

Lymphoma (HGBCL).10 More recent molecular classification of DLBCL based on 

genomics, expression profiles, and tumor microenvironment has further refined our 

understanding of DLBCL heterogeneity and biologic underpinnings.11-18 While these 

studies have advanced our understanding of DLBCL, none were designed to identify 

early failures (EFS24) after frontline standard of care therapy, which is of great interest 

for patient management and could provide biologic insight and identification of 

therapeutic targets. In addition, optimal utilization of novel treatment strategies that are 

somewhat agnostic to tumor biology, such as chimeric-antigen receptor T cell (CAR T) 

or bispecific T-cell engager (BiTE) antibody therapy, could benefit from identification of 

patients at high risk of early failure. 

 



To identify a biologic signature of early clinical failure, we used next-generation 

sequencing (NGS) data generated on newly diagnosed (ndDLBCL) and 

relapsed/refractory DLBCL (rrDLBCL) tumors, combined with integrative computational 

approaches. Based on this signature, patients at diagnosis can be categorized into low, 

intermediate, or high-risk groups for early clinical failure (EFS24) and inferior overall 

event-free (EFS) and overall (OS) survival, independent of IPI, COO, and other known 

factors.   

 

METHODS  

Study Populations  

The overall study design is shown in Figure S1. We used clinical and NGS data from 

diagnostic tumors from 444 DLBCL patients from the University of Iowa and Mayo Clinic 

Lymphoma Specialized Program of Research Excellence (SPORE) Molecular 

Epidemiology Resource19 (MER, n= 433) or from NCT00670358 (n=11)20, herein 

referred to as MER.  Patients provided written consent at study enrollment, including 

use of clinical samples. Individual patient level data is shown in Table S1, all identifiers 

are coded, and methods are in Supplemental Methods. We also used NGS data from 

tumor samples at the time of relapse (rrDLBCL, any line of treatment), consented to the 

MER (n=61), banked in the Mayo Lymphoma Biobank (waiver of consent) (n=50), or 

consented to the CC-122-ST-001 clinical trial (n=32, NCT01421524). NdDLBCL 

validation cohorts include those from the BCCA (EGAS00001002936), Duke 

(EGAD00001003600), and REMoDL-B (GSE117556).18,21,22 

 



DNA Sequencing and Analysis 

For WES, we used paired tumor (FFPE) and germline (extracted from peripheral blood) 

DNA; sequencing was conducted at Expression Analysis, Inc (Durham, HC, USA), as 

described in Supplemental Methods. After quality control, WES data on 341 ndDLBCL 

was included. We also used existing WES data generated at Mayo on 19 additional 

ndDLBCL tumors, as well as previously analyzed WES data on Mayo DLBCL cases 

from Lohr et al (n=16) and Hartert et al (n=28).23,24 The final analysis cohort included 

data from 404 ndDLBCL. Genes included for analysis are shown in Table S2. Mutation 

calls from the BCCA (n=121) and Duke (n=441) cohorts were provided by Dr. Morin, 

mutation calls from REMoDL-B (n=400) were obtained from Sha et al.22 Copy number 

analysis (CNA) was carried out using the Nexus Copy Number (Biodiscovery) software, 

detailed in Supplemental Methods.24-26 Classification methods for  LymphGen and 

HMRN and tools used for analysis are in Supplemental Methods. 

 

RNA Sequencing and Analysis 

RNA was extracted from FFPE tissue sections and sequencing was performed at 

Expression Analysis, Inc as described in Supplemental Methods. Sample and RNA QC 

is shown in Figure S2 for a final cohort of 321 ndDLBCL and 143 rrDLBCL cases. For 

validation, we used data from BCCA provided by Dr. Morin (n=121); Duke, downloaded 

from EGA and processed in the Mayo Clinic Bioinformatics Core (n=442); and 

REMoDL-B, downloaded and processed on the NCBI GEO website (n=928). 18,21,22 Data 

analyses, including the weighted gene correlation network analysis (WGCNA) and 

differential gene expression analysis, are described in Supplemental Methods.  



