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Abstract 

Malaria causes significant morbidity and mortality worldwide, disproportionately impacting 
parts of Africa. Disease phenotypes associated with malarial infection can vary widely, from 
subclinical to life-threatening. To date, prevention efforts, particularly those related to vaccine 
development, have been hindered by an incomplete understanding of which factors impact 
host immune responses resulting in these divergent outcomes. We applied single-cell RNA-
sequencing to compare the immunological phenotypes of peripheral blood mononuclear cells 
(PBMCs) isolated from children with clinical and subclinical malarial infections in an area of 
high malaria transmission in northern Ghana. On average, clinical pediatric malaria infections 
were characterized by a higher fractional abundance of monocytes and an upregulation of 
innate immune responses, including those to type I and type II interferons and tumor 
necrosis factor-alpha (TNF-α) signaling via NFκB. Further, in the clinical malaria group, we 
identified more putative interactions between antigen-presenting cells and proliferating CD4 
T cells and naïve CD8 T cells driven by MHC-I and MHC-II signaling pathways, respectively. 
Together, these findings highlight transcriptional differences between immune cell subsets 
associated with disease phenotypes that may help guide the development of improved 
malaria vaccines and new therapeutic interventions for individuals residing in endemic areas.  
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Background 

In 2021, the malaria parasite was responsible for an estimated 417 million cases and 
619,000 deaths, with the majority occurring in the WHO African region (WHO, 2022). 
However, the development of an effective vaccine to address this global health threat 
remains challenging due to an incomplete understanding of the parasite’s biology and which 
host factors influence clinical responses to infection.  

Individual instances of malaria infection can be subclinical, where individuals experience mild 
symptoms and do not seek treatment, or clinical, where symptoms become profound 
resulting in clinical presentation and medical intervention. Instructive factors include 
environmental exposures, transmission intensity, host genetics, parasite genetics, host-
pathogen interactions, and host immune responses (Ademolue et al., 2017; Babiker et al., 
2013; Bousema et al., 2014; Nyarko & Claessens, 2021). Illustratively, upregulation of 
interferon responses and p53 gene expression can attenuate inflammation and protect 
children from fever (Tran et al., 2019); and, when comparing children with asymptomatic and 
severe malaria, the genes most upregulated in severe cases are related to immunoglobin 
production and interferon signaling (Boldt et al., 2019). As reviewed previously, studies have 
postulated that these interferons can orchestrate immune regulatory networks to dampen 
inflammatory responses and restrict humoral immunity, thus playing a critical role as a wedge 
that determines protection versus permissiveness to malaria infection (Mooney et al., 2017; 
Sebina & Haque, 2018).  

Similarly, it has been shown that the number and phenotype of cells responding to infection 
can vary with exposure to Plasmodium (de Jong et al., 2021). For example, Africans, who 
tend to have higher levels of exposure, have been shown to exhibit metabolic and platelet 
activation during malaria infection as compared to typically infection-naïve Europeans (de 
Jong et al., 2021). Similarly, children who experience high numbers of malaria episodes 
show upregulation of interferon-inducible genes and immunoregulatory cytokines, suggesting 
an immune modification to prevent immunopathology and severe outcomes during new 
infections (Bediako et al., 2019). Beyond differences in exposure and infection history, the 
strain responsible for each infection can also alter immune response dynamics and disease 
pathogenesis (Crompton et al., 2014; Ioannidis et al., 2014).   

Since so many factors can influence host response dynamics to infection (e.g., exposure, the 
timing of infection), some studies have implemented tightly regulated models of malarial 
infection, such as controlled human�malaria infections (CHMI). CHMI studies have identified 
several pathways, including toll-like receptor signaling (Kazmin et al., 2017), platelet 
activation (de Jong et al., 2021), interferon signaling (de Jong et al., 2021; Loughland et al., 
2020; Milne et al., 2021), and B-cell receptor signaling, that are involved in immunological 
modulation of Plasmodium falciparum infections (Tran et al., 2019). Although CHMI have 
identified several specific pathways involved in malaria, the differences and similarities in 
gene expression pathways in both CHMI and natural exposure reflect distinctive and 
unresolved immunopathological mechanisms elicited during P. falciparum infection. 
Collectively, these studies demonstrate the importance of obtaining a more comprehensive 
understanding of the host and pathogen factors that influence immune responses to inform 
the development of new therapeutic approaches and improved vaccines. 

To date, most genomic analyses of immunological responses to malarial infection have been 
performed in bulk on blood, brain, liver, or spleen tissues (Lee et al., 2018). The majority of 
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these studies have been conducted in children and show that clinical malaria or symptomatic 
infections, as mentioned above, are characterized by upregulated expression of genes 
involved in interferon signaling, antigen presentation, neutrophil-associated signatures, and B 
cell modules relative to healthy controls (Lee et al., 2018). Adults, meanwhile, present slightly 
varying responses: symptomatic Malian adults, compared to naïve individuals, had 
upregulated B cell receptor signaling but more modest upregulation of interferon responses, 
while symptomatic Cameroonian adults showed marked induction of genes related to 
interleukins and apoptosis compared to presymptomatic individuals (Ockenhouse et al., 
2006; Tran et al., 2016). These inconsistencies may be related to patient history/exposure or 
the confounding effects of differences in how the various cell types respond, directly or 
indirectly, to infection, and the role of intercellular communication in these processes, as well 
as how overall cellular composition and communication influence clinical course. The 
emergence of single-cell transcriptomics provides a unique opportunity to examine the 
sources of this variability (Hie et al., 2020) by profiling abundance and transcriptomic 
variation across immune cell populations in individuals with high malaria exposure but 
divergent clinical phenotypes. Moreover, by examining the expression of ligands, receptors, 
and genes involved in intercellular signaling, we can identify the critical mediators of immune 
responses and the pathogenesis of malaria for subsequent validation (Jin et al., 2021). 

