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Abstract

Local genetic correlation evaluates the correlation of genetic effects
between different traits across genetic variants in a local region. It
has been proven informative for understanding the genetic similarities
of complex traits beyond that captured by global genetic correlation
calculated across the whole genome. Several summary-statistics-based
approaches have been developed for estimating local genetic correla-
tion, including ρ-hess, SUPERGNOVA, and LAVA. However, there has
not been a comprehensive evaluation of these methods to offer prac-
tical guidelines on the choices of these methods. In this study, we
conduct benchmark comparisons of the performance of these three meth-
ods through extensive simulation and real data analyses. We focus
on two technical difficulties in estimating local genetic correlation:
sample overlaps across traits and local linkage disequilibrium (LD)
estimates when only the external reference panels are available. Our sim-
ulations suggest that the type-I error and estimation accuracy are highly
dependent on the estimation of the local LD matrix. These observations
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are corroborated by real data analyses of 31 complex traits. Over-
all, our results offer insights into post-GWAS local correlation studies
and highlight issues that demand future methodology developments.

Keywords: benchmark, complex traits, GWAS, local genetic correlation,
linkage disequilibrium, sample overlap

1 Introduction

In recent years, genome-wide association analyses (GWAS) have identified tens

of thousands of genetic variants associated with numerous complex traits and

diseases[1–4]. Various post-GWAS approaches[5], such as fine mapping, genetic

correlation, functional enrichment, and polygenic risk score (PRS), are rou-

tinely conducted to gain a further understanding of the genetic variants and

biological mechanisms behind the observed statistical associations. Estimating

genetic correlation using GWAS data is an essential part of the post-GWAS

analysis that can quantify genetic similarities and uncover shared genetic basis

of complex traits and disorders. Additionally, genetic correlation results can

help increase statistical power in genetic association studies [6, 7], and improve

polygenic risk score prediction accuracy [8–12]. Genetic correlations can be

characterized globally, summarizing the average correlation of genetic effects

across the genome, or locally highlighting specific regions having correlated

effects on different traits.

While global genetic correlations have been extensively studied [13] with

many methods developed for their estimations using GWAS data [14–17], they

may not capture local genetic correlations that may be distinct across differ-

ent regions [18–22]. These include the existence of opposing correlations in

different regions, which can lead to a non-significant global genetic correla-

tion. Furthermore, global genetic correlations provide limited insight into the
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shared biological mechanisms, when different genomic regions have different

correlation levels. For example, when investigating shared genetic architec-

ture between COVID-19 severity and idiopathic pulmonary fibrosis (IPF), the

global genetic correlation between these two diseases was 0.35 (p = 0.001),

however, the effect of MUC5B and ATP11A revealed opposing effects for these

two diseases[23]. In order to capture local correlation patterns, several meth-

ods have been developed for estimating or detecting local genetic correlation

including ρ-HESS[24], SUPERGNOVA[20], and LAVA[21].

ρ-hess[19] and SUPERGNOVA[20] focus on evaluating bivariate local

genetic correlations, whereas LAVA[21] used partial correlation and multi-

ple regression to estimate bivariate and multivariate genetic correlations.

These methods also differ in model assumptions relating genetic variants

to their effects on traits. Whereas ρ-hess[19] and LAVA[21] are based on

fixed effects models, SUPERGNOVA[20] is based on a random effects model.

Although there was earlier research evaluating the performance of these

approaches[20, 21], there has not been a comprehensive study of their per-

formance through extensive simulation and real data analyses. Given the

importance of inferring local genetic correlations, there is a need for objec-

tively benchmarking the performance of these three methods with user-defined

genome partitions in realistic settings. As all three methods both infer shared

genetic effects and estimate local heritability in a local region, we evaluate

their performances for both tasks, i.e. local genetic covariance/correlation

estimation between two traits and local heritability estimation.

We conducted simulations using the observed genotype data from the UK

Biobank (UKB)[25] and compared different methods using both in-sample and

external reference panels to estimate local linkage disequilibrium (LD) struc-

ture. We used genotype data from 1KG Phase 3[26] as the external reference
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panel. We considered binary and continuous traits with varying sample over-

laps and region sizes. We assessed the robustness of each method against both

infinitesimal and non-infinitesimal models, and whether the effect sizes fol-

low the underlying assumption of the random effect method, SUPERGNOVA.

