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Abstract  

Purpose. Triple-negative breast cancers (TNBC) account for 15% of all breast cancers but carry 

the worst prognosis. Because of their heterogenicity, these tumors are not all prone to targeted 

therapies. However, due to their high immune infiltration, targeting their immune 

microenvironment is of tremendous interest and is becoming the standard of care for high-risk 

early-stage TNBC. Nevertheless, the characterization of this immune infiltrate is often limited 

to general tumor-infiltrating lymphocytes (TILs) counting, without characterization of 

lymphocytes subtypes. Thus, we aimed at precisely characterizing these sub-populations and 

evaluating their prognostic significance. 

Methods. We selected 91 TNBC tumors for which we had both the TILs count on hematoxylin 

and eosin (H&E) slides determined by an expert pathologist and the immune microenvironment 

cell subtypes characterization using flow cytometry (FC). We then compared the prognostic 

value of immune microenvironment subpopulations vs total TILs count. 

Results. TNBCs contained a mean of 22.8±25.9% TILs in the tumor surface area, including 

mainly CD4+ helper T lymphocytes (14.1%), mostly Th2 (11.7%), CD8+ cytotoxic T 

lymphocytes (11.1%), and myeloid cells (8.4%) including antigen presenting cells (APC). The 

TILs count was correlated with the abundance of these cellular subpopulations (p≤0.004). TILs 

percentage was predictive of overall survival (OS) in univariate analysis (p=0.044), high APC 

infiltration was predictive of relapse-free survival (RFS) in univariate analysis (p≤0.030), and 

Th2 infiltration was predictive of both RFS and OS in univariate (p=0.009, 0.008 respectively) 

and multivariate analyses (p=0.002, 0.010 respectively). 

Conclusion. The characterization of TILs composition is essential to better understand the 

potential antitumoral functions of these cells, and to strongly improve the associated prognostic 

and predictive values. We here demonstrate that Th2 subpopulation is associated with a better 

overall survival in TNBC and could be of use to predict response to the newly used 

immunotherapies. 
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Abbreviations 

BC: Breast Cancer 

BCSC: Breast Cancer Stem Cell 

CD: Cluster of Differentiation  

DBCC: Differentiated Breast Cancer Cell 

DC: Dendritic cells 

DCIS: Ductal Carcinoma In Situ 

FC: Flow Cytometry 

FFPE: Formalin-Fixed Paraffin-Embedded 

H&E: Hematoxylin and Eosin 

LN: Lymph Node 

NAC: Neoadjuvant chemotherapy 

OS: Overall Survival 

pCR: pathological Complete Response 

pTNM: pathological classification of Tumor size (T), Node involvement (N), and Metastasis 

(M) according to international guidelines 

RFS: Relapse-Free Survival  

TC: T Cells (Lymphocytes) 

Th response: T helper response 

TILs: Tumor-Infiltrating Lymphocytes 

TNBC: Triple-Negative Breast Cancer 
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Introduction 

Representing 25% of newly diagnosed cancers among women, breast cancer is a worldwide 

health concern with 685,000 associated deaths in 2020 according to the World Health 

Organization, making this pathology the leading cause of female death by cancer in most 

countries (1,2). Triple negative breast cancers (TNBC) are defined as negative for the 

expression of hormonal receptors (HR) to estrogen (ER), progesterone (PR), and Human 

Epidermal Growth Factor 2 (Her2) receptors, being mostly constituted of basal-like molecular 

subtype (3,4). Whilst they represent 10 to 20% of all breast tumors (2,5), they are a major health 

concern due to their epidemiology, being frequently diagnosed among younger non-menopausal 

women, and to their quickly unfavorable evolution (6–8) associated with a high proliferation 

index, frequent relapse after chemotherapy (9,10), and early metastatic disease (pulmonary, 

hepatic, neurologic) (8,11). Besides, we have too few clinically available targeted therapy (5,9) 

since they represent a very heterogenous disease made of up to 7 subtypes (12–14). 

Even though there are some promising therapeutic options (12,13,15–18), TNBC do not share 

a common antigenic target, making it difficult to find broadly efficient therapies. Nevertheless, 

their immunogenicity could offer some therapeutic options, since an immune infiltrate is 

detected in up to 75% of TNBC, much more than in luminal subtypes (19), and its composition 

is very distinct from the other molecular subtypes (19,20). Hence, immunotherapy recently 

became available and recommended for immunosuppressive TNBC, thanks to the the newly 

FDA-approved Atezolizumab (21) and Pembrolizumab (22), sometimes depending on PD-L1 

expression. 