Here, we present a comparative analysis of peripheral blood mononuclear cells (PBMCs) 
phenotypes in children with subclinical or clinical P. falciparum infections in an area with 
endemic malaria transmission.  Our data describe in unprecedented detail, cell subsets and 
signaling pathways associated with disease severity to provide new insights into the immune 
response mechanisms that influence the course of P. falciparum infections.    
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Results 

Profiling pediatric malaria immune-cell populations using single-cell analysis 

PBMCs from eleven children (aged 4-8 years) with subclinical (N=5) or clinical (N=6) P. 
falciparum infections in a high malaria transmission area (Navrongo, Ghana) were analyzed 
using single-cell RNA-sequencing (scRNA-Seq) to ascertain differences in expression 
patterns of immune response genes that might influence disease pathogenesis (Figure 1a). 
In this study, we defined the subclinical group as “malaria-positive individuals during 
community screening”, while the clinical group was defined as “malaria-positive cases during 
health facility screening”. The subclinical and clinical cohorts were selected because they 
were not significantly different in previously identified potential confounders, such as 
geographical location, age group, gender, clinical symptoms, housing conditions, and 
occupation (Supplementary Table 1). Each sample was profiled using the Seq-Well 
platform, a portable, simple massively parallel scRNA-Seq method (Gierahn et al., 2017). 
The resulting data were filtered to remove cells based on the fractional abundance of 
mitochondrial genes (<30%) and transcripts expressing in <20 cells. After variable gene 
selection, dimensionality reduction, clustering, cluster removal, and reclustering (Methods), 
we retained 18,303 transcripts and identified 10 distinct cell subsets in 18,176 cells, across 
the two groups of children (Figure 1a, b; Supplementary Figure 1a).  

We manually annotated these 10 clusters using known RNA marker genes to identify B cells, 
CD4 T cells, CD8 T cells, natural killer (NK) cells, monocytes (Mono), and dendritic cells 
(DC) (Supplementary Figure 1b & c). To identify and enumerate cell subsets in our dataset 
at higher resolution, we opted to map our query dataset to an annotated multimodal 
reference dataset of PBMCs. First, we confirmed that all the cell subsets identified using 
manual annotation were present in the resultant UMAP (Supplementary Figure 1d). As 
expected, our reference mapped dataset recapitulated all PBMC subsets, including B, CD4 
T, CD8 T, NK, Mono, and DC (these subsets are used throughout the work; Figures 1b and 
c). We identified several subclusters, such as intermediate, memory, and naïve B cells; 
naïve, proliferating, effector memory and central memory CD8 and CD4 T cells; proliferating 
CD56+ NK cells; CD14+ and CD16+ Mono; plasmacytoid (pDC) and conventional (cDC) 
dendritic cells, and other cell subsets (Figures 1d and e). Since the reference dataset only 
annotated two monocyte clusters (CD14+ and CD16+), we hypothesized that there might be 
additional transcriptional heterogeneity describing actively responding monocyte 
subpopulations. Therefore, further sub-clustering was done which resolved the Mono into 3 
large subpopulations (Mono 1, Mono 2, Mono 3) and 1 small cluster (Mono 4) (Figures 1f, g 
and h) based on previously reported markers (Villani et al., 2017). Taken together, these 
data distinguish nearly all distinct cell subsets that were present in PBMCs of children in both 
the subclinical and clinical groups.  

Differences in relative cellular composition between the subclinical and clinical 
groups 

Next, we asked whether there were significant differences in the relative proportions of cell 
types between the clinical and subclinical groups. We found that relative cell proportions of 
the major cell subsets (B, CD4 T, CD8 T, NK, Mono, and DC) varied between individuals 
(Figures 2a & b, Supplementary Table 2). Individuals with clinical malaria exhibited 
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elevated levels of circulating Mono while individuals with subclinical malaria exhibited higher 
proportions of circulating B cells (Dirichlet-multinomial regression, P<0.01; Figure 2a, 
Supplementary Table 2). Further analysis of the B cell subsets showed that the abundance 
of naïve and intermediate B cells was significantly reduced in the clinical malaria group 
compared to the subclinical malaria group (Dirichlet-multinomial regression, P<0.05; Figure 
2b, Supplementary Table 2). We also confirmed a significant expansion of both CD14+ and 
CD16+ monocyte subsets in clinical malaria compared to the subclinical malaria group 
(Dirichlet-multinomial regression, P<0.01; Figure 2b, Supplementary Table 2). Although 
there is evident variation in cellular proportions of T lymphocytes among all the individuals 
(Figures 2a & b), we did not observe any significant difference in proportions of either CD4 
or CD8 T cells between the clinical and subclinical groups (Dirichlet-multinomial regression, 
P>0.05; Figure 2b, Supplementary Table 2). However, the proportions of naïve and central 
memory CD4 T cells were significantly higher in the clinical group compared to the 
subclinical group (Dirichlet-multinomial regression, P<0.01); Figure 2b, Supplementary 
Table 2). NK cell frequency was also higher in clinical malaria suggesting that they may play 
a role during active disease (Dirichlet-multinomial regression, P>0.05; Figure 2b, 
Supplementary Table 2). Among NK cells, the proliferating and CD56+ subsets were higher 
in clinical compared to subclinical malaria, but these differences were not statistically 
significant (Dirichlet-multinomial regression, P>0.05; Figure 2b, Supplementary Table 2). 
Overall, the minor cell subsets of T cells and other cell types with low frequencies did not 
show differences in proportions between the groups but the main cell subsets had significant 
differences in proportions between clinical and subclinical malaria children.   