Additionally, we investigated the stability of ρ-hess and LAVA with different

reference panels. After simulations, we applied these methods to analyze 31

complex traits with publicly available GWAS summary statistics. To validate

the accuracy of these methods in real data, we applied LDSC[14] to estimate

global genetic covariances and heritability and compared these estimates with

the sum of local heritability and local genetic covariance. For these real data,

we also assessed the stability of the point estimates and inferences using differ-

ent reference panels and conducted polygenic risk score analyses using markers

from regions with significant positive and negative correlations. The observa-

tions from our simulation and real data analyses offer valuable insights into

the statistical properties, advantages, and limitations of each method.

2 Methods

2.1 Study population and quality control of genotype

data

The UKB is a large, prospective study that aims to examine complex traits

and diseases in middle-aged adults. We performed simulations using imputed

genotype data from UKB and selected samples from genetically unrelated par-

ticipants of White British ancestry (n=276,731). For real data analysis, we

used phenotype and genotype data from UKB to perform polygenic risk score

(PRS) analysis for four traits: coronary artery disease (CAD), type 2 diabetes

(T2D), low-density lipoprotein (LDL), and body mass index (BMI). Of the

participants included in the analysis, 4,765 individuals were diagnosed with
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CAD, and 40,361 individuals were diagnosed with T2D. The mean LDL level

was 3.37 (mmol/L) with a standard deviation of 1 and the mean BMI was

31.23 (kg/m2) with a standard deviation of 5.8.

For real data analysis, in addition to the UKB dataset, we also used data

from SPARK (Simons Foundation Powering Autism Research)[27] for autism

spectrum disorder (ASD) patients. We accessed the first release of the com-

bined multi-batch SPARK WES dataset, which includes phenotype data for

the SPARK Collection Version 7. The details of these samples are available

on the SFARI website, https://www.sfari.org/resource/spark/. This dataset

includes 69,592 samples processed on the Illumina Global Screening Array

and is provided in PLINK[28] format. After removing samples with estimated

ancestry other than European (EUR) and missing genotype data, 51,658 sam-

ples remained for further analysis. We applied pre-imputation quality control

using PLINK[28], including the removal of SNPs with low genotype call rates

(<0.95), minor allele frequencies (<0.01), or deviations from Hardy-Weinberg

equilibrium(<1e-06), as well as samples with high missing genotype rates

(>0.05). This left us with 455,444 SNPs and 43,891 samples. The genotype

data were then phased and imputed to the HRC reference panel using the

Michigan Imputation Server[29]. After imputation, we applied additional qual-

ity control, including the removal of SNPs with low imputation quality (<0.8)

or minor allele frequency (<0.01). Finally, the SPARK study data contained

7,194,844 SNPs on the GRCh37/hg19 build, of which 5948,083 SNPs were also

included in the EUR 1KG Phase 3 data. We then retained 12,264 individuals

who were ASD probands and also had intelligence quotient(IQ) scores to assess

the association between PRSs and IQ scores in ASD probands. In our anal-

ysis, we quantified cognitive performance using full-scale IQ, verbal IQ, and

https://www.sfari.org/resource/spark/
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non-verbal IQ. There were 1,026, 785, and 830 ASD probands in SPARK, who

had both these IQ scores and qualify-controlled genotype data, respectively.

2.2 Genome partition

Both ρ-hess and SUPERGNOVA use LDetect[30] to partition the genome

into non-overlapping blocks with an average width of 1.6 cM per block. How-

ever, LDetect is a heuristic method that may not always produce optimal

results. In contrast, LAVA divides the genome by recursively splitting the

largest block into two smaller blocks, selecting a new breakpoint that min-

imizes local LD between the resulting blocks. To compare the performance

of different partitions fairly, we used snp ldsplit[31] to partition the genome,

which uses dynamic programming to minimize the sum of squared correlations

between variants in different blocks. We compared the performance of differ-

ent genome partitions and found that the partitions generated from snp ldsplit

led to smaller sum of squared correlations between SNPs in different blocks

(Supplementary Material, Appendix A).

We used the 1KG Phase 3[26] reference panels for our analysis. We selected

the European samples by the SuperPopulation information provided by 1KG

and then excluded all duplicated and ambiguous SNPs. We applied quality

control to the 1KG data for EUR ancestry using PLINK[28] ( –geno 0.05 –hwe

1e-10 –mind 0.05 –maf 0.05) and generated a genetic map using the https://

plink.readthedocs.io/en/latest/plink mani/ website. In addition, we conducted

quality control on the UKB data, creating two UKB reference panels with 503

randomly selected non-overlapping samples from the unrelated White British

individuals (the same sample size as the EUR 1KG Phase 3 reference panel).