However, PD1/PD-L1 expression does not select responding patients accurately enough 

(22,23). So, in order to better identify which patients could benefit from immunotherapies and 

to identify new potential targets, it is essential to better understand the role and composition of 

the immune infiltrate in TNBCs.  
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The tumor-infiltrating lymphocytes (TILs) density has been shown to be predictive of response 

to neoadjuvant chemotherapy (NAC) and of patient outcome (24–26), especially in TNBC 

(24,25,27,28). CD8+ cytotoxic T cells (TC) were first proved to be markers of good outcome, 

especially in TNBCs (26,29,30), as well as CD4+ helper and CD4+ follicular helper (fh) TC  

(31,32). But TNBC can escape immune cell-mediated cytotoxicity by developing an 

immunotolerance thanks to immune checkpoints and regulatory TC (Treg) activation (33). 

Moreover, the modulation of the expression of some immunological-related genes (34), and 

different immune signatures such as T helper cell type 1  (35), low M2-like macrophages (36) 

and gene cluster Immunity 2 (37) also have prognostic value. That’s why further classification 

in immunocompetent or tolerant TC is necessary to evaluate their prognostic significance. 

Nevertheless, to assess immune infiltrate in daily practice, pathologists currently only measure 

TILs density (38,39), since it is predictive of pathological complete response (pCR) to NAC, 

and of significantly better recurrence-free (RFS) and overall survival (OS) (40). However, no 

therapeutic option derives from this measurement since the TILs subtypes are not searched for. 

Hence, we here aim to characterize the immune microenvironment of TNBC tumors by flow 

cytometry and thus to better specify the prognostic value of TILs subtypes. 

 

Methods 

Patients  

123 TNBC patients were recruited at the time of surgery, before any chemotherapy and 

radiotherapy was administered, from January 2013 to December 2018 in Centre Eugène 

Marquis in Rennes, France. All participants provided informed consent and the study was 

approved by the local Ethics Committee Review Board and complied with local ethics 

guidelines. 91 patients were finally selected (Supplementary Figure 1).  

Sample collection 
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After surgical resection, TNBC tumor fresh tissue was taken by the pathologist in the operative 

room and processed into two fragments. The first one, fixed in 10% neutral buffered formalin 

for standard histochemical analysis with Hematoxylin and Eosin (H&E), was analyzed for TILs 

quantification and requalified for research purposes. The second one was cut into small pieces 

(<2 mm), stored in cold RPMI medium (Gibco), and processed within two hours with Human 

tumor dissociation kit (Miltenyi Biotec GmbH) in a gentle MACS Dissociator, according to the 

manufacturer’s recommendations. Macroscopic pieces were eliminated using a Corning cell 

strainer (70 μm), dissociated cells were then washed twice in RPMI (20 mL) and counted using 

a hemocytometer. Living cells were immediately analyzed using multiparameter flow 

cytometry (FC). 

Analyses of TILs by FC  

Tumor cells (50,000 cells) were suspended in PBS supplemented with 2% BSA, 2% FCS, and 

FcR block (Miltenyi Biotec GmbH®) at 4°C for 20 minutes. Cells were then stained for 30 

minutes at 4°C with fluorochrome-coupled antibodies targeting CD45-PeVio770 (clone 5B1), 

CD3-FITC (clone REA613), CD4-APCVio770 (clone VIT4), CD8-FITC (clone BW135/80), 

CD11c-APC-Vio770 (clone REA618), CD83-APC (clone HB15), CD86-FITC (cloneFM95), 

CXCR3-PE (clone REA232), CCR6-APC (clone REA190) (Miltenyi Biotec GmbH), CD14-

APC (clone MφP9), CD24-PE (clone ML5), CD44-APC (clone M44-26) (BD Biosciences, 

France). Matching isotypic antibodies purchased from the same manufacturers were used as 

control. Cells were then washed twice in PBS supplemented with 2% BSA and 2% FCS and 

resuspended in PBS. To assess cell viability, cells were incubated with 7-AAD (BD 

Biosciences) for 10 min prior to cytometry analysis. Data were acquired using a FACS Canto 

II (BD Biosciences) or a Novocyte cytometer (ACEA Biosciences) and analyzed using 

Novoexpress software. Tumor and immune cells were defined as described in Table 1 and 

Supplementary Figure 2. The different TILs populations were thus measured, and their 
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abundance, overall and relative over total CD45+ immune cells, was quantified for each tumor 

(Figure 1). 

