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Abstract 

Dysmorphologists sometimes encounter challenges in recognizing disorders due to 

phenotypic variability influenced by factors such as age and ethnicity. Moreover, the 

performance of Next Generation Phenotyping Tools such as GestaltMatcher is 

dependent on the diversity of the training set. Therefore, we developed GestaltMatcher 

Database (GMDB) - a global reference for the phenotypic variability of rare diseases 

that complies with the FAIR-principles. 
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We curated dysmorphic patient images and metadata from 2,224 publications, 

transforming GMDB into an online dynamic case report journal. To encourage 

clinicians worldwide to contribute, each case can receive a Digital Object Identifier 

(DOI), making it a citable micro-publication. This resulted in a collection of 2,312 

unpublished images, partly with longitudinal data. 

We have compiled a collection of 10,189 frontal images from 7,695 patients 

representing 683 disorders. The web interface enables gene- and phenotype-centered 

queries for registered users (https://db.gestaltmatcher.org/). Despite the predominant 

European ancestry of most patients (59%), our global collaborations have facilitated 

the inclusion of data from frequently underrepresented ethnicities, with 17% Asian, 4% 

African, and 6% with other ethnic backgrounds. The analysis has revealed a significant 

enhancement in GestaltMatcher performance across all ethnic groups, incorporating 

non-European ethnicities, showcasing a remarkable increase in Top-1-Accuracy by 

31.56% and Top-5-Accuracy by 12.64%. Importantly, this improvement was achieved 

without altering the performance metrics for European patients. 

GMDB addresses dysmorphology challenges by representing phenotypic variability 

and including underrepresented groups, enhancing global diagnostic rates and 

serving as a vital clinician reference database. 

Introduction 
Facial dysmorphism is often used as a crucial handle in the diagnosis of many rare 

genetic disorders, occurring in many genetic syndromes1,2. The identification of facial 

dysmorphism and the recognition of dysmorphic patterns as a lead to diagnosis is 

often challenging and relies on the skills and experience of the examiner. However, 

the variability of facial features in certain syndromes, especially ultra-rare ones, can 

pose challenges even for experienced clinicians3. Additionally, facial features also vary 

based on sex, age, and ethnicity, and this can further complicate the recognition of a 

diagnostic dysmorphic pattern 4–6. Ethnicity, in particular, plays a significant role, as 

there is considerable inter-ethnic variability in facial gestalt7. Thus, some common 

facial features in certain ethnic groups may be considered dysmorphic in others. For 

example, upslanting palpebral fissures are common in healthy Asians but may be 

perceived as dysmorphic in other populations8. Studies have also highlighted 
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differences in facial gestalt between different ethnicities in frequent dysmorphic 

genetic syndromes such as Down Syndrome, 22q11.2 deletion syndrome, Noonan 

syndrome, and Williams–Beuren syndrome4,9,10. Furthermore, Lumaka et al. have 

demonstrated that this variability can influence the assessor themselves, as European 

clinicians failed to correctly recognize dysmorphic individuals of African ethnicity11. 

This is a particular problem as globalization and migration are increasingly blurring 

ethnic and cultural boundaries, and geography is no longer a real determining factor 

in mating patterns12. Hence, in diverse populations, such as those with admixed 

ethnicities, the challenge of accurately diagnosing rare diseases becomes even more 

pronounced, as new phenotypes can evolve by admixture13. Therefore, the need for 

reference databases to facilitate inter-case variability comparisons. 

Due to these diagnostic difficulties, there is increasing use of next-generation 

phenotyping (NGP) technology, which offers the automated analysis of frontal images 

of patients to suggest suspected genetic diagnoses based on patterns of facial 

dysmorphism14–16. Among them is GestaltMatcher, a clustering approach that also 

supports the prediction of ultra-rare disorders and the matching of undiagnosed 

patients based on facial phenotype. The scientific validity and technical performance 

of the GestaltMatcher Artificial Intelligence (AI) has already been demonstrated by 

compelling evidence of the system's reliability and accuracy16,17. Moreover, the clinical 

utility of GestaltMatcher has been illustrated through individual cases18–20 as well as 

through the German, large-scale, national study TNAMSE (Translate-Nationales 

Aktionsbündnis Seltene Erkrankungen). In the TNAMSE study, the prospective 

evaluation of the GestaltMatcher AI within the national healthcare system revealed a 

significant improvement in the diagnostic yield of exome sequencing21. 

Despite the increasing interest and technological advances in NGP, properly labeled 

training data is still the biggest bottleneck in developing NGP applications22. 