Comparative analysis of inflammatory responses in children with subclinical and 
clinical infections 

Having identified shifts in the composition of circulating immune cells between children with 
subclinical and clinical infections, we next asked whether gene expression differed within 
each immune cell subset between the two groups. Comparing clinical to subclinical malaria, 
we observed the largest transcriptional changes (measured by pairwise DE across cell types 
with adjusted P value < 0.05 and log fold change > 2) within B cells and Mono (Figures 2c, 
Supplementary Table 3). Apart from other B cell function genes, there was a general trend 
towards upregulation of inflammatory genes in B and T cells in children with clinical relative 
to those with subclinical infections, including S100A8, CXCL8, and S100A9 (Figure 2c). 
Significant transcriptional changes were also observed in Mono, with genes such as IFTM3, 
FCER1G, and CCL4 being upregulated in the clinical group compared to the subclinical 
group (Figure 2c). Clinical malaria was also associated with the upregulation of Major 
Histocompatibility Complex I (MHC-I) genes such as HLA-A and HLA-C which are involved in 
antigen presentation in Mono (Figure 2c). In CD4 and CD8 T cells, there was increased 
expression of some inflammatory factors such as CXCL8 and NFKBIA in children with clinical 
infection relative to the subclinical group, suggesting direct sensing of parasite products 
during clinical malaria (Figure 2c). Using gene set enrichment analyses (GSEA), we found 
that clinical malaria involved robust induction of several innate immune response pathways 
such as TNF-α signaling via NF-κB, TGF-β signaling, IL6-JAK-STAT pathway, complement, 
IL-2-STAT5 signaling, inflammatory response, interferon-α response (IFN-α), and interferon-γ 
response (IFN-γ) (Figure 3a, Supplementary Table 4). We observed that although each cell 
type was enriched in one or more of these pathways, there was a unique molecular signature 
of the genes involved in each. Upregulation of IFN-γ and IFN-α response pathways in Mono 
were characterized by increased expression of genes such as IFITM2, IFITM3, IL10RA, and 
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TNFAIP3, while in NK cells they were typified by genes such as NFKBIA, CD69, and ISG20 
(Figure 3b & c, Supplementary Table 4). Mono and natural killer cells upregulated TNF-α 
signaling via the NF-κB pathway with the induction of genes related to this pathway such as 
IL1B and TNFAIP3 for Mono, and  IL7R, CD44, and NFKBIA for NK cells (Figure 3b & c, 
Supplementary Table 4). Inflammatory responses in Mono were characterized by IL10RA, 
IL1B, and CXCL8 while in NK cells they were driven by CD69, IL7R, CXCL8, and NFKBIA 
among others (Figure 3b & c, Supplementary Table 4). Thus, the enrichment of unique 
genes for each cell subset for similar pathways suggests a specific but concerted 
contribution of each cell subset toward the innate immune response during clinical malaria.  

Relative enrichment of ISGs gene modules in monocytes of children with clinical 
relative to those with subclinical infections 

Since IFN genes were significantly upregulated in Mono in children with clinical malaria 
relative to the subclinical group, we next sought to determine if entire gene modules were 
enriched. Interferon stimulated genes (ISGs) modules scores were significantly higher in B 
cells, DC, CD4 T cells, and Mono in children with clinical malaria compared to those with 
subclinical malaria (Wilcoxon, adjusted P < 0.01 for all comparisons, Figure 4 a, b, d, e); 
however, there were no significant differences in ISG module scores in CD8 T cells and NK 
cells. Further examination of intra- and inter-individual variation in these module scores 
revealed substantial intra-individual variation in cells from the same participant and between 
cells of the same type from different participants (Supplementary Figure 1e). Of note, 
cytokine scoring for one subclinical participant was notably different from the others in the 
subclinical group (Supplementary Figure 1e): this participant (Subclinical 4) had reported 
having fever, headache, and chills previously just like some of the other subclinical 
participants and hence may have been progressing to clinical malaria (Figure 1a). Overall, 
our data show that Mono play a significant role in clinical malaria infections compared to 
subclinical infections through induction of the ISGs gene modules. 