To partition the genome, we excluded the MHC block on chromosome 6

(30-31Mb) and applied snp ldsplit to each chromosome in parallel. To avoid

https://plink.readthedocs.io/en/latest/plink_mani/
https://plink.readthedocs.io/en/latest/plink_mani/
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LD leakage and biased estimates, we set the minimum size of each block to be

at least 0.5 cM. We adaptively searched for the optimal values of max r2 (the

maximum squared correlation allowed for one pair of variants in two different

blocks) and max size (the maximum number of variants in each block) for

each chromosome to make the LD blocks as independent as possible. It is

important to note that a larger block may result in increased computational

and memory requirements, and obscure local signals. To find the minimal

combination of max r2 and max size that can generate partitions with a mean

block size smaller than 1.6cM, we searched for values of max r2 from 0.3 to 0.72

and max size from 5cM to 13cM. From the partitions found, we selected the

partitions that resulted in the minimal cost (the sum of squared correlations

between SNPs at different blocks). The final max r2 and max size values for

each chromosome are shown in Supplementary Table 1 and the partitions used

in this analysis are in Supplementary Table 2. (Note that genomic coordinates

for this paper are in reference to the human genome build 37.)

2.3 Methods for genetic correlation estimation

We compared the performance of three local genetic correlation estimation

methods: ρ-hess, SUPERGNOVA, and LAVA. These three approaches are

based on the analysis of summary statistics, with ρ-hess and LAVA using fixed

effects models and SUPERGNOVA adopting a random effects model. In the

following, we first briefly introduce the concept of local genetic covariance and

then describe the underlying statistical framework for these methods.

Let Xi denote the standardized genotype vector of size mi in block i, where

mi is the number of markers in this block, i = 1, ..., I, and βi and γi are

the effect size vectors of the mi markers within block i for two traits, then

the local genetic contributions for the two traits in block i are g1i = XT
i βi



8 local genetic correlation methods comparison

and g2i = XT
i γi, respectively. Local genetic covariance is defined as ρi =

Cov(g1i, g2i). The local genetic correlation ri can be estimated as ri =
ρi√
h2
1ih

2
2i

,

where h2
1i and h2

2i are the local heritability in block i. Furthermore, the global

genetic covariance matches the sum of local genetic covariance when the genetic

components in different partitions are independent:

Cov(g1, g2) = Cov[

I∑
i=1

XT
i βi,

I∑
i=1

XT
i γi]

=

I∑
i=1

I∑
j=1

Cov[XT
i βi, X

T
j γj ]

=

I∑
i=1

Cov[XT
i βi, X

T
i γi]

=

I∑
i=1

ρi.

(1)

where g1 and g2 are the genetic contributions for traits 1 and 2, respectively.

In the outputs of these three methods, ρ-hess and SUPERGNOVA give

estimates of local genetic covariance, whereas LAVA provides estimates of local

genetic correlation. All three methods yield estimates of local heritability with

p-values provided by ρ-hess and LAVA, so we can obtain both local genetic

correlation and covariance for all three methods.

2.3.1 ρ-hess

Based on the definition of local genetic covariance introduced above, ρ-

hess defines local genetic covariance in block i as ρi = Cov(g1i, g2i) =

Cov(XT
i βi, X

T
i γi) = βT

i Viγi, where Vi is the local LD matrix in this block,

and βi and γi are the fixed effect size vectors for two traits in block i.

When there are two GWASs, with n1 samples for trait 1 (ϕ1) and n2

samples for trait 2 (ϕ2), ρ-hess assumes that ϕ1 =
∑I

i=1 Yiβi + ϵ and ϕ2 =
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i=1 Ziγi + δ, where ϕ1 is the vector of trait 1 for n1 samples and ϕ2 is the

vector of trait 2 for n2 samples, Yi and Zi are the standardized genotypes in

block i for n1 and n2 individuals, respectively, and ϵ and δ are the vectors of

noises with var(ϵ) = σ2
ϵ and var(δ) = σ2

δ . Assume the first ns samples overlap,

then

cov(ϵj1 , δj2) =


ρe, 1 ≤ j1 = j2 ≤ ns

0, otherwise

(2)

and ϵj1 and δj2 are the noises for individual j1 in trait 1 and for individual j2

in trait 2, respectively.