TILs quantification 

H&E FFPE slides were obtained from Ouest pathology after pathological report was done. 

Retrospective TILs count, defined as the percentage of tumor stroma surface occupied by TILs, 

was done based on the 2014 TILs working group guidelines updated in 2018 (38,39). Group A, 

B, and C were defined as TILs infiltration <20%, ≥20% and <50%, and ≥ 50% respectively 

(Figure 1). 

Statistical analyses 

Patients and tumor characteristics were compared between TILs or Th2 groups using Chi-

squared tests or Fisher’s exact tests for qualitative variables, and either Student’s t tests, Mann 

Whitney U tests, or ANOVA and Kruskall-Wallis tests (when more than 2 groups were 

compared) for quantitative ones. Pearson or Spearman correlations were used to study the link 

between TILs percentage and other immune subpopulations abundance. Relapse-free survival 

(RFS) was defined as the time from surgery to relapse or death and overall survival (OS) as the 

time from diagnosis to death. Patients lost to follow-up were censored at the date of last news. 

Kaplan-Meier curves were estimated for RFS and OS, and log-rank tests were performed to 

compare survival distributions. Univariate and multivariate Cox regression analyses were 

performed to calculate unadjusted and adjusted Hazard Ratios (HR) and were presented with 

95% Confidence Intervals (CI95%). Bayesian Information Criterion (BIC) was used to select 

independent parameters according to a forward step-by-step selection procedure. Whole 

statistical analysis was performed with R and RStudio® softwares. All reported p values were 

two-sided and considered statistically significant when <0.05. 

 

Results 
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Population description 

91 patients got a complete immune characterization (TILs count by pathologists and 

subpopulations characterization by FC) (Supplementary Figure 1). Their characteristics are 

precisely described in Supplementary Table 1 and 2. Briefly, our population consisted of 

females with a mean age of 58 (±14.5) years. Of these women, 15.7% and 11.8% carried a 

BRCA1 or BRCA2 mutation respectively. Their tumors were mostly high grade (93.4%) and 

highly proliferative (mean Ki67: 64.8±23.8%) invasive ductal carcinomas (85.7%) of 

22.9±11.6mm with 1.5±3.6 metastatic lymph nodes. Therapy mostly consisted of lumpectomy 

or breast conserving surgery (75.8%), with axillary treatment (94.4%), followed by 

chemotherapy (85.7%), and radiotherapy (86.5%). The median follow-up was 28.0 months 

(Supplementary Table 2). 

TILs count, characterization using FC, and their correlation 

Most TNBC (58.2%) were poorly infiltrated Group A tumors, versus 23.1% Group B and 18.7% 

Group C, for a TILs count of 22.8±25.9% (median 10.0% [0.0-90.0]). TILs consisted of 3.1% 

macrophages, 8.4% myeloid cells, 11.1% CD8+ cytotoxic TC, and 14.1% CD4+ helper TC 

(1.0% Th1, 0.8% Th17, and 11.7% Th2 subsets) (Figure 1 and Supplementary Table 3). 

The correlation between TILs groups and immune cells measured by FC was linear and 

significant for total leukocytes (p£0.001), helper TC (p£0.001), cytotoxic TC (p£0.001), Th17 

and Th2 responses (p£0.01), and antigen presenting cells including dendritic ones (p£0.001 & 

p£0.01 respectively) (Figure 2). Pearson and Spearman correlations showed the same results 

when considering TILs percentages and total leukocytes (p=0.002), myeloid cells (p<0.001), 

cytotoxic TC (p=0.002), helper TC (p<0.001), and Th17 (p=0.022) or Th2 expressing TCs 

(p=0.002). We noted that the presence of Th1 TCs was not significantly correlated with TILs 

group (p=0.14) or percentage (p=0.218).  

Correlation of demographical and tumoral characteristics with immune cells 
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TILs groups and percentages were not significantly correlated to patients’ clinical 

characteristics, except for BMI (p=0.038 and 0.007 respectively) and the presence of BRCA 

mutations (p=0.009 and 0.016 respectively).  Regarding tumor characteristics, only DCIS 

(p=0.037) and grade (p=1.8.10-9) were correlated with TILs percentages. Th2 response was only 

significantly related to intravascular tumor emboli (p=0.047) and there was a trend of an 

association with both lymph node involvement and grade (p=0.123 and 0.180 respectively) 

(Supplementary Table 4).  