Role of MHC-I and MHC-II signaling pathways in cell-to-cell interactions 

Next, we used our single-cell data to infer putative axes of cell-to-cell communication using 
signaling ligands, cofactors, and receptors. First, we discerned cell-to-cell interactions in the 
clinical malaria group and found that the number of interactions (ligand-receptor) originating 
from primary innate immune cells such as DC and Mono were greater than those originating 
from non-antigen presenting cells (Supplementary Table 5).  However, our data show very 
few inferred cellular communication networks in subclinical infection (Supplementary Table 
6). This analysis suggests a role for Mono as antigen-presenting cells in orchestrating pro-
inflammatory responses by interacting with proliferating CD4 T cells, intermediate B cells, 
effector memory T cells, and naïve CD8 T cells in clinical infection (Figure 5a). Conventional 
DC also produced factors that interact with proliferating CD4 T cells and effector memory 
CD4 T cells, suggesting a concerted effort by antigen-presenting cells to activate the immune 
response in children with clinical malaria (Figure 5a). Communication probabilities indicated 
that MHC-I and MHC-II play a role in these interactions among other pathways. The most 
significant receptor-ligand pairs for HLA-A, HLA-B, HLA-C, HLA-E, HLA-G, and HLA-F 
ligands for MHC class I include CD8A, CD8B, LILRB2, and LILRB1 (Figure 5b). The leading 
intercellular ligand-receptor pairs with CD4 T cells as signal receivers were distinct HLA 
genes, with the highest relative contribution being driven by HLA-DRA and HLA-DRB1 
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(Figure 5c). The other minor signaling pathways that were important in clinical malaria 
include MIF, RESISTIN, ANNEXIN, GALECTIN, ADGRE5, APP, CD22, CD45, SELPLG, 
CD99, CLEC, and TNF signaling networks.  For the TNF signaling pathway, the CD56+ NK 
cells showed to be interacting with Mono and also with proliferating CD4 T cells, effector 
memory CD4 and CD8 T cells, and cDC (Figure 5d). This cell communication network was 
mediated by TNF in the sender cells and TNFRSF1B in the receiver subsets (Figure 5e), 
and this corroborates the DE results (Figure 5g). We examined the expression levels of 
TNFRSF1B across all the cell subsets and found that indeed it was expressed in all the 
receiver cells (Figure 5f). Only the pDC and CD16 Mono showed cell-to-cell interactions with 
naïve and intermediate B cells and might be playing a role in B cell activation and 
development in children with subclinical infections through MHC class II molecules (Figure 
5g & h). Therefore, exposure of innate immune cells to parasite ligands may potentially 
activate intracellular signaling cascades through cell-to-cell interactions to induce rapid 
expression of a variety of innate immune genes.  
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Discussion 

Here, we compared the dynamics of immune response between clinical and subclinical 
pediatric malaria infection using scRNA-Seq and identified a potential role for interferon 
responses and TNF-α signaling via NFκB in Mono during the clinical manifestation of 
pediatric malaria infection. We also found differences in the fractional abundances of PBMC 
cell subsets, with clinical malaria infections characterized by a proportional increase in Mono 
while subclinical malaria infections had a higher proportion of circulating B cells. We show 
cellular level variation in the expression of innate immune modules within and between 
individuals as well as between clinical phenotypes. Further, we identified a role for Mono and 
other innate immune cells through MHC-I and MHC-II molecules in driving cell-to-cell 
interactions with CD8 and CD4 T cells respectively. Together, our work recontextualizes the 
function of the innate immune cells in malaria, demonstrates how variable their responses 
can be, and links specific responses to clinical presentation.  
 
Differential gene expression comparing clinical and subclinical infection phenotypes across 
cell types revealed a significant upregulation of genes associated with innate immunity in 
different cell types. We show that CCL3 and CCL4 (also known as macrophage inflammatory 
protein - MIP-1α and MIP-1β) were upregulated in Mono of clinical malaria children, 
suggesting their possible role in modulating clinical disease (Awandare et al., 2006). CXCL8 
was also highly upregulated in B cells, CD4, and CD8 T cells. Other studies have shown that 
circulating levels of CXCL8 and CCL4 can correlate with parasite density, and when found in 
the cerebrospinal fluid they can predict cerebral malaria mortality (Abrams et al., 2003; 
Armah et al., 2007; Ayimba et al., 2011; Ioannidis et al., 2014). Furthermore, the adaptive 
immune cell subsets (B cells and T cells) in clinical malaria expressed two alarmins (S100A8 
and S100A9) that are known to form calprotein heterodimer, an endogenous TLR4 ligand; 
this could suggest a possible role to silence hyperinflammation (Nahrendorf et al., 2021). In 
the clinical malaria group, we also show significant expression of FCER1G in B cells, Mono, 
and DC, which is induced by interferon-gamma and encodes for a gamma chain of the FC 
receptor and it is suggested to play an important role in controlling parasitemia and fever 
(Tran et al., 2019). Collectively, our data imply that both adaptive and innate immune cells 
cooperatively play a role during the pathogenesis of clinical malaria when compared to 
subclinical malaria children. 
 