 

Statistical Analysis 

EFS was defined as time from diagnosis to disease relapse/progression, retreatment, or 

death, and EFS24 was defined as EFS status at 24 months after diagnosis.2 OS was 

defined as the time from diagnosis to death from any cause. EFS and OS were 

evaluated using Cox proportional hazards models and Kaplan Meier curves.  EFS24 

associations survival curves were truncated at 24 months. Differences in survival curves 

were evaluated using the log-rank test. For enrichment analysis of categorical variables, 

the Chi Square or Fisher’s exact test was used. Comparative analyses were carried out 

using either the Wilcoxon or Kruskal-Wallis test. A P-value <0.05 was considered 

statistically significant unless otherwise stated. Analysis were performed using R and 

GraphPad Prism.28 

 

RESULTS  

Cohort Description and Performance of Published Molecular Classifiers for Early 

Clinical Failure 

A summary of available molecular and genetic features on the 444 ndDLBCL is shown 

in Figure S3A. The median age at diagnosis was 64.5 years, 57% were male, and all 

were treated with immunochemotherapy; full clinical details are summarized in Figure 

S3B. During a median follow-up time of 82.8 months (for living patients), 168 (37.8%) 

had an event and 112 (25.2%) failed to achieve EFS24 (early clinical failures). While 

some DLBCL molecular classifiers have been associated with prognosis, none were 

designed to discriminate early clinical failures. In our cohort, COO5 (overall, P = .05, 



compared to GCB, ABC HR, 1.63 [95% CI 1.08-2.45] P = .019, and Unclassified HR, 

1.50 [95% CI 0.84-2.67] P = .169), DH FISH (DH FISH+ HR, 1.93 [95% CI 0.96-3.86] P 

=.064), and DH Sig+29 (HR, 1.58 [95% CI 0.93-2.68] P =.093) showed nominal 

associations with EFS24 in expected directions (Figure S4). The recently developed 

DLBCL molecular classifiers HMRN, LymphGen, and EcoTyper B Cell State showed 

expected distributions (Figure 1 A-C top panel), but were not associated with EFS24 

(Figure 1 A-C, lower panel) and EFS24 failures spread across groups within each 

classifier as shown in Sanky plots (Figure 1 A-C, middle panel top). The genomic 

classification based on Chapuy et al was only available on 41 cases and therefore was 

not included for further analyzed.12   

 

WGCNA Analysis of DLBCL 

Because the existing molecular classifiers were at best weak predictors of EFS24, we 

analyzed the RNA-seq data from our ndDLBCL cohort (n=321) using WGCNA,30 a 

method for identifying biologic networks, or gene modules, by using pairwise 

correlations between variables (Figure 2A). Unsupervised hierarchical clustering, 

followed by branch cutting, identified 15 modules with a range of 17 to 2685 genes 

(Figure 2B).  EFS24 as well as COO and DH characteristics were correlated with 

individual gene modules (Figure 2C). The strongest positive correlations were observed 

for the cyan module with ABC and the pink module with GCB. The pink module also 

showed strong correlation with both DH FISH and DH Signature.  Genes in the pink and 

cyan modules are in Table S3. As proof of principle for the utility of WGCNA, we 



calculated the eigengene gene score for each patient for the two COO-associated 

modules and found that the scores correlated well with their COO (Figure S5).  

 

The greenyellow module had the strongest correlation with EFS24 failure (r = -0.28), 

and was selected for further investigation. Genes (n=37; Table S3) in this module had a 

negative correlation with EFS24 failure, suggesting that downregulation of their 

expression may be associated with early clinical failure (Figure 2C). Figure 2D shows 

the correlation network for the 37 genes in the greenyellow module. To identify an 

optimal cutpoint for the greenyellow module with EFS24, the eigengene value from this 

module was calculated for each patient and maxrank statistics (R package) was used27 

to define high vs. low expression. Figure 2E shows the KM curves based on this 

cutpoint, such that patients with lower expression of the greenyellow signature genes 

were more likely to fail EFS within 24 months compared to those with higher expression 

(HR, 3.67 [95%CI 2.15-6.25] P < .001). 