RFS and OS analyses 

16 patients (17.6%) relapsed, mostly by distant metastasis (15.4%), and 10 (11%) died of 

cancer-related cause resulting in a 5-year RFS and OS of 77% and 83% respectively 

(Supplementary Table 2 and Supplementary Figure 3). Only BMI was significantly predictive 

of relapse and OS (p=0.033 and 0.034 respectively) (Table 2). Number of foci and pathological 

size were significantly predictive of OS (p=0.009 and 0.010 respectively). Pathological size and 

nodal involvement were also strongly predictive of both RFS and OS in multivariate analyses 

(p<0.05)(Table 2 and Figure 3). All the non-significative variables are shown in Supplementary 

table 5. 

The TILs percentage was predictive of OS (p=0.044) (Figure 3 and Table 2) but only tended to 

be of RFS (p=0.071). The percentages of CD45+ leukocytes, CD4+ helper TC, and 

macrophages were not significantly predictive of RFS or OS, and we observed a non-significant 

trend with CD8+ cytotoxic TCs (p=0.072 and 0.188 respectively). However, we discovered that 

a high Th2 infiltration was strongly predictive of both RFS and OS (Figure 3) in univariate 

(p=0.009 and 0.008 respectively) and multivariate (p=0.002 and 0.010 respectively) analyses 

(Table 2), while Th1 and Th17 were not. Myeloid cells including dendritic ones were also 

significantly predictive of relapse (p=0.012 and 0.030 respectively) (Table 2).  
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When considering the different Th populations, only Th2 was a better predictive factor of 

survival, especially OS, than total leukocytes (Figure 4). In accord, almost all patients having 

relapsed or died were Th2 low (below the median), even though some of them where highly 

infiltrated by lymphocytes. Th1 and Th17 did not add the same prognostic value, and Th17 was 

particularly poorly correlated to RFS and OS (Figure 4). 

 

Discussion 

The emergence of immunotherapy represents a new hope for TNBC patients since these tumors 

are frequently highly infiltrated by immune cells and may thus respond to immune checkpoint 

inhibitors. However, markers than can robustly predict responsiveness to immune checkpoint 

therapy are lacking in TNBC. Furthermore, the nature of this immune infiltrate remains largely 

undocumented. Hence, it is essential to better characterize it to identify patients that would 

benefit the most from these new therapies. 

TILs content, methods of investigation, limits, and interpretation 

TILs are needed to recognize disseminated tumor cells or death-associated molecular patterns 

(DAMPs) to trigger further immune recruitment, infiltration, and activation of immunogenic 

cancer cell death (41). Regardless of their localization, the characterization of TILs subtypes is 

critical, since they can have either a pro- or an anti-tumorigenic function (42). Memory, helper, 

or CD4+ fh TC can modulate the immune response, while cytotoxic CD8+ TC play a main role 

in cancer killing. FOXP3+ Treg or the activation of immune checkpoints (PD1/PD-L1) and 

CTLA4 are crucial in immune tolerance (33). Immune escape (drop in CD8+ and CD4+ TC) 

and tolerance (by PD-L1, PD-L2, and HLA-1 overexpression (43) or Treg activation (44)) are 

associated with poor prognosis and with the development of metastatic disease. But results are 

still controversial (29,45–48), also depending on tumoral TILs localization (49). Zhang et al. 

even showed that Treg and PD-1/PD-L1 expression was correlated with better OS in TNBC 
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(50). That is why immunomodulatory subtypes such as Treg and Th2 CD4+ TC need to be 

considered and better understood in TNBC.  

TILs percentage is currently the only assessed parameter in the clinic but has many limits. First, 

there is a need for standardized TILs measurements by pathologists (38), since variability can 

affect the correlation of TILs with pCR (51). Moreover, the TILs working group only 

recommends the measurement of stromal TILs that are easier to measure than intratumoral ones 

(39,52). Nevertheless, results are still controversial (31), since Ruan et al. showed that both 

intratumoral and stromal TILs were independent predictors for pCR (28).  

In our study, and contrary to the data previously mentioned (24–26), stromal TILs were not 

significantly associated with RFS and OS, perhaps because of the limited amount of relapses 

and death events in the studied cohort. However, other studies also failed to show a prognostic 

utility of TILs count alone (53). CD8+ and CD4+ TC were not significantly predictive of RFS 

or OS in our cohort either, while they frequently are in TNBC (24,26,29–32,48,54), maybe for 

the same reasons. 