We showed that several immune-related pathways are activated by Plasmodium infection 
including the TNF-α signaling via NFκB pathway, interferon-gamma/alpha responses, IL2-
STAT5 signaling, and inflammatory response pathway in clinical malaria individuals. Since 
the parasite life involves repeated cycles of red cell invasion and lysis, the release of 
pyrogenic cytokines that drive these pathways such as interleukins, interferons, and TNF in 
Mono and NK cells, can signify pathophysiological events occurring in clinical malaria 
(Gazzinelli et al., 2014; Ioannidis et al., 2014). These observations could also mean that 
children with clinical malaria were sampled quite early during the onset of the disease 
progression trajectory (Crompton et al., 2014). Our data are consistent with those previously 
described by integrating whole blood transcriptomics, flow cytometry, and plasma cytokine 
analysis (Tran et al., 2019), and our results further identify the cell subsets in which these 
pathways were more enriched. We show that each of the cell subsets has a unique signature 
of genes enriched in these immunogenic pathways with minimal sharing. Similar innate 
immune response pathways have also been shown in individuals with malaria in a few 
studies such as whole blood transcriptomics of the Fulani of West Africa (Quin et al., 2017), 
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children repeatedly exposed to malaria (Bediako et al., 2019; Tran et al., 2019), controlled 
malaria infection studies (Loughland et al., 2020), and even mice models (Nahrendorf et al., 
2021). We have now confirmed some of these observations and demonstrated that in the 
pediatric clinical state, robust upregulation of certain genes in specific cell subsets is 
associated with systemic inflammatory responses. Innate immune cells, such as Mono, DC, 
and NK cells, appear to be most reactive during clinical malaria infections, probably due to 
continuous exposure in a high transmission area as suggested by other studies (Boldt et al., 
2019; Gray et al., 2007; Nahrendorf et al., 2021).  
 
By collating gene modules of interferon-stimulated genes (ISGs), we show that there is a 
difference in the expression between the clinical and subclinical malaria groups across 
different cell subsets.  ISGs are normally produced as a function of interferon responses 
(IFNs) (Mooney et al., 2017), which we observe to be enriched in clinical malaria children. 
IFNs are produced primarily by DC to activate other cells to produce ISGs (Spaulding et al., 
2016), and we observed that B cells, T cells, Mono, and DC have higher ISG module scores 
in clinical malaria compared to subclinical malaria children. Notably, our data show that each 
cell or cell subset responds differently upon IFN activation with varying transcriptional 
responses of an ISG module between individuals. This variability was also observed for 
cytokine modules, NF-κB target modules, and HLA modules. Similarly, a previous CHMI 
study observed striking inter-individual variation in immune cell composition and immune 
responses, demonstrating that an individual can have a unique immune fingerprint (de Jong 
et al., 2021). Thus, the variations in immune responses that we observed could be attributed 
to the complexity of the P. falciparum life cycle with several developmental erythrocytic 
stages, duration of infections, and intensity of infection in each individual (Crompton et al., 
2014).  These findings on inter-individual variability in immune responses could provide 
insights when considering the design and evaluation of interventions that target host 
immunity in the control of malaria.  
 
Our scRNA-Seq data enabled us to quantitatively infer and analyze cell-to-cell 
communication networks across all the innate and adaptive immune cells (Jin et al., 
2021).  This analysis enabled us to uncover coordinated interactions between innate and 
adaptive immune cells through various ligands. The cell-to-cell interactions in clinical malaria 
samples were driven by MHC class I and II signaling pathways, whereby antigen-presenting 
cells were shown to have more interactions with proliferating CD4 and naive CD8 T cells. 
The importance of HLA genes has long been demonstrated by Hill and colleagues who 
associated HLA-Bw53 antigen and DRB1*1302–DQB1*0501 haplotype to independently 
protect against severe malaria in West Africa (Hill et al., 1991). Thus, our observations on 
cell-cell interaction involving HLA molecules and T cells support the importance of these 
molecules during malaria infections, although we observed varying degrees of interactions in 
clinical malaria compared to subclinical groups. We also showed that within clinical malaria 
infections, there are contrasting interactions between various HLA I and HLA II molecules 
with CD8 or CD4 T cell receptors respectively this could relate to their tight regulation and 
antigen-presenting ability (Guermonprez et al., 2002; Rock et al., 2016). Activation of CD4 
and CD8 T cells has been correlated with protective immunity to malaria, and they can 
differentiate into several functionally distinct subsets in the presence of various cytokines 
(Kurup et al., 2019). It was not surprising that we identified different fractional abundances of 
CD4 and CD8 T cell subsets in clinical compared to subclinical children, but we demonstrate 
that ultimately this results in varying degrees of interactions with Mono or DC. Future work 
should seek to identify the mechanisms that result in these variations and their impact in 
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orchestrating phagocytic and humoral responses as this critical knowledge gap will be 
important in developing T cell-based malaria vaccines.   

Overall, by using scRNA-seq on PBMCs obtained from malaria-exposed individuals in a high 
transmission area, this work sheds light on the interplay between peripheral immune cells 
during malaria infection, uncovering the genes and immune pathways that might play a 
significant role during clinical cases. Data presented here demonstrate that subclinical 
infections are characterized by the absence of the inflammatory response signatures 
observed in the clinical malaria group, suggesting that a muted innate immune response or 
disease tolerance plays a role in children exposed to high malaria transmission (Nideffer et 
al., 2023). The findings are relevant for guiding the development of malaria vaccines, as well 
as immunotherapeutics for alleviating clinical malaria disease and preventing progression to 
severe disease.  
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Methods 

Study Design and Sample Size 

Children with subclinical or clinical P. falciparum infections were recruited in the Kassena-
Nankana Municipality of the Upper East Region of Ghana. Children with subclinical infections 
were recruited at the community level, while those with clinical malaria were recruited at the 
Navrongo War Memorial Hospital. Malaria RDT (CareStartTM, malaria Pf(HRP2), Access Bio, 
NY, USA) was used to screen children presenting with suspected malaria symptoms. 
Individuals with positive malaria tests who provided written informed consent were recruited 
into the study. Five milliliters of whole blood was collected and used for thick and thin blood 
smears for parasite identification and quantification. Five children with subclinical infections 
and six children with clinical infections were selected for cell transcriptomic analysis.  