 

Generation of a High Risk EFS24 Failure Gene Signature 

As the WGCNA analysis was unsupervised, we conducted complementary analyses 

that trained on the EFS24 endpoint using RNA-seq data from both nd- and rrDLBCL 

cases. We selected protein coding genes that were 1) differentially expressed 

(FDR<0.05, n=779 genes) between cases who failed (n=84) and achieved (n=237) 

EFS24; and 2) differentially expressed (FDR<0.05, n=3640 genes) between cases who 

achieved EFS24 (n=235) and rrDLBCL cases (n=143, Figure 3A). Next, genes common 

to both analyses were intersected and added to the 37 genes from the WGCNA 



analysis, ultimately defining a 387 gene signature associated with EFS24 failures and 

relapsed disease (Figure 3B and Table S4). To score each patient for the gene 

signature, the R tool singscore was used, which generates a totalscore for all 387 up- 

and downregulated genes (Figure 3C).31 Patients who achieved EFS24 had a lower 

totalscore (median=0.108), while patients who failed EFS24 (median=0.165) or who had 

rrDLBCL (median=0.168) had significantly higher totalscores. Next, we divided the 

cases into three groups based on the distribution of their totalscore by using a cut point 

of +/- one standard deviation (Figure 3D), which shows that EFS24 failures increase 

with higher scores. A heatmap of the 387 gene signature, herein referred to as the risk 

signature, for the low and high risk groups is shown in Figure 3E. A heatmap of all 

cases is shown in Figure S6. 

 

RNA Risk Signature is Associated with Prognosis  

There was a strong association of the RNA signature score with EFS (Figure 4A) and 

OS (Figure 4B). Compared to low risk, patients with an intermediate (HR, 4.86 [95%CI 

1.78-13.24] P = .002) or high risk (HR,18.46 [95% CI 6.51-52.31] P < .001) signature 

had inferior EFS, which did not attenuate in the high risk cases after adjustment for 

COO or IPI (HR, 16.35 [95% CI 5.74-46.56] P < .001). Furthermore, results held in 

analyses stratified on COO, IPI, and after exclusion of HGBCL cases (Figure S7 A-E). 

The clinical features of cases in each of risk group are shown in Table S5.  Next, we 

attempted to validate our findings using RNA-seq data from cases with available 

outcome data from BCCA Duke, and REMoDL-B (Figure 4 C-E).  Compared to the low 

risk RNA signature group, patients with a high risk signature in BCCA (PFS, HR, 9.62 



[95% CI 2.12-43.55] P = .003), Duke (OS, HR, 3.04 [95% CI 1.58-5.83] P = .001) and 

REMoDL-B (PFS, HR, 2.4 [95% CI 1.57-3.68] P < .001) had inferior outcomes.   

 

High Risk Cases are Enriched With Metabolic and TME Signatures 

To better understand the biology underlying the RNA signature, we conducted 

additional in silico analyses. Based on TME26 scoring, we found a significant 

enrichment of TME negative cases in the high risk group (Table S5, P < .0001), 

suggesting the importance of overall cellular composition and TME biology in these 

tumors. To further explore which biological processes drive the high risk signature, we 

first performed pathway analysis. We first looked at all 3 RNA analyses individually, the 

WGCNA gene set, and the DEG analyses from Figure 3A. As shown in Figure S8A, 

oxidative phosphorylation and metabolic processes genes are represented in the 

greenyellow module. In the DEG analysis between EFS24 achieve vs EFS24 fail we 

again identified oxidative phosphorylation and metabolic processes (Figure S8B). In the 

DEG analysis between EFS24 achieve and rrDLBCL, there were genes involved in 

mismatch repair, NF-kB, and inflammation (Figure S8C). Next, we ran pathway analysis 

on the 387 genes from our high risk signature and again identified genes that are 

involved in metabolic processes and oxidative phosphorylation (Figure 5A). 