Need for reproducible immune characterization 

In our study, we counteracted these limitations by immunophenotyping the immune infiltrate 

on fresh tumor, without consideration of localization using a highly standardized and 

trustworthy FC method. Other studies use whole exome sequencing to assess T cell infiltration 

and correlate these data to prognosis and response to immunotherapy (55), or even gene-

expression deconvolution to characterize T cell subtypes (53,56–58). However there is 

currently no consensual transcriptomic signature for Th2 cells. 

Th2 prognostic value 

We observed that Th2 infiltration was the most frequent one, as previously reported (20). The 

prognostic value of Th2 in various cancers is often unconclusive or assumed to favor pro-

tumorigenic immune-tolerance because of its link to aggressive features (59–65). On the 
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contrary, high Th2 infiltration was a strong factor of good prognosis in our cohort, as already 

suspected in previous studies through thymic stromal lymphopoietin (TSLP) (66,67), or 

collaboration with eosinophils (68,69), sometimes being as powerfully antitumoral as Th1 

(70,71). Th2 levels even favorably correlated to pCR in ER+ breast cancers (72). 

AllergoOncology group showed that immune escape can be reversed by IgE and Th2 response 

(69,73,74). Th2 anti-tumoral action could be boosted by anti-TGF-β (75) and Th2/Th1 response 

could be recapacitated by xanthohumol (76), saikosaponin (77), anti-IL4/IL4R (78), anti-IL13 

(79), anti-CCR4 (80), among others (70,81). Other interesting perspectives consist of better 

understanding Th2 interaction with other immune subsets, like fibroblasts (82), macrophages 

(83,84), dendritic cells (79,85), or eosinophils and IgE (68,86), to better control Th2 response. 

Finally, immunotherapies modulating Th2 response could also be used around the time of 

surgery that has been proved to induce immunomodulation (87).  

DC prognostic value 

We also showed that dendritic cells, potentially through their interaction with Th2 CD4+ TC, 

were correlated with better survival. On the contrary, DC have also been reported as 

immunosuppressive (79), especially through Th17 response (85). To face this complexity, it 

will be required to consider the DC subset involved (88). In addition, studying a wider signature 

including B-cells and myeloid-derived antigen-presenting cells (89), such as the ones used to 

predict response to treatment (90,91) will likely be informative. Of note, immune metagenes 

overexpression  and innate and adoptive immune cooperation are also associated with low-risk 

of metastasis in TNBC (91,92). 

Clinical features and immune microenvironment 

Only BMI correlated with TILs infiltration in our cohort, emphasizing the complex immune 

relation between obesity and cancer (93), especially through Th2 processes (94). Few of the 

tumoral characteristics were correlated to TILs infiltration, as previously reported (20). 
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Nevertheless, Th2 percentages was significantly correlated with intravascular tumor emboli, a 

variable often linked to S.B.R. grade and lymph node involvement. Th2 levels were already 

proved to be higher in tumor microenvironment and lymph nodes in case of aggressive, therapy-

resistant, metastatic, and large or locally advanced breast cancers (30,72,95–99), confirming 

their abundance without proving their pejorative prognostic value.  

Strength and weakness of our study and added value 

Potential limitations of the applicability of our results could be the good RFS and OS of our 

patients compared to general TNBC populations (8), and the inclusion of patients who 

underwent surgery first whereas NAC is nowadays the standard of care for numerous TNBC. 

However, identifying a Th2 response in supposedly favorable-prognosis BC could be of 

tremendous interest to prevent unexpected but still early and deadly relapses. Moreover, even 

if TILs assessment post-NAC has some specificities (39,100), it is transposable to the ones 

performed pre-NAC (35,101), including for Th response in tumor (99) and in lymph nodes (95). 

TILs assessment post-NAC is also an independent predictor of survival (40,102), even better 

when used alongside Residual Cancer Burden score (RCB) (103). Besides, TILs count can also 

be done on pre-NAC biopsies and still carry the same prognostic value (104). Finally, 

modification of immune subpopulations percentages and ratios has also been proved to be of 

importance after NAC (47,105), and could thus be studied at both timepoints.  