Seq-Well scRNA-Seq Workflow 

Seq-Well scRNA-Seq S3 workflow was performed according to the published methods 
(Gierahn et al., 2017; Hughes et al., 2020). In brief, 5x105 PBMCs from each patient were 
dispensed into a single array containing barcoded mRNA capture beads (Supplementary 
Figure 1). The arrays were sealed with a Polycarbonate Track Etch (PCTE) membrane (pore 
size of 0.01�M), allowing cells to remain separated through the lysis and hybridization steps. 
mRNA transcripts were hybridized and recovered for reverse transcription using the Maxima 
H Minus Reverse Transcriptase in the first strand synthesis step. Exonuclease (I) was used 
to remove excess primers and mRNA was captured via poly-T priming of the poly-A mRNA. 
The captured mRNA underwent first-strand synthesis to generate single-stranded cDNA 
while bound to the beads. Enzymes with terminal transferase were used to create 3’ 
overhangs and three cytosines. The overhangs are used in template switching, whereby a 
SMART sequence is appended to the overhang on both ends of the cDNA molecule during 
the first strand synthesis. Some templates fail to switch, resulting in loss of the mRNA; hence 
they are chemically denatured using 0.1M NaOH with random octamer with the SMART 
sequence in 5’ orientation, and a second strand is synthesized. Whole transcriptome 
amplification of the cDNA was performed using the KAPA HiFi PCR master mix (Kapa 
Biosystems). Libraries were pooled and purified using AgenCourt AMPure XP Beads. The 
quality of the library was assessed using Agilent  Tape Station with D5000 High Sensitivity 
tapes and reagents. Samples were barcoded as described in the Nextera XT DNA (Illumina, 
USA) segmentation method. Tagmentation was important because, after cDNA amplification 
and clean-up, there are usually very long cDNA molecules that need to be fragmented to be 
sequenced by Illumina. The Nextera XT DNA tagmentation method is effective and allows for 
the addition of adaptors and multiplex indexes at both ends of each fragment (Hughes et al., 
2020). Finally, the amplified library was purified using SPRI beads, pooled, and sequenced 
using the NextSeq500 kit (Illumina, USA). Paired-end sequencing was performed with a read 
structure of 20 bp read one, 50 bp read two, and 8 bp index one as recommended for Seq-
Well. The targeted sequencing depth was 100 million reads for all samples.  
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Processing Reads  

The raw data were converted to demultiplexed FastQ files using bcl2fastq (Version 5, Terra 
Workspace) using the Nextera XT indices and then aligned to the hg19 human genome 
using STAR aligner (Version 2.7.9) within the Broad Institute DropSeq workflow (Version 11, 
Terra Workspace). The data was cleaned using Cell Bender (V 0.2.0) with default settings, to 
remove ambient RNA (Fleming et al., 2019). The raw expression matrices and sample 
information were loaded into the open-source statistical software R (R version 4.2.1). An 
array with 45,691 gene features for 22,819 cells described data collected across 11 samples. 
The data were filtered to include only features expressed in more than 20 cells, and the 
resultant matrix described 18,303 gene features across 22,819 cells. A Seurat (Version 4.0) 
object was created, and the metadata was added to it to identify the participants (Hao et al., 
2021). Cell cycle scoring was performed and computation of the percentage of mitochondria 
genes before integration. The object from each participant was transformed individually 
within the object using SCTransform followed by the selection of integration features, finding 
the anchors, and finally combined integration. Principal component analysis was performed 
to reduce the dimensionality of the data in order to identify clusters of cells with similar 
transcriptomic profiles. Clusters and cluster resolution were determined using FindNeighbors 
and a customized FindClusters function that showed that the best resolution was 0.523, with 
an average silhouette score of: 0.2 and 11 clusters. One cluster showed no cluster-specific 
genes and was removed as multiplets, leaving 18,176 cells. The remaining clusters were 
reclustered and re-embedded, resulting in 10 clusters with a resolution of 0.292, and an 
average silhouette score of: 0.301. The average number of transcripts and expressed genes 
were evaluated per cluster using half violin and boxplots. The clusters were projected to a 
two-dimensional space using the Uniform Manifold Approximation and Projection (UMAP) 
(McInnes et al., 2018) algorithm in Seurat. 