Furthermore, the existing data are often siloed, so curation is usually done 

repeatedly23. NGP encounters challenges similar to those of human assessors, with 

factors like age and ethnicity affecting its performance, as it depends on the quality,  

diversity and curation of the training data. However, despite legislative efforts such as 

the National Institute of Health (NIH) Revitalization Act of 199324, which mandates the 

inclusion of women and minorities in research studies, non-European ethnicities 
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remain underrepresented in literature and genetic disease studies. In 2021, nearly 

86% of participants in genome-wide association studies (GWAS) worldwide were of 

European descent, despite constituting just 16% of the global population25. This 

disparity extends to diagnostic morphological atlases, where non-European 

populations are notably underrepresented26. In contrast, despite a global decline, birth 

rates remain highest in developing countries. For instance, in 2021, the average 

number of births per woman was 1.5 in Europe and North America, compared to 4.6 

in sub-Saharan Africa27 (Figure 1). 

Hence, it is essential for both clinicians and computer scientists to have access to a 

reference database that encompasses diverse data. Achieving this diversity can be 

facilitated through global collaboration and crowd-sourced labeling, enabling the 

collection of a wide range of data from various ethnicities and populations. However, 

data deposition and curation are time-consuming tasks that depend on the motivation 

of the single scientist28. Presumably, one major reason is the lack of sufficient benefit 

from a submission, as there is no comparable recognition to a scientific publication29. 

To make submissions to a database more attractive, micro- or nanopublications can 

serve as an incentive, as it has already been shown that they contribute significantly 

to increasing the data submission rate30,31. Micropublications are concise scientific 

statements that can be simple assertions with attributions or comprehensive 

arguments supported by evidence. They are flexible in format, allowing for minimal 

presentation with basic provenance or maximal knowledgebases with evidence graphs, 

applicable across biomedical communication32. 

Therefore, we developed GestaltMatcher Database (GMDB), serving as a global 

repository for the phenotypic variability of rare human diseases while at the same time 

providing machine-readable medical image data for NGP. GMDB is the first image 

database for NGP that complies with the FAIR principles, making data findable, 

accessible, interoperable, and reusable33. It aims to shorten the time to diagnosis in 

rare disorders with facial dysmorphism by offering users a reference for facial 

variability in genetic dysmorphic disorders, as well as by improving the performance 

of NGP by offering the largest data set of its kind. Each case uploaded to GMDB can 

be transformed into a citable micro-publication with a Digital Object Identifier (DOI), 

promoting data sharing among collaborators worldwide. Moreover, GMDB can 
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function as an image repository for preprint servers or journals that prohibit image 

publication34. 

Ethnic diversity is crucial for the database, not only for referencing by clinicians but 

also for training the GestaltMatcher AI. Although it has demonstrated promising 

performance in a Nigerian cohort of Cornelia de Lange patients35, the performance of 

the GestaltMatcher AI has not yet been comprehensively evaluated across diverse 

populations on a broader scale. 

Results: 
Overview of FAIR data in GMDB 

The GMDB aims to meet the needs of clinicians for a dysmorphology reference 

database and a more modern publication medium while achieving data curation with 

crowd-sourced labeling for machine learning at the same time. Retrospective data 

from publications curated by our data curators, along with retrospective and 

prospective data provided by clinicians or patients are made available as FAIR cases 

in the GMDB (Figure 2a). At the time of publication, we were able to collect a total of 

10,789 portrait images of 7,695 patients with 683 genetic disorders. This includes a 

considerable number of images collected from scientific publications, as our curators 

were able to gather images from 2,224 scientific publications. Additionally, our global 

collaboration involved 55 clinicians contributing a valuable set of 2,312 unpublished 

images, enhancing the diversity and depth of our database. 

An entry in GMDB consists of a medical image such as a portrait, X-ray, or fundoscopy, 

as well as demographic data like sex, age and ethnicity and machine-readable meta 

information such as the diagnosed disorder (OMIM index), disease-causing mutation 

reported in Human Genome Variation Society format (HGVS) or International System 

for Human Cytogenomic Nomenclature (ISCN) nomenclature with test method and 

zygosity and the clinical feature encoded in HPO terminology36–39 (Figure 2b). 