A better understanding of the TILs in TNBC, especially Th2 (75), could eventually enable to 

target them more specifically (106–108),  or even to use them for Adoptive cell transfer (109), 

CAR-TC design, or even vaccines (21,110). However, we still need to identify which tumors 

are immunogenic enough to benefit from it (111,112). Following the CREATE-X trial, adjuvant 

chemotherapy (Capecitabine) is currently given to non-pCR TNBC patients regardless of the 

immune infiltrate (113), while only some of them will benefit from it. Hence, immune 

characterization could predict chemotherapy efficacy or immune exhaustion making relevant 
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the addition of immunotherapy to Capecitabine for some selected non-pCR TNBCs, similarly 

to those benefiting from Atezolizumab in metastatic settings (21). Finally, necessary future 

therapeutic development include further understanding of the role of other immune cells such 

as macrophages (114), natural killer TC (NK cells) (115), and their interactions with TILs and 

Th2.  
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Tables  

 

 

Cell type  FC characterization

CD45-/CD24-/CD44+

CD45-/CD24+/CD44-

CD45-/CD24-/CD44-

CD45-/CD24+/CD44+

CD45+/CD3+/CD8+(CD4-)

CD45+/ CD3+/CD4+

Th1  CD45RA-(RO+)/CD4+/CXCR3+/CCR6-

Th1/Th17  CD45RA-(RO+)/CD4+/CXCR3+/CCR6+

Th17  CD45RA-(RO+)/CD4+/CXCR3-/CCR6+

Th2  CD45RA-(RO+)/CD4+/CXCR3-/CCR6-

CD45+/CD11c+

CD45+/CD11c+/CD86+

CD45+/CD86+

CD3-/CD14+

APC

Dendritic cells

Macrophages

T « helper »

Table 1 – TILs characterization by Flow Cytometry (FC) according to the expression of their 
surface markers. BCSC: Breast Cancer Stem Cells; DBCC: Differentiated Breast Cancer Cells; 
APC: Antigen-Presenting Cells.

Cell subtype

DBCC

BCSC

T « cytotoxic »

BCSC or DBCC

Tumor cells

T Lymphocytes

Myeloid cells
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Univar Multivar Univar Multivar
0.538 0.762 0.292

BRCA1 0.234 0.168 0.16

BRCA2 0.421 0.308 0.279

Breast cancer 0.348 0.226 0.192

Ovarian cancer NA NA NA

BMI 0.033 0.205 0.034
Breast cancer 1 0.481 0.919

Ovarian cancer 0.735 0.257 0.359

0.017 0.111 0.009
0.549 0.719 0.693

0.513 0.905 0.783

0.568 0.719 0.554

Presence 0.289 0.796 0.278

Size (mm) 0.127 0.317 0.317

Grade 0.383 0.842 0.544

0.002 0.064 0.011/
0.23[0.07-0.78]*

0.01 0.013/
0.13[0.02-1.01]*

0.122 0.363 0.096

Harvested 0.28 0.433 0.368

Metastatic 0.014 0.004 0.068

T 0.233 0.44 0.252

N 0.036 0.002 0.004/
2.85[2.35-26.25]*

0.024 0.016/
5.67[1.26-25.42]*

M 0.011 <0.0001 <0.0001
Group                  0.102 0.164 0.121

% 0.102 0.071 0.044
Tumor cells 0.284 0.19 0.338

BCSC (CD44+CD24+) 0.944 0.168 0.421

BCSC (CD44+CD24-) 0.899 0.821 0.597

DBCC (CD44-CD24+) 0.889 0.71 0.802

DBCC (CD44-CD24-) 0.603 0.324 0.385

Total lymphocytes 0.319 0.243 0.377

Helper T cells 0.406 0.306 0.432

Cytotoxic T cells 0.153 0.072 0.188

Th1 response 0.864 0.245 0.474

Th1/Th17 response 0.894 0.642 0.39

Th17 response 0.643 0.476 0.564

Th2 response 0.177 0.009 0.002/
9.30[2.38-36.26]

0.008 0.010/
11.46[1.36-96.39]

Myeloid cells (CD11c+) 0.012 0.265 0.182

DC (CD11c+CD86+) 0.03 0.03 0.259

DC (CD86+) 0.061 0.028 0.25

Macrophages 0.653 0.714 0.66

Breast 0.284 0.435 0.22

Axilla 0.167 0.564 0.404

Chemotherapy 0.631 0.441 0.517

Targeted Therapy 0.307 0.284 0.138

Radiotherapy:      Breast 0.619 0.593 0.61

Local Boost 0.027 0.146 0.062

LN 0.489 0.274 0.143

Immunity TILs

Personal medical 

history

Familial medical 

history

One or multiple foci

DCIS

Pathological size (mm)

IV tumor emboli

Total number of LN 

pTNM

Correlation to RFS (p) Correlation to OS (p)

Age (years)