 

To expand on the TME26 findings and explore the immune composition of the high risk 

tumors we profiled the TME using CibersortX to assess immune cell content. As shown 

in Figure 5B, there was a significant decrease in CD4 memory and CD8 T cells, T 

follicular helper (TFH),  M0, M1, and M2 macrophages in the high risk group. These 



results were further supported when we examined the TME using the Lymphoma 

Ecotype or LME classifiers (Figure S9), both of which identified a significant increase in 

LME depleted or unclassified TME Ecotype in the high cases vs low risk cases (Figure 

5C). Of note, EcoTyper and LME classification were not associated with EFS24 (Figure 

S9). 

 

Integration of High Risk Signature With Genetic Features 

To determine if our high risk signature was driven by unique genetic features, we used 

WES and OncoScan data to define their mutation and copy number landscape. 

Oncoplots for the mutation and copy number variants are shown in Figure S10A-B. The 

high risk cases were significantly enriched for mutations in TP53 and CREBBP as well 

as copy number alterations in 18q21.33 (BCL2), 3q28 (BCL6), 6q14 (TMEM30A), 

19q13.42, and 17q24.3 when compared to low risk (Figure 6A and Table S6). 

Classification of by LymphGen and HMRN (Figure 6B and Figure S10C) revealed that 

the high risk cases are spread across the molecular classifiers.  Because DLBCL is 

genetically heterogeneous and not dominated by single mutations, it is possible to miss 

the importance of less frequent variants that may play a role in aggressive biology. We 

therefore performed a pathway analysis using all genes previously reported to be 

mutated in lymphoma (n=268)  as well as the PanCancer gene list (n=184) from 

maftools (Table S7).11,12,18,32,33 This analysis revealed an enrichment of mutations in 

genes related to Notch signaling, the cell cycle, splicing, and metabolism pathways, 

when compared to low risk (Figure 6C). Conversely, there was enrichment of mutations 

in genes related PI3-kinase, Jak/Stat, and MAP-kinase in the low risk cases.   



In our ndDLBCL cohort the high risk signature captured 36% of EFS24 failures, 

but only 5% of EFS24 achievers. However, a significant number of EFS24 failures 

remain in the intermediate risk group. Therefore, we wanted to determine if we could 

integrate our genetic data with our risk signatures to further refine our ability to capture 

additional cases (Figure 6D). We first ran a mutation enrichment analysis on the 

intermediate risk group to identify mutations associated with EFS24 failure and 

identified that ARID1A (Figure 6E). Next, we categorized patients who had both RNA-

seq and WES data as low, intermediate, or high risk and/or ARID1A mutation. Similar to 

prior analysis, compared to low risk the new integrated high risk signature was 

associated with EFS (HR, 13.49 [95% CI 4.97-37.96] P < .001) (Figure 6F.)  These 

findings were validated in independent data sets from BCCA (PFS, HR 7.3, [95% CI 

1.67-32.00] P=.008), and Duke (OS, HR 2.93,  [95% CI 1.55-5.56 ] P = .001 ), and 

REMoDL-B (PFS, HR 2.59,  [95% CI 1.29-5.17] P =.007 ) (Figure S11 A-C). Overall, the 

integrated high risk signature captured 45% of EFS24 failure in the MER cohort, 34% in 

BCCA, and 37% in REMoDL-B, an improvement compared the RNA signature alone 

(Figure S11D). 