Clinicians are also asked to provide their expert opinion about the distinctiveness of a 

phenotype: They are asked to score whether the medical imaging data was supportive 

(1), important (2), or key (3) in establishing the clinical diagnosis. Computer scientists 

can use this information to interpret the performance of their AI16. 
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GMDB is a modern publication medium for citable micro-publication case 
reports  

As an incentive for clinicians to share their patients' data and thereby build a more 

extensive and diverse dataset, the GMDB allows clinicians to assign a DOI to their 

cases, transforming them into a citable micro-publication. This approach has enabled 

us to publish 2,312 images of cases in our database over 12 months through global 

collaborations that have not been published elsewhere. 

As an example of a published case with a DOI assigned, we describe a case of 

admixed ancestry (Gambian and European) that presents as an atypical case of 

Noonan syndrome with multiple lentigines with atypical facial dysmorphisms 

(hypotelorism and upslanting palpebral fissures instead of hypertelorism and 

downslanting palpebral fissures), which excluded this diagnosis by the assessing 

clinician only for it to be later established by exome sequencing. Interestingly, the 

analysis with GestaltMatcher AI was nevertheless able to identify a match with another 

Noonan syndrome patient as the 12th most similar patient. We uploaded this case to 

the GMDB as a FAIR case and assigned it a DOI to share with the scientific community 

(Figure 3a). We added metadata, multimodal data (profile images, skin, hand, and 

feet), and longitudinal data to this case (Figure 3b). The DOI transforms the case into 

a micro-publication. For this purpose, the case is also assigned a title and abstract. 

This information (title, abstract, DOI) is displayed on the landing page of a case 

(Supplementary Figure 1) and is available publicly without access to the GMDB. To 

protect the patient’s data, phenotype and image data are only accessible after 

registration to the GMDB. For registered users, the whole case can be seen, including 

all FAIR data and metadata (Supplementary Figure 2). As the case is a FAIR case, it 

can also be seen in the Gallery view (Figure 3c) and can be used for cohort analysis 

(Figure 3d). 

Diverse ancestry of GestaltMatcher training set 

In most healthcare datasets, non-European ethnicities are notably underrepresented25. 

This contrasts with migration, globalization, and significantly higher birth rates in these 

regions, where 80 % of the world's population lives and 90 % of births take place53 

(Figure 1a). When using NGP tools, this imbalance can lead to an ethnic bias. 

Therefore, it is a central objective of GMDB to ensure the representation of all ethnic 
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groups and to establish a training dataset for the GestaltMatcher AI that is as diverse 

as possible. Despite the persisting skewed representation, with a significantly higher 

proportion of patients of European descent, our international collaborations (Figure 1a 

- location marker) have notably increased the representation of non-European ethnic 

groups26. Specifically, we have increased the representation to 17% for Asian and 4% 

for African ethnicities in the FAIR dataset (Figure 1b). 

Diverse ancestry data enhance prediction accuracy for underrepresented 
populations 

The scientific and clinical efficacy of the GestaltMatcher AI has been substantiated in 

prior studies16,17,21. Nonetheless, specific assessments of its performance across 

diverse ethnic groups have been limited. While an analysis of GestaltMatcher's 

performance in a Nigerian cohort has been conducted35, a comprehensive evaluation 

across various populations on a broader scale has not yet been performed. 

To investigate the impact of incorporating ethnically diverse training data on the overall 

performance of GestaltMatcher across ethnic groups on a large scale, we set up an 

experiment where a subset of 2,625 images of European patients was extended by 

images of A) more European patients, or B) patients with other ethnic backgrounds. 

For (A), we train our model on a subset of GMDB containing 3,843 images of patients 

with European ancestry only. While in (B), we used a subset containing 3,843 images 

of patients with other ethnic backgrounds. 

We measured a top-1 accuracy averaged over all ethnic groups of 42% and 59% for 

the European and diverse sets, respectively, and a top-5 accuracy of 57% and 74% 

for the European and diverse sets, respectively. Notably, the evaluation performance 

on images of patients with European ancestry is only marginally different (3% and 4% 

for top-1 and top-5, respectively) while nearly doubling the amount of images of 

Europeans. Meanwhile, the top-1 and top-5 performance increases significantly for 

almost every other ethnic group. Figure 5 shows further per-ethnicity performance. 

FAIR AI-Training set 

Data sharing is essential to drive scientific progress in the development of AI. FAIR 

data sets enable the reproducibility and transparency of these scientific studies. For 
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this reason, we also share the FAIR image data and metadata in the GMDB with other 

computer scientists to train their AI. The continuous expansion of the database has 

not only enabled an improved version of the GestaltMatcher AI to be optimized17 but 

also enabled further AI projects of other research groups to be carried out17,41,42. 