The marginal effect size estimates of SNPs in block i from GWAS, β̂i and

γ̂i, follow the normal distribution β̂i ∼ N(Viβi,
σ2
ϵ

n1
Vi), γ̂i ∼ N(Viγi,

σ2
δ

n2
Vi), so

in the absence of sample overlap, ρ-hess estimates the local genetic covariance

in block i by

ρi = β̂T
i V

−1
i γ̂i. (3)

However, due to sample overlap, the estimation based on (3) using β̂i and γ̂i

will have a bias term. Besides, in practice ρ-hess uses truncated SVD to address

rank-deficiency of LD matrix Vi to improve stability, especially when only the

external reference panel is available. By defining ŝij = 1
ŵij

(β̂T
ij ûij)(γ̂

T
ij ûij),

where ŵij and ûij are the jth top eigenvalue and its corresponding eigen-

vector of local LD matrix in block i from the external reference panel,

and g(β̂i, γ̂i, k) =
∑k

j=1 ŝij , ρ-hess estimates local genetic covariance sfter

correcting for the bias by

ρ̂i =
n1n2g(β̂i, γ̂i, k)− nsρek

n1n2 − nsk
, (4)
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where k is the number of top eigenvalues and their corresponding eigenvectors

used which can be input by the user and is the same for different blocks.

For testing significance, ρ-hess assumes that the sampling distributions of

the local genetic correlation and covariance are normal, and uses a parametric

bootstrap approach to estimating the standard errors.

In our real data analysis, we followed ρ-hess’s suggestion [24] to estimate

λGC from GWAS data. We then used the estimated
√
λGC to re-inflate the

effect sizes before estimating the local SNP heritability and genetic correlation.

To improve the accuracy of ρ-hess, we used the global heritability and its

standard error from LDSC as extra inputs. The number of shared samples

used in our analysis was based on the consortium from which each GWAS

was generated. As indicated in Supplementary Table 4, when two traits have

samples from the same consortium, we fixed the shared sample size to the

minimum sample size of the common consortium. We set the shared sample

size to zero when two traits came from completely different consortia. All other

parameters were kept at their default values.

2.3.2 SUPERGNOVA

SUPERGNOVA also assumes traits follow the same linear models shown in

ρ-hess. However, SUPERGNOVA models genetic effects βi and γi as random

rather than fixed. More specifically, βi and γi in block i follow a multivariate

normal distribution:

βi

γi

 ∼ N(

0
0


h2

1i

mi
Imi

ρi

mi
Imi

ρi

mi
Imi

h2
2i

mi
Imi

) (5)

where h2
1i and h2

2i are the local heritability of traits 1 and 2 in block i; ρi is

the local genetic covariance between traits 1 and 2; Imi
is the identity matrix

of size mi; and mi is the number of SNPs in block i as defined before.
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The estimator used in SUPERGNOVA is defined in terms of the marginal

z-statistics of a single SNP j in block i, which is given by z1ij =
β̂ij

se(β̂ij)
and

z2ij =
γ̂ij

se(γ̂ij)
, where β̂ij and γ̂ij are the marginal effect sizes from GWAS.

SUPERGNOVA performs eigen decomposition of the local LD matrix (Vi =

UiΣiU
T
i ) and chooses the first Ki eigenvectors to transform and decorrelate

association statistics in a given block i, where Ki is determined adaptively.

After decorrelation, local genetic covariance ρi is estimated by modeling the

expected value of the products of the projected z-statistics,

E[z̃1ij z̃2ij ] =

√
n1n2

mi
ρiw

2
ij +

nsρt√
n1n2

wij , (6)

where wij is the jth eigenvalue, where 1 ≤ j ≤ mi, ρt is the sum of genetic

covariances and non-genetic covariance, i.e., ρt =
∑I

i=1 ρi + ρe. n1, n2, and ns

are the sample sizes for each trait and the sample size shared by two GWASs,

respectively, as defined above. Besides, nsρ̂t√
n1n2

is the estimation of nsρt√
n1n2

using

the intercept of cross-trait LDSC[32]. Then a weighted least squares regression

is used to regress ηij = z̃1ij z̃2ij − nsρ̂t√
n1n2

wij on predictor w2
ij with the weight

as the reciprocal of q2ij = (
n1h

2
1

mi
w2

ij +wij)(
n2h

2
2

mi
w2

ij +wij), where h2
1 and h2

2 are

the global heritability for traits 1 and 2, respectively.