 

DISCUSSION  

In recent years, several molecular and immune classification systems have been 

developed to subgroup DLBCL, which has advanced the understanding of biological 

pathways driving this disease. However, our results suggest that these known clusters 

fail to identify patients with a early clinical failure, limiting their use in clinical decision 

making. Using a multiomic approach on a highly annotated cohort of ndDLBCL, we now 



describe a risk signature that simultaneously captures risk status and aggressive 

biology defined by metabolic and TME depleted expression profiles. In a simultaneous 

analysis of this data, we performed an unsupervised analysis on transcriptomics 

features from ndDLBCL patients and identified 7 clusters, one called A7 (Aggressive 

lymphoma 7) with poor prognosis and defined by ABC COO and high myc expression 

(currently under review). Interestingly, our high risk gene expression signature shared 

overlap with only 17% of A7 cases, suggesting that unique aggressive features were 

detected by each approach.    

Our finding that high risk DLBCL tumors were driven by a metabolic signature are 

supported by prior gene expression studies where Monti et al  34 identified a subgroup of 

DLBCL, OxPHOS-DLBCL, defined by a dysregulation if genes belonging to the 

mitochondrial oxidative phosphorylation pathway (OxPhos)34 with further analysis 

suggesting that those tumors develop an independent nutrition mechanism.35  However, 

the association of OxPHOS-DLBCL with outcome has not been fully explored. The 

metabolic shift being detected by our high risk signature may be consistent with the 

“Warburg Effect” 36  a well know mechanism of cancer progression that is often 

associated with aggressive disease.   Our high risk cases also displayed a depleted 

TME signature 37 suggesting poor infiltration of tumor specific T cells.  There is a 

growing literature suggesting that a lack of TME involvement has a negative impact on 

outcome,16,17  Kotlov et al, reported that the highest number of non-responders on 

standard chemotherapy where classified as TME depleted.17 Our high risk signature is 

unique in that it simultaneously captures both metabolic and TME dysregulation 



allowing for early capture of aggressive DLBCL with potentially heterogenous biologic 

programs. 

Several studies have attempted to identify the prognostic value of single genetic 

alterations,38,39 yet there is little consensus between studies. However, our data do align 

with previous findings on TP53 alterations, which have been shown to be prognostic of 

inferior survival in DLBCL.39-42 Although, TP53 mutations alone were not prognostic in 

our cohort, likely due to the fact that not all TP53 mutations have the same biologic 

impact. Because TP53 mutations are well known to be associated with metabolic 

rewiring and chemoresitance, we hypothesize it may play an important role in driving 

the metabolic signature identified in our study.42-46 Beyond TP53, our analysis highlights 

a role for ARID1A in aggressive disease biology. ARID1A mutations are associated with 

both tumor suppression and tumor initiation in many malignancies, including 

DLBCL.47,48 In addition to being an important chromatin modifier, ARID1A is involved in 

double strand break repair, homologous recombination, and mismatch repair 

pathways.49-53 ARID1A can also directly bind TP53 to enhance its activity54, thus loss of 

ARID1A may act like a tumor suppressor and have a negative prognostic impact even in 

the absence of TP53 alterations. 

Moving forward, our signature and proposed classification approach (Figure 

S11E) may have important clinical implications. While not a primary focus of this 

manuscript, our risk classifier identified cases with a low risk of having an early event.  

This may be a subgroup of patients that will benefit from standard of care treatment with 

R-CHOP and may be spared from use of more toxic or expensive therapies.  

Identification of cases at diagnosis with our high risk signature could select patients 



appropriate for clinical trials of earlier use of CAR-T; earlier identification could allow for 

sooner CAR-T manufacturing reducing the percentage of patients with progression prior 

to receiving CAR-T, a key barrier to this therapy. We also identified several important 

biological pathways that may be directly targetable. Pre-clinical studies have shown that 

cell lines with ARID1A mutations are sensitive to EZH2 inhibitors57, such as 

tazemetostat, which are currently approved for the treatment of FL and are in clinical 

trial development for DLBCL.  