Reference-Based Mapping 

Immune cell subsets were identified using common cell markers to identify the Mono, T cells, 
B cells, NK cells, DC, and other immune cell populations. Uniform Manifold Approximation 
and Projection for Dimensional Reduction (UMAP) was used to embed the cell populations 
and color code based on the expression of surface markers. The clustered PBMC dataset in 
this study (query) was mapped to a reference CITE-Seq dataset of 162,000 PBMCS 
measured with 228 antibodies (Hao et al., 2021). The query data were projected into the 
same dimensional space as the reference dataset, thus separating the cells into the cell 
types present in the reference dataset. The method first projected the reference data 
transformation onto the query data, followed by the application of KNN-based identification of 
mutual nearest neighbors (anchors) between the reference and query. On an L2-normalized 
dimensional space, the reference data transferred continuous data onto the query data to 
annotate the scRNA data based on a weighted vote classifier. For visualization, reference-
based UMAP embedding was used, considering that all the immune cell populations are well 
represented. 

Analyzing differences in samples  

Cluster/sample composition was calculated to determine the proportion of cells per cluster 
and per cell type. Cell subsets that were significantly different between subclinical and 
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clinical infection groups were identified by computing Dirichlet Regression using the 
DirichReg function in DirichletReg Package in R (Simmons, 2022). Differentially expressed 
(DE) genes were computed using the FindMarkers function on Seurat (Version 4.0), which 
we used to determine differentially expressed genes in the clinical and subclinical groups 
using MAST with significance at (P<0.05) and log fold change of > 0.2. Subclinical 4 was not 
included in the DE analysis due to high levels of cytokine module scores. DE genes were 
visualized using volcano-like plots and heatmaps to compare all the cell types between 
subclinical and clinical and malaria cases. The fgsea (R-package) was used to analyze the 
pre-ranked gene set enrichment analysis (GSEA). Module scores for HLA genes, ISG, NFκB 
target genes, and cytokines were analyzed using the AddModuleScore function in the Seurat 
R package. Statistical difference in module scores between the subclinical and clinical 
groups for each cell subset was computed using Wilcoxon sign-rank test with Bonferroni 
correction. Boxplots were used to visualize the module scores for each cell, denoting the 
median and interquartile range.  

Cell-to-cell Interaction using CellChat 

CellChat (Version 1.1.1) was used to quantitatively infer and analyze cell-to-cell 
communication networks (Jin et al., 2021). Statistically significant intercellular communication 
between cell groups was identified using permutation tests, and interactions with a 
significance level of less than 0.05 were considered significant (Jin et al., 2021). Heatmaps 
were used to visualize each signaling pathway and their cell-cell communications, 
highlighting the number of interactions, the sources (ligands) of the interactions, and the 
receivers (receptors) of the interactions. The relative contribution of each ligand-receptor pair 
to the overall signaling was shown in bar plots. The relative contribution provides a measure 
of a particular ligand-receptor interaction in a particular cell-cell signaling network. This 
measure demonstrates the importance or significance of the interaction in mediating cell 
communication between the cell types and potential functional relationships. It is calculated 
by comparing the expression levels of different cell receptor and ligand genes between the 
cell types while accounting for all the possible interaction pairs within a signaling network. 
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Figure 1 | Analysis of scRNA-Seq data from subclinical and clinical malaria 
individuals. a) PBMCs collected from eleven individuals and the clinical characteristics of 
the participants, such as age, sex, and symptoms. The color indicates the yes and no 
responses of the study participants. b) Uniform manifold approximation and projection 
(UMAP) plot of 22,819 cells from eleven participants colored by identities of 10 cell clusters; 
mainly B cells, T cells, and Mono. c) Expression levels of cluster-defining marker genes 

a

c

b

d e

f

g

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

n=18,176 cells 

n=18,176 cells 

n=4,730 cells 

UMAP 1

U
M

A
P

 2

Mono 1

Mono 3

Mono 2

Mono 4

LYZ 
CXCL8 

S100A9 
S100A8 

VCAN 
PARP14 

IL1B 
CCL3 

MBNL1 
PHF21A 

IGKC 
GNLY 

SNORD89 
IGHA1 
SYNE2 

SUPT5H 
CCL5 

IL32 
SRSF7 

CD69 
LILRB1 

FCGR3A 
MTSS1 
NEAT1 
NOSIP 
STK10 

MT-ATP8 
AC020916.1 

ZEB2 
DHX9 

TAOK1 
AP003171.3 

ATM 
ANAPC5 

MTR 
ZC3HAV1 

PTPN7 
ST3GAL5 
TNFAIP2 

ILF3 

G
en

es

Cell types

G
en

es

Cell types

Cell types

N
u

m
be

r o
f 

C
e

lls

A
g

e 
(Y

ea
rs

)

S
e

x

Fe
ve

r
H

e
ad

a
ch

e
N

a
us

e
a

C
h

ill
s 

R
ig

or
Jo

in
t p

ai
n

s
D

ia
rr

ho
ea

C
o

nv
u

ls
io

n
s

Ja
u

n
di

ce

Subclinical 1 936 8 F 1 1 1 1 2 2 2 2

Subclinical 2 544 5 F 2 2 1 2 2 2 2 2

Subclinical 3 1,721 4 M 1 1 1 2 2 2 2 2

Subclinical 4 2,420 6 M 1 1 2 1 2 2 2 2

Subclinical 5 128 6 F 1 1 2 2 2 2 2 2 No 2

Yes 1

Clinical 1 4,577 7 M 1 1 2 1 2 2 2 2

Clinical 2 2,446 7 F 1 2 1 1 2 2 2 2

Clinical 3 791 6 M 1 1 1 2 2 2 2 2

Clinical 4 911 6 M 1 1 1 2 2 2 2 2

Clinical 5 2,628 7 F 1 1 1 1 2 2 2 2

Clinical 6 1,074 8 F 1 1 1 1 1 2 2 2

M M M M

Identity

Mono 1

Mono 2

Mono 3

Mono 4

−2

−1

0

1

2

Expression

G
en

es

Cell types

Cell types

G
en

es

h

M
on

o 
1

M
on

o 
2

M
on

o 
3

M
on

o 
4

Identity

Percent Expressed

20

40

60

−1.0

−0.5

0.0

0.5

1.0

1.5
Average Expression



 