Mutational profile

Table 2- Correlation of patient, tumor, immunity, and treatment characteristics to relapse-free survival (RFS) and 
overall survival (OS).  p values for survival status are obtained using Wilcoxon test for quantitative variables and Chi2 
or Fisher exact test for qualitative ones, depending if the group do or do not contain at least 5 values respectively. p 
values for relapse free and survival regression are obtained using log rank test for univariate (univar) analyses and Cox 
model for multivariate ones (multivar), using BIC condition for prognostic usefulness.  p values <0.05 appear in bold 
font in the text. *p values/ HR [CI95%]. BMI : Body mass index ; DCIS : Ductal carcinoma in-situ ; IV : Intra-vascular ; 
TILs : Tumor-infiltrating lymphocytes ; FC : Flow cytometry ; BCSC : Breast Cancer Stem Cells ; DBCC : Differentiated 
Breast Cancer Cells ;DC : Dendritic Cells;  pTNM : pathological staging of tumor size(T), lymph node involvement(N), 
and metastatic status(M) of breast cancer according to international guidelines.

Histological type of BC

Grade (Surgery)

Ki67 (%)

Characteristics Living 
Status

Treatment Surgery

Adjuvant therapy

Tumor

Patient

FC characterization
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Figures legends 

Figure 1 – Tumor-Infiltrating Lymphocytes (TILs) and their characterization by Flow Cytometry 

(FC). Corresponding H&E pathological slides (A) and FC analysis (B) of a highly infiltrated group C 

tumor, BT127, showing 70% of TILs infiltration (A) and 20% of Th2/CD45 +cells (B), and a poorly 

infiltrated group A one, BT82, showing 5% of TILs stromal infiltration (A), and 6% of Th2/CD45+ cells 

(B). TILs count consists of mononuclear cells count in stromal fibrous spans (pink). Th2 cells are defined 

as living T helper lymphocytes (CD4+) expressing neither CXCR3 (contrary to Th1 and Th17 

lymphocytes) nor CCR6 (contrary to Th17 lymphocytes). C: Complete characterization of the immune 

microenvironment of all tumors by FC showing the relative abundance of the different subpopulations 

(Percentage values in Supplementary Table 3). TC: T lymphocyte cells; APC: Antigen-presenting cells. 

Figure 2- Correlation of TILs groups with immune subpopulations relative abundance. Correlation 

of TILs group as defined by the pathologist with total leukocytes, including helper CD4+ and cytotoxic 

CD8+ T cells, antigen-presenting cells (APC) or dendritic cells, and tumor cells characterized by flow 

cytometry (FC). Helper T cells could either trigger a Th1, Th17, or Th2 response. Only populations with 

significant correlation are shown on the figure. p values were derived from a Holm and a Kruskal-

Wallis tests (for the comparison of respectively 2 and 3 groups). ns: non-significant; * p£ 0.05; ** p£ 

0.005; *** p£ 0.001. 

Figure 3- Relapse-free (RFS) and overall survival (OS) analyses. RFS and OS according to tumor 

pathological size (median=20mm), pathologically confirmed lymph node metastasis, dendritic cells 

percentage by FC (median=0.07%), tumor-infiltrating lymphocytes (TILs) percentage (median 

=10.0%), and Th2 lymphocytes percentage by FC (median=7.98%). Kaplan Meier curves were 

estimated, log rank tests (for p values) were performed to compare survival distributions. p values in 

bold font are significant ones.  

Figure 4- Relapse and overall survival status of patients depending on Th subpopulation versus total 

CD45+ leukocytes infiltration measured by flow cytometry (FC). Repartition of free from relapse (no 

relapse in blue) patients versus having-relapsed ones (relapse in red) (A,C,E) and alive (red) versus 
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deceased (blue) ones (B,D,F) ones according to Th2(A,B), Th1 (C,D), Th17 (E,F) infiltrations vs all 

leukocytes. Dashed lines represent medians of different subpopulations infiltrations. 

 

Supplementary materials 

Supplementary Table 1- Patient and tumor characteristics. For quantitative variables we give the 

statistical dispersion defined by the average, the standard deviation (SD), the median, the minimum and 

maximum (Min-Max), whereas we give percentage (%) and actual number of events (n) over total 

population (n total) for qualitative ones. ADD: Anxiety-depressive disorder; AHT: Arterial 

hypertension; BMI: Body mass index; BC: Breast carcinoma; IDC: Invasive ductal carcinoma; ILC: 

Invasive lobular carcinoma; DCIS: Ductal carcinoma in-situ; IV: Intra-vascular; SLN: Sentinel lymph 

node; LN: Lymph node; pTNM: pathological staging of tumor size(T). lymph node involvement(N). and 

metastatic status(M) of breast cancer according to international guidelines. 