Furthermore,  it is possible to run the facial analysis on a local machine using the FAIR 

data set. A protocol for this has already been published, describing how the Gestalt 

scores can ultimately be used to prioritize genomic variants43.  

Empowering clinicians: Image search and visualization for rare disorder 
learning 

The recognition of facial dysmorphic patterns in human rare disease relies heavily on 

comparison with individuals with a genetic confirmation of the diagnosis. A literature 

search is often time-consuming, and clinical facial images are often siloed or behind 

paywalls often inaccessible to users from developing countries. The "Gallery view" 

feature of GMDB makes it easy to search for the candidate gene or disease and allows 

for immediate visualization of all relevant portrait images (at-a-glance). Moreover, the 

user can search for HPO terms or even for the PubMed ID (PMID) and Digital Object 

Identifier (DOI) of a specific publication. This search enables clinicians to compare the 

facial dysmorphic pattern of a patient with the images available in the GMDB and get 

an overview of the heterogeneity of the diagnostic facial characteristics of many 

disorders (inter-case variability). Since several images for a case can be uploaded to 

the database (e.g., multimodal or longitudinal data), intra-case variability (e.g. over 

different ages) can also be depicted. 

Facilitating NGS analysis with the GestaltMatcher API and Research Platform  

The GestaltMatcher database also includes an Application Programming Interface 

(API) for the GestaltMatcher AI16,17. This disorder prediction tool can be helpful for 

clinicians considering differential diagnoses, through the suggestion of syndromes and 

the GestaltMatcher score (https://api.gestaltmatcher.org). E.g. Brand et al. describe 

how the results of the analysis with the GestaltMatcher disorder prediction tool helped 

to solve a typical phenotype of Koolen-de Vries syndrome (KdVS) with an unusual 

disease-causing mutation, by revealing a high gestalt-score for KdVS19. Moreover, the 

direct matching of affected individuals via facial similarity is possible. Thus, not only 

matches with already solved cases can lead to a diagnosis. For instance, Marbach et 
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al. describe two patients with a previously unknown genetic disorder caused by the 

same de novo mutation in LEMD2. GestaltMatcher was used to demonstrate the 

similarity of the two cases to each other, which supported the assumption that they 

represented a new phenotype18. 

Beyond the function of the disorder prediction tool, entire patient cohorts can also be 

analyzed within the Research platform in the GMDB. This research platform can, 

therefore, meet the known needs of the research community in genetics. It is possible 

to quantify the similarity of the individual patients in the cohort by generating a similarity 

matrix. This approach can detect clusters and assess whether, for example, cases 

with an identical variant or pathogenic variants in the same gene, cluster together. For 

example, Ebstein et al. showed that facial dysmorphism was heterogeneous among 

the entire PSMC3 patient cohort, but facial similarities were found in patients sharing 

the same pathogenic variants34. Deploying this method within our research platform 

has facilitated the quantification of similarity across 18 cohorts, with 15 already 

published34,44–57. 

Discussion 
GMDB serves as a modern, searchable reference and publication medium, accessible 

to clinicians and researchers globally while simultaneously facilitating the compilation 

and retrieval of labeled data for deep learning in NGP through crowd-sourced labeling. 

The ultimate goal is to drive research in rare genetic disorders and shorten the time to 

diagnosis.  

Due to the variability of facial phenotypes influenced, e.g., by age, gender, and 

ethnicity, clinicians find value in reference image databases. While a great effort has 

already been made to create an atlas addressing the ethical diversity issue, it is still 

limited to very few disorders53. In contrast, GMDB provides clinicians with a 

comprehensive selection of patient images of different ethnicities at a glance, 

eliminating the need for extensive literature searches. In addition, GMDB's gallery view 

allows for easy comparison of phenotypes and can serve as a valuable teaching tool 

for training students and residents to recognize disorders due to facial features. 

GMDB's dynamic character sets it apart from traditional journals, allowing cases to be 

updated following patient consultations or new findings. This flexibility is crucial, as 
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symptoms of disorders may develop over time, and facial phenotypes can change with 

age58. Unlike static case reports, GMDB enables the storage of longitudinal data, 

including patient images at different ages, which can help to better recognize a 

patient's dysmorphism at any age.  