 19

organized by color intensity to show the average expression of the marker in that particular 
cell type and the proportion of cells with non-zero expression shown by the size of the dot. d) 
Markers used to annotate the  subclusters to various cell subsets showing average 
expression and fraction of cells expressing the marker. e) Reference mapped dataset 
showing the predicted subclusters of B, CD4 T, CD8 T, NK, Mono, and DC cell subsets. 
Reference-defined cell subsets were generated from CITE-seq reference of 162,000 PBMCS 
measured using 228 antibodies (Hao et al., 2021). f) UMAP of re-clustered and re-embedded 
Mono showing four subclusters of the CD14 and CD16 Mono. g) Markers used to identify 
monocyte subclusters. h) Mono top 10 highly expressed genes in each subcluster. 

 

Figure 2 | Profiling of immune cells from clinical and subclinical malaria children.  a). 
Relative cell proportions of the major cell subsets within subclinical and clinical malaria 
groups. Statistical tests were conducted using the Dirichlet Multinomial Regression in the 
DirichletReg package in R (Simmons, 2022). The dots represent individual proportions while 
the color scheme represents the clinical and subclinical groups. b) Relative proportions of 
minor cell subsets compared between subclinical and clinical malaria groups. Cell 
proportions per group and P-value are shown in Supplementary Table 1.  c) Violin-like plots 
showing genes that are differentially expressed between subclinical and clinical infections. 
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The x-axis shows the Log2 fold change against the cell subsets (y-axis) – i.e., B cells, Mono, 
CD4 T cells, CD8 T cells, other T cells, dendritic cells (DC) and natural killer (NK) cells. The 
color scheme is based on the upregulated (up clinical) and downregulated (down clinical) 
genes in clinical samples and the size of the point represents the adjusted P value. The 
frequency shows the number of comparisons in which the gene is significantly expressed in 
the cell subset.  

 

Figure 3 | a) Pathway analysis using an immunologic signature geneset enrichment analysis 
(GSEA) and the color scheme is based on the normalized enrichment score of genes DEG in 
clinical malaria. b) Dot plots showing some of the leading edge genes in IFN-γ and IFN-α 
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response, TNF-α signaling via NFκB  & inflammatory response pathways in Mono and, c) NK 
cells. Dot size represents the fraction of cell subsets expressing a given gene. The dot color 
indicates scaled average expression by gene column.  

 

Figure 4 | Module score analysis of innate immune gene modules. a) Boxplot showing 
interferon-stimulated gene (ISG) module scores per cell subset compared between clinical 
and subclinical malaria individuals in B cells, b) CD4 T cells, c) CD8 T cells, d) DC e) Mono, 
f) NK cells. Module scores are computed using the AddModuleScore function in the Seurat R 
package. Statistical significance between the clinical and subclinical of each cell subset was 
computed using Wilcoxon sign-rank test with Bonferroni correction. Non significant 
differences are indicated by ns.   
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Figure 5 | Primary innate immune cells dominate the cell-to-cell interactions with other 
cell subsets. a) Heatmap showing the number of interactions between the PBMCs cell 
subsets. The y-axis shows the signal senders and the x-axis shows the signal receivers. b) 
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Relative contribution of ligand receptor pairs during clinical malaria infections in the MHC 
class I signaling pathway and (c) MHC class II signaling networks, respectively. A higher 
relative contribution indicates the magnitidue of contribution of the ligand-receptor and its 
significant role in the MHC I or II signalling networks. d) Cell communications through the 
TNF signaling pathway and the arrows indicate signal sender to receiver. e) Relative 
contribution of the TNF-TNFRSF1B ligand-receptor pair towards the TNF signaling pathway. 
f) Violin plots showing the expression levels of the TNFRSF1B in the Seurat object for the 
cell subclusters. g) Heatmap comparison showing the overall signaling between all cell 
subclusters and the number of interactions. h) Relative contribution of MHC class II signaling 
pathway during subclinical infections. 
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Supplementary Figure 1 | Cluster identification and annotation. a) UMAP of 22,819 cells 
from all participants, showing 10 clusters in the dataset (following iterative Louvian 
clustering). b) Dot plots showing genes used to manually annotate the clusters and show the 
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fraction of cells expressing it and the non-zero expression. Dot size represents the fraction of 
cell types (rows) expressing a given gene (columns). The dot color indicates scaled average 
expression by gene column. c) UMAP colored by various manually annotated clusters based 
on the cell markers d) UMAP showing cell clusters identified from a reference-mapped 
dataset but labeled with the manually annotated cluster identities. e) Heatmap showing 
overall module score for each cell, and grouped based on each participant and all the cell 
types, and overall study groups. The color scheme represents a scale for module scores.  
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