SUPERGNOVA adopts an adaptive procedure to determine the number

of eigenvalues/eigenvectors for each block. This is accomplished by choosing

Ki which minimizes the maximum between the theoretical variance and the

empirical variance of local genetic covariance:

V ar[ρ̂i∥
nsρ̂t√
n1n2

] = (
m2

i

n1n2
)/

Ki∑
j=1

w4
ij

q2ij
, (7)
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ˆV ar[ρ̂i∥
nsρ̂t√
n1n2

] =[(
m2

i

n1n2
)/

Ki∑
j=1

w4
ij

q2ij
]

[

Ki∑
j=1

η2ij
q2ij

−
(
∑Ki

j=1 ηijw
2
ij/q

2
ij)

2∑Ki

j=1 w
4
ij/q

2
ij

]/(Ki − 1).

(8)

Finally, the variance of local genetic covariance has the following form:

V ar(ρ̂i) = V ar(E[ρ̂i∥
nsρ̂t√
n1n2

]) + E[V ar(ρ̂i∥
nsρ̂t√
n1n2

)]. (9)

2.3.3 LAVA

Same as ρ-hess, LAVA also assumes that the genetic effect sizes are fixed

and denotes local genetic covariance in block i as ρi = βT
i Viγi. LAVA first

applies singular value decomposition to the local LD matrix in block i which

is Vi = UiΛiΛiU
T
i , and then defines Ui∗ as the mi by ki pruned eigenvector

matrix and Λi∗ as the corresponding ki by ki diagonal singular value matrix,

where mi is the number of SNPs in block i and ki is the number of top

eigenvalues that could explain 99% variance of the local LD matrix in block i.

Thus, the inverse of Vi can be approximated as Ui∗(Λi∗Λi∗)
−1UT

i∗.

Furthermore, LAVA defines the scaled principal component (PC) matrix

Wi = XT
i Ui∗Λ

−1
i∗ and the corresponding PC effects ζ1i = Λi∗U

T
i∗βi and ζ2i =

Λi∗U
T
i∗γi, such that Wiζ1i ≈ XT

i βi and Wiζ2i ≈ XT
i γi. Thus, the local genetic

covariance can be represented by the covariance of the PC effects:

ρi = βT
i Viγi ≈ βT

i Ui∗Λi∗Λi∗U
T
i∗γi = ζT1iζ2i. (10)
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Assume that β̂i and γ̂i are the vectors of the marginal effects of two traits

in block i, then based on the distribution of marginal effect sizes, PC effects

can be estimated as ζ̂1i = Λ−1
i∗ UT

i∗β̂i and ζ̂2i = Λ−1
i∗ UT

i∗γ̂i, and ζ̂i = [ζ̂1i, ζ̂2i]

follows the distribution MVN(ζi ,Σ̂), where ζi = [ζ1i, ζ2i] and Σ̂ represents the

sampling covariance matrix.

The method of moments can be used to estimate:

E[ζ̂Ti ζ̂i] = ζTi ζi + kiΣ̂. (11)

In the absence of sample overlap, Σ̂ is defined as the diagonal matrix with diag-

onal elements as the sampling variances of trait 1 and trait 2. When accounting

for sample overlap, LAVA first applies LDSC to create a covariance matrix

with the intercepts for the global genetic covariance for the off-diagonal ele-

ments and each trait’s univariate LDSC intercept as the diagonal elements.

Then LAVA converts this covariance matrix to a correlation matrix, C, and

computes the sampling correlation matrix as Σ̂ = diag(σ̂)×C×diag(σ̂), where

σ̂2 is a vector with the sampling variances of the traits.

Once estimated, the significance of ρi is evaluated using simulation-based

P values. Based on the definition of non-central Wishart distribution and ζ̂i

followsMVN(ζi, Σ̂i), the statistic ζ̂i
T
ζ̂i has a non-central Wishart distribution

with ki degrees of freedom, scale matrix Σ̂i and non-centrality matrix ζ̂Ti ζ̂i −

kiΣ̂.

2.4 Simulation settings

The genotype data in all the simulation settings are generated by white British

individuals from UKB[25] while the reference panel is either the in-sample ref-

erence panel from UKB or the external reference panel from EUR 1KG Phase
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3 data across the settings. We first conducted extensive simulations on blocks

with different sizes to evaluate the performance of ρ-Hess, SUPERGNOVA,

and LAVA under 1) varying sample overlaps between two GWASs, 2) both

continuous and binary traits, 3) both infinitesimal and non-infinitesimal mod-

els, 4) the presence or absence of correlations between effect sizes and LD, and

5) different reference panels. Then based on the above simulation results, we

further investigated the impact of the number of eigenvalues and eigenvectors

on the stability and inference of ρ-hess and LAVA. We repeated each simula-

tion setting 100 times and summarize the simulation settings in Table 1 and

describe the details below.