Additionally, GMDB's extensive collection of facial images makes it a unique FAIR 

database in size. This was mainly possible through the numerous contributions and 

crowd-sourced labeling from collaborators worldwide. To further increase the 

motivation of data submission in the future, every case in the database can potentially 

become a citable micro-publication with a DOI32. Furthermore, in the future, our micro-

publications could be indexed in reputable scientific indexing services such as 

PubMed, following the example of some existing micro-publication communication 

platforms59. Active patient involvement, with the ability to access and upload their data, 

enhances patient autonomy and facilitates the acquisition of longitudinal patient data, 

even further enriching GMDB's repository of facial images. 

The GestaltMatcher API and research platform in GMDB aim to shorten the time to 

diagnosis by providing suggestions for underlying disorders, facilitating direct patient 

matching and cohort analysis to see whether the same or a related genetic mechanism 

underlies the disorder. Tools for matching patients on genotype level with sequencing 

data already exist (e.g. GeneMatcher60). They are connected through the MatchMaker 

Exchange Network API61. As the GestaltMatcher API not only allows disorders to be 

attributed, but also identifies the patients who are most similar to the analyzed patient 

regardless of the diagnosis, this means that undiagnosed patients can also be 

matched. Therefore, GMDB can also be seen as a photo version of GeneMatcher and 

will also become a node of the MME network.  

Even in the era of ‘genotype-first’ diagnostic approaches, accurate or ‘deep 

phenotyping’ is crucial in classifying genomic variants, good phenotyping (‘deep 

phenotyping’) is still crucial and improves variant filtering62,63. It is possible to link the 

GMDB with, for example, PEDIA, an AI-based approach that uses portrait images to 

interpret clinical exome data, improving the performance of bioinformatics pipelines for 

exome analysis64. The Gestalt scores could even already be incorporated into variant 

classification2.  
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The GMDB not only supports the use of GestaltMatcher AI within the database, but 

also offers an enormous AI training set. The most crucial advantage of GMDB is 

transparency. All FAIR data is available and can be shared, whereas the quality and 

quantity of DeepGestalt's dataset is unknown65. However, this is important for 

evaluating the results, as syndromes not present in the data set cannot be supported 

by DeepGestalt65,66. Influencing factors such as gender, age, and ethnicity cannot be 

assessed. 

Ethnicity has a significant impact on the detection of rare dysmorphic disorders for 

both clinicians and AI11, with NGP tools demonstrating high accuracy in patients of 

European and North American ancestry, on which they are mainly trained and 

validated on. However, their performance in populations with different ancestry has 

not been adequately studied, and the influence of ancestry on facial phenotypes 

associated with genetic disorders is not well understood67. The analyses of 

Face2Gene's performance across different populations revealed varying degrees of 

success in identifying congenital dysmorphic syndromes. Mishima et al. demonstrated 

that Face2Gene correctly identified the syndrome with a Top-10 accuracy of 86% in a 

Japanese cohort65. Narayanan et al. found that Face2Gene predicted the correct 

diagnosis in 70% (Top-10 accuracy) of Indian children with recognizable facial 

dysmorphism 68. 

Conversely, Elmas & Gogus reported a lower success rate of only 48% in a cohort of 

Turkish patients69. Also, Hennocq et al.70 highlighted the inability of Face2Gene to 

classify a patient of African ethnicity with Kabuki syndrome, emphasizing the 

importance of encouraging international collaborations to improve the performance of 

next-generation phenotyping tools. Some authors describe higher accuracy rates due 

to more tailored training datasets, e.g. in Thai and Italian cohorts8,71. Additionally, 

Lumaka et al. demonstrated that augmenting datasets with individuals of the same 

ethnicity can significantly improve performance (+ 57,9 % for Down Syndrome)11. 

The performance of GestaltMatcher across different ethnicities has not yet been 

evaluated on a large scale. For this reason, we investigated how the top-1 and top-5 

accuracy for the different ethnic groups changes when equally sized groups of 

European or non-European patients are added to the training set. Overall, the top-5 

accuracy for most individual non-European ethnic groups increases significantly when 
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extending our training set with non-Europeans (~12%). The European group's 

performance only changed marginally when extending the training data to Europeans 

or non-Europeans. Due to the low number of images of patients belonging to the less 

frequent ethnic groups in our dataset, simply averaging over all ethnic groups may 

lead to an incomplete representation of the results. 

There are several limitations to this approach. The curation of data by different 

clinicians and affected individuals introduces an individual variability that is difficult to 

quantify or investigate and may affect data quality. A standardized portrait image 

without irritating confounding factors, such as different facial expressions, camera 

angles, or even patients’ items such as glasses, can lead to a distortion of the 

information for the AI. Moreover, it is not possible to form a completely balanced data 

set because the disorders vary so much in prevalence.  