Supplementary Table 2- Treatment, and follow-up characteristics. For quantitative variables we give 

the statistical dispersion defined by the average, the standard deviation (SD), the median, the minimum 

and maximum (Min-Max), whereas we give percentage (%) and actual number of events (n) over total 

population (n total) for qualitative ones. SLN: Sentinel lymph node dissection ; LND: Lymph node 

dissection; LN: Lymph nodes. Chemotherapy regimen were mainly FEC (5-flurouracile, Epirubicine, 

Cyclophosphamide) and Taxanes for all but eight patients who got either Taxanes for half of them (alone 

or with targeted therapy), or Cyclophosphamide for the other half (+ Doxorubicine for two or Taxanes 

for the other two). Three of these patients also got targeted therapy by Cobimetinib for two and Olaparib 

for one of them. 

Supplementary Table 3- Tumor infiltrating lymphocytes (TILs) count and immune infiltrate 

characterization by flow cytometry (FC). For quantitative variables we give the statistical dispersion 

defined by the average, the standard deviation (SD), the median, the minimum and maximum (Min-

Max), whereas we give percentage (%) and actual number of events (n) over total population (n total) 

for qualitative ones. TILs: Tumor-infiltrating lymphocytes; FC: Flow cytometry; BCSC: Breast Cancer 

Stem Cells; DBCC: Differentiated Breast Cancer Cells. 
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Supplementary Table 4- TILs and Th2 correlation with patient, tumor, and treatment characteristics. 

p values are obtained thanks to a chi2 or a Fisher’s exact test (when there are less than 5 patients per 

group) for TILs group comparison of qualitative values and an ANOVA one for quantitative values. For 

TILs percentages and Th2 response comparisons, p values are obtained from a Student or an ANOVA 

test (when there are more than 2 groups) for qualitative values and a Pearson correlation one for 

quantitative values. p values in bold font are significant ones. HRT: Hormone Replacement Therapy; 

BMI: Body mass index; BC: Breast carcinoma; S.B.R.: Scarff-Bloom and Richardson; DCIS: Ductal 

carcinoma in-situ; IV: Intra-vascular; LN: Lymph Node; pTNM: pathological staging of tumor size(T), 

lymph node involvement (N), and metastatic status(M) of breast cancer according to international 

guidelines. 

Supplementary Table 5- Correlation of patient, tumor, immunity, and treatment characteristics to 

relapse-free survival (RFS) or overall survival (OS). p values for relapse status are obtained using 

Wilcoxon test for quantitative variables and Chi2 or Fisher exact test for qualitative ones (if the group 

does or does not contain at least 5 values respectively). p values for survival regression are obtained 

using log rank test for univariate (univar) analyses and Cox model for multivariate ones (multivar), 

using BIC condition for prognostic usefulness.  p values <0.05 appear in bold font in the text. *p values/ 

HR [CI95%]. BMI: Body mass index; BC: Breast cancer; DCIS: Ductal carcinoma in-situ; IV: Intra-

vascular; LN: Lymph Nodes; pTNM: pathological staging of tumor size (T), lymph node involvement 

(N), and metastatic status (M) of breast cancer according to international guidelines; TILs: Tumor-

infiltrating lymphocytes; FC: Flow cytometry; BCSC: Breast Cancer Stem Cells; DBCC: Differentiated 

Breast Cancer Cells. 

Supplementary Figure 1- Flow chart for patient inclusion. HR+ +/- Her2+: hormonal receptors 

and/or Her2 positive; BC: breast cancers; TNBC: Triple-negative breast cancers; TNBC only*: 

exclusion of patients having developed another histological type of cancer or a recurrence as an HR+ 

BC; TILs: Tumor-infiltrating lymphocytes; w/o: without; w/: with; FC: Flow Cytometry. Exclusion 

criteria are depicted in grey. 
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Supplementary Figure 2 – Flow Cytometry (FC) characterization of tumor cells and tumor-

infiltrating immune cells according to their cluster of differentiation (CD). BC: Breast cancer; SC: 

Stem cells; DBCC: Differentiated breast cancer cells; CD4+: helper T lymphocytes; CD8+: cytotoxic 

T lymphocytes; BT; lab number. 

Supplementary Figure 3- Relapse-free survival (A) and overall survival (B) for the entire cohort. 

Kaplan Meier curves were estimated, and percentages of survival rates derived from a log-rank test. 
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