We selected overlapping SNPs from chromosome 1 in UKB, EUR 1KG

Phase3, and HapMap3[33] datasets for efficient simulations and to ensure suffi-

cient SNP coverage. We then selected SNPs with MAF > 5%, genotype missing

rate < 5%, and Hardy-Weinberg equilibrium P-value > 1e-10. After removing

SNPs with ambiguous alleles, 71,609 SNPs remained for our simulation. We

randomly selected 20,000 unrelated white British individuals from UKB and

divided them into two subgroups of 10,000 individuals each, labeled as set1

and set2, respectively. We formed another set3 with 5,000 individuals from

set1 and 5,000 individuals from set2. We randomly selected four blocks on

chromosome 1 having 525 SNPs (POS: 60197393-61754126), 743 SNPs (POS:

3264297-5311384), 1033 SNPs (POS: 245966297-249239303), and 2315 SNPs

(POS: 113753415-146215362), respectively. We treated one block as the local

region of interest in each simulation and the other SNPs as the background

SNPs. We simulated two traits whose SNP effects followed the multivariate

normal distribution, with correlation only for SNPs within the chosen region

of interest. The correlation of the local genetic effects was set to be 0, 0.3,
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0.6, and 0.9, respectively. The remaining SNPs on chromosome 1 were consid-

ered background SNPs without genetic correlation. We set the heritability of

two traits to be 0.5 which was evenly distributed to all SNPs (71,609 SNPs),

so the local heritability of the above four blocks was 0.0037, 0.0052, 0.0072,

and 0.0162, respectively. Genome-wide Complex Trait Analysis (GCTA)[34]

was applied to simulate continuous traits ϕ1 and ϕ2. We used PLINK[28] to

analyze the simulated traits and generate GWAS summary statistics.

We considered no sample overlap, partial sample overlap, and complete

sample overlap. When there was no sample overlap, two continuous traits, ϕ1

and ϕ2, were simulated on set1 and set2, respectively. For ϕ1 and ϕ2 with

partial sample overlap, set1 and set3 were used and the covariance of non-

genetic effects was set to 0.2. As for the case where the samples were completely

overlapping, we used set1 to simulate both ϕ1 and ϕ2 and the covariance of

non-genetic effects was still set to 0.2. Additionally, we considered the situation

that 20% of the SNPs were causal SNPs, where we randomly chose 20% of

the SNPs in the regions of interest and 20% of SNPs in the background to be

causal. For this case, we considered the no-sample overlap case where the two

traits were continuous. We also conducted a simulation where the two traits

were binary with no sample overlap. We considered the same local regions of

interest, heritability, and genetic correlation for continuous traits. We used a

liability model to simulate the binary traits. We first simulated continuous

traits ϕ1 and ϕ2 and then the binary traits were set to be I[ϕ1 > γ] and

I[ϕ2 > γ], where γ was the quantile of standard normal distribution. Since we

considered two simulation settings with γ to be 80% or 50%, the prevalence

of the binary traits in the two simulations was 0.2 or 0.5. Besides, we also

considered the situation where the effect sizes were correlated with local LD,

which was the baseline in the LAVA simulation which was also mentioned in
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SUPERGNOVA. In the simulation setting, LAVA first decomposed the local

LD matrix of the reference panel as Vi = QiΛiQ
T
i for block i and obtained

the subset of eigenvalues Λ∗
i and eigenvectors Q∗

i that explained 99% of the

variance. We denote the number of eigenvalues thus selected as q. LAVA defined

the projected genotype matrix in its simulation setting for block i as Wi =

XiQ
∗
iΛ

∗−0.5
i where Xi is the standardized genotype of the reference panel in

block i. It then generated δ∗, a q×2 matrix with 0 means and identity variance,

and decomposed the variance-covariance matrix of the genetic components as

Ω = Q
′
Λ

′
Q

′T and set δ = Q
′
Λ

′0.5δ∗. It simulated the genotype component

for two traits as Gi = Wiδ. Thus, the effects in the simulation settings of

LAVA were Q∗
iΛ

∗−0.5
i δ where the effect sizes were correlated with local LD.

We note that SUPERGNOVA also conducted simulations when the effect sizes

were associated with ldscore. Thus, we also considered the simulation setting

where the effect sizes were generated similarly