Even though we have already been able to significantly diversify our data set through 

the annotations of international collaborations, it is still heavily dominated by European 

cases. However, the ratio of Asian individuals in GMDB is significantly higher than e.g. 

in gnomAD (South Asian: 5,65 %), and the ratio of African ethnicities is comparable to 

that in gnomAD (5,65 %) (https://gnomad.broadinstitute.org/stats). Nonetheless, our 

dataset still does not reflect the diversity of non-European ethnicities yet, particularly 

concerning the African continent, which harbors the most significant genetic variability 

due to historical migration and admixture74. The labeling of ethnicity can also lead to 

problems and influence how ethnicity is perceived. Therefore, Foster and Sharp 

emphasize the need to demonstrate scientific utility for such classifications, a goal we 

pursue with our approach75. Therefore, guidelines were proposed that also entail 

ethical and privacy concerns that we adhere to26.  

Conclusion 
Overall, using advanced technologies such as NGP can be essential to rationalize the 

diagnostic process, especially in regions with limited resources and access to 

appropriate medical care35. Biomedical data curation is the best approach for sharing, 

managing, integrating, and analyzing existing and emerging datasets, even if costly 

and time-consuming59. The exponential growth of images and cases in the GMDB 

highlights its ability to foster global collaboration and combat data siloing, ensuring that 

https://gnomad.broadinstitute.org/stats
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data remains accessible, reusable, and interoperable for both human and machine 

learning.  

Methods 
Implementation of the online GestaltMatcher Database platform 

We first built an online platform with Ruby on Rails to allow users to input images and 

other patient data. For the back end, we set up a database by MySQL to store the 

patient data.  

Data curation 

The data curated can be roughly categorized into retrospective and prospective data. 

Retrospective data primarily refers to data collected through curating data from the 

literature or similar projects that obtain global consent to share the data (e.g. 

Minerva&Me23). For cases curated from the literature, we collected the DOI and PMID 

as well as the contact details of the corresponding author. We then clarify whether 

reuse is possible while respecting intellectual property rights. Our collaboration 

partners, clinicians around the world, also recruited patients with an established 

diagnosis within their clinical practice. Patients from patient support groups were also 

included after informed consent was obtained. Patients can upload images or 

laboratory findings themselves following an invitation from the informing physician. By 

prospective data we mean the further collection of data over time. This can be done 

by the clinicians who see their patients in the course of another patient consultation, 

or by the patients themselves, who can use their access to upload further images or 

metadata throughout their clinical pathway. 

The curation process can be roughly subdivided into three phases. First, we started 

having medical students annotate cases from the literature, mainly by searching 

Pubmed and Google Scholar for publications with images of patients with facial 

dysmorphism and monogenic molecular diagnosis. 

Second, we started to recruit solved patients from patient support groups. As we aimed 

to develop a patient-centered platform and strengthen patient autonomy, we collected 

feedback from the recruited patients during this phase to provide patients with a user-

friendly experience. Patients are allowed to upload images and findings autonomously 

and access their data at any time.  
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To facilitate the retrospective recruitment of patients, we have also implemented digital 

consent forms, which allow patients to decide under which conditions they consent to 

store their data in the database and enable direct signature online. We also further 

developed this feature in close cooperation with patient support groups, e.g. the 

German Smith-Magenis Syndrome patient organization Sirius e.V., to cover the 

patients’ requests precisely. Patients can access their own case and provide or 

withdraw their consent online. They can also upload images themselves, which greatly 

simplifies the curation process of longitudinal data. The fact that documents (doctor's 

letters or laboratory results) can also be uploaded (only visible to the responsible 

clinician) makes it possible to obtain molecular and phenotype information on patients 

recruited retrospectively from patient support groups. This digital consent is developed 

in a way that it can in principle also be used as a dynamic consent model in the future76. 

The consent form is available in German and English, other languages will be 

incorporated soon.  

In the last phase, we expanded our database through international collaborations with 

clinicians from different continents. Initially, we also focused on the patients who had 

already been solved but had not yet been published to improve the AI’s performance. 

However, as we progressed, more clinicians shared their unsolved cases with the 

scientific community. GMDB started focusing on facial portraits of patients with rare 

monogenic diseases and is currently mainly populated by those cases, but not limited. 

Later in the curation process, we also annotated cytogenetic disorders with facial 

dysmorphism. In addition to these clinicians, we also employ paid curators who 

continue to annotate data from the literature.  