In summary, to our knowledge, this is the first classification system to use novel 

and integrative computational approaches to identify a multiomic signature of early 

clinical failure. Our signature captures important clinical and pathological characteristics, 

individual molecular alterations, and biological pathways in one signature for patient 

stratification and clinical management. 
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FIGURE LEGENDS 
Figure 1. Current DLBCL Classifiers Do Not Discriminate Early Clinical Failures. 

LymphGen (A), HMRN (B), and EcoTyper B Cell State (C) classification of ndDLBCL. 

Pie charts (upper panel) show distribution of cases for each classifier. Sankey plots 

(middle panel) show the distribution of EFS24 fail or achieve cases for each classifier.  

Kaplan Meier analysis (lower panel) of EFS24 for each classifier, LymphGen P = .96, 

HMRN P = .98, and B Cell State P = .73  

 

Figure 2. WGCNA Analysis Identifies Biological Modules Associated with DLBCL 

Clinical Traits. A. Schematic representation of WGCNA analysis workflow, created with 

BioRender.com.  B. Cluster dendrogram showing the 15 identified modules defined by 

color. The grey module consists of genes that could not be assigned to a co-expression 

module. C. Correlation of individual WGCNA modules with selected traits (COO of ABC 

or GCB, n=279, DH-FISH n=252, DH-Sig, n=313, and EFS24, n=321) was performed 

using Pearson correlation, *P < .05, **P < .001 and ***P < .0001. D. Correlation network 

representation of greenyellow module genes (n=37) analyzed using the igraph R 

package. E. Kaplan Meier analysis of EFS24 for cases classified as the yellowgreen 

high or low.  

  

Figure 3. Generation of the RNA Risk Signatures. A. Volcano plots showing 

differentially expressed genes (FDR <0.05) between EFS24 achieve vs fail or EFS24 

achieve vs rrDLBCL cases. Red dots represent upregulated genes and blue dots 

represent downregulated genes. Grey boxes highlight known lymphoma driver genes. 

B. Schematic representation of how the 387 gene risk signature was generated. C. 



Boxplots TotalScores for the risk signature foreach patient. *P < .05. D.  Distribution of 

the scaled Totalscores. Vertical lines represent +/- standard deviation which groups the 

scaled Totalscores samples into high, low and intermediated risk cases. E. Heatmap 

representing gene expression of RNA signature genes in high k and low Risk samples.  

  

Figure 4. Outcome and Clinical Characteristics of Risk Signature Groups. A. Event 

free  and B. overall survival of MER ndDLBCL cases according to RNA risk signature 

classification. C-E. Validation of RNA risk signature association with outcome in the 

BCCA, Duke and REMoDL-B DLBCL cohorts. 

  

Figure 5. Pathway and TME Characteristics of High Risk Signature DLBCL.  A. Bar 

plot displaying results from overrepresentation analysis for high risk cases. B. Boxplots 

of individual cell populations identified by CIBERSORTX in the low, high, and 

intermediate risk groups. P-values represent comparison between all three groups 

performed by a Kruskal–Wallis test and the line represents a *P < .05 between high and 

low risk groups performed by Wilcoxon test. C. Bar plot showing the distribution of 

Lymphoma EcoType and LME classification in each risk group. The line represents a *P 

< .05 for the comparison of the number of NA or LME-Depleted between the high and 

low risk groups. 

  

Figure 6. Genetic Features of High Risk DLBCL. A. Forest plot showing enrichment 

of mutations and copy number events between the high and low risk groups. B. Dot plot 

showing the percentage of samples which have mutations in the represented pathway. 



Red dots represent the percentage of samples in the high risk group while blue dots 

represent the percentage of cases in the low risk group. Shown pathways have at least 

a 1.3 fold increase or decrease between both groups. C. Schematic representation of 

decision tree approach for identification of EFS24 mutations in intermediate risk DLBCL. 

D. Forest plot showing enrichment of mutations in the intermediate group, comparing 

EFS24 fail vs EFS24 achieve. E. Kaplan Meir curve showing event free survival of high 

risk DLBCL with the inclusion of ARID1A mutations.  
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