FAIR data set 

The GMDB aims to support clinicians in their work as dysmorphologists while 

advancing science in the field of AI and preventing data siloing. For this reason, we 

have compiled a FAIR data set of all patients in our database who have consented to 

public use in the online platform and sharing data with other AI research groups.  

GestaltMatcher training set 

In addition to the FAIR cases, we utilize a distinct set of cases specifically for training 

the GestaltMatcher AI. These cases involve patients who have provided consent solely 

for the ‘private’ utilization of their data. Consequently, while the case remains visible 
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only to the uploading clinician, it is inaccessible to other users of the online platform 

and cannot be disseminated to external groups. It is, therefore, a data set that is used 

exclusively for further training of the GestaltMatcher AI in order to improve its 

performance further. 

Data Governance and ELSI 

The GMDB is only accessible to the scientific community. To protect the patient data, 

the database underlies strict access control. Registration is only possible after 

receiving an invitation link from an existing user. 

During the process of obtaining informed consent, patients can decide whether their 

data should be part of the FAIR data set or the private GestaltMatcher training set. 

Patients who do not wish to make their data publicly available to scientists and 

clinicians in the database can also upload their data 'privately'. This means that their 

data will only be used to train the GestaltMatcher AI and will not be accessible to 

GMDB online platform users or other researcher groups (Supplementary Figure 3). It 

is also possible to upload only individual images or documents 'privately'. In our GM 

consent, patients can also indicate whether they agree to the use of the images for 

presentations or teaching, or to publication in other journals. This differentiation from 

other journals is important, as patients/parents show less willingness to consent for 

publication in open-access journals than for access-controlled databases that are not 

publicly accessible77.   

The download of GMDB FAIR data for the development of NGP approaches can be 

made possible for scientists in the field of AI. Therefore, IRB approval and submission 

of a proposal is required. Additionally, signing of the General Data Protection 

Regulation (GDPR) consent form is required. The Advisory Board, consisting of the 

esteemed co-authors: Koen Devriendt, Shahida Moosa, Christian Netzer, Martin 

Mücke, Christian Schaaf, Alain VERLOES, Christoffer Nellåker, Markus M. Nöthen, 

Gholson J. Lyon, Aleksandra Jezela-Stanek and Karen W. Gripp, will conduct a 

thorough review of all applications. Access will be granted to applicants within 2 to 3 

weeks if a majority of the members of the Board of Directors are in favour of the 

application. 
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The GestaltMatcher Database (GMDB) is hosted physically in the University Hospital 

of Bonn and guarded by Arbeitsgemeinschaft für Gen-Diagnostik e.V. (AGD) which is 

a non-profit organization for genomic research. The service is funded by membership 

fees of the AGD and donations from Eva-Luise und Horst Köhler Stiftung and Wirtgen 

Stiftung. 

Digital Object Identifier (DOI) assignment 

Upon submission of data, the respective case will be promptly published on the 

website. After submission of the data, the respective case is immediately published on 

the website. Subsequently, the author has the option of generating a DOI in order to 

create a citable micro-publication from the case32. To do this, clinicians must upload 

the required data and metadata, enter their own personal identifier (e.g. ORCID), 

specify the other persons involved and write a title and an abstract. This process will 

adhere to a rigorous review similar to Raciti, Daniela et al.59, ensuring the credibility 

and reliability of the published data. The DOIs are created and managed by the Bonn 

University and State Library by using the DataCite API (https://datacite.org). 

Additionally, a dedicated landing page will be created for each case according to the 

specifications of the DataCite metadata schema (Supplementary Figure 1). The 

landing page is accessible via the generated DOI, also for individuals without access 

to GMDB or those who are not logged in. It contains the full citation with the DOI as a 

link, the abstract, and a description of the case data. Phenotypic information is not 

available, neither HPO terms nor images. However, it is indicated how many images 

the micropublication contains. After logging in, the data can be fully accessed.    

Ethnicity Analysis 

The genetic ancestry of each individual was documented as fine-grained as possible 

by self-reported data. E.g. if an individual was born in Germany and all its grandparents 

originated from this country we assigned this individual to Germany (country) and 

Europe (continent). Likewise, for all individuals without migration history in the 

previous generations, for individuals with mixed ancestry, e.g. a father from Gambia 

and a mother from Eastern Europe, we assigned European-African mixed ancestry. 

To investigate the impact of incorporating ethnically diverse training data on the overall 

performance of GestaltMatcher across ethnic groups on a large scale, we set up an 

experiment where a subset of images of European patients was extended by images 

https://datacite.org/
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of A) more European patients, or B) patients with other ethnic backgrounds. For (A), 

we train our model on a subset of GMDB containing 3,843 images of patients with 

European ancestry only. While for (B), we used a subset containing 3,843 images of 

patients with any ethnic backgrounds. The experiment was set up to ensure the same 

training data distribution of disorders was maintained.  

Further, to improve comparability between subsets (A) and (B), subset (B) contains 

2,625 images of Europeans sampled from (A). For this purpose, we used the 

architecture and training process described by Hustinx et al.19, using a single improved 

resnet-50 model pre-trained on the GLINT360K face verification dataset using 

ArcFace loss. The model was fine-tuned for 50 epochs on subsets (A) and (B) of 

GMDB (v1.0.9) mentioned earlier. All other hyperparameters were left unchanged, 

using the Adam optimizer, cross-entropy loss, and class weighting to deal with the 

imbalance in data availability between disorders. Each model was trained five times 

with different weight initializations, and their results were averaged to obtain a more 

robust representation of the performance. It is important to note that the model was 

not tasked with learning to classify the ethnicity, only with learning to classify the 

disorder. 

After training, the models' performance was measured on the same evaluation set, 

containing images of patients with diverse ethnic backgrounds. This evaluation set 

consists of 649 images, and was sampled such that there is no overlap between 

patients or images in any subset. The performance metric used is the top-n accuracy. 

Top-1 indicates the disorder was correctly classified as the first guess, while top-5 

indicates the correct class was in the first five guesses. To address the imbalance 

between ethnic group frequencies, the accuracy was averaged over each ethnic group, 

rather than each image. As such, the performance of any infrequent group weighs 

equally with that of the more frequent groups. 

Advisory Board 

All the applications for acquiring access to download GMDB public data for developing 

NGP approach will be reviewed by the advisory board consisting of the following 

coauthors: Koen Devriendt, Shahida Moosa, Christian Netzer, Martin Mücke, Christian 

Schaaf, Alain Verloes, Christoffer Nellåker, Markus M. Nöthen, Gholson J. Lyon, 
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Aleksandra Jezela-Stanek, and Karen W. Gripp. Once the majority of the board agrees 

with the application, the applicant will be granted download access. 
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Figures 

 
Figure 1: a) World birth rate distribution. The size of country is scaled by the birth 

rate. b) The distribution of the ancestry groups in GMDB. 
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Figure 2: GestaltMatcher Database Architecture and Dataflow. a) The 

retrospective data is collected from the literature and annotated by data curators, or it 

is uploaded by the attending clinicians. Patients can also upload images of their own 

cases, incorporating prospective data, and view their own data at any time. b) The 

data (multimodal image data, including portrait images as well as MRI, X-ray, 

funduscopy and extremity images) are stored in the GMDB (MySQL database) 

together with the relevant meta information (such as sex, age, ethnicity, molecular and 

phenotypic information). c) The FAIR data can be viewed and searched in the GMDB 

by registered users in the Gallery. They can also be analyzed using the Next-

Generation Phenotyping tool GestaltMatcher within the Research Platform. In addition, 

after a confirmed application process, computer scientists can also use the data set 

for training purposes for their projects. 
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Figure 3: Case presentation of a FAIR case with a Digital Object Identifier (DOI). 
a) A FAIR case in the GestaltMatcher Database (GMDB) is displayed to GMDB users 

via the data sheet. Each FAIR case can also be assigned a DOI so that it becomes a 

citable micro-publication. b) Included in this micro-publication will be the image data 

and metadata including demographic, molecular and phenotype information. The 

dynamic nature of the GMDB case reports enables longitudinal image data storage 

even after initial publication, which is not possible in conventional journals. c) After 

uploading, case reports can be viewed and searched by other users in the Gallery. d) 
The image data can also be used for inter-cohort comparisons of the gestalt scores 

within the research platform. 
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Figure 4: Top-1 and top-5 accuracy of GestaltMatchers’ disorder classification 
accuracy per ethnic group. Top-1 and top-5 accuracy of our models' disorder 

classification accuracy per ethnic group, where (orange) belongs to the EU only subset, 

and (blue) belongs to the diverse subset. Each wide, darker bar and each light, thinner 

bar indicate the top-1 and top-5 accuracy per ethnic group, respectively. The horizontal 

dashed lines and dotted lines indicate the top-1 and top-5 overall accuracy averaged 

over all ethnic groups, respectively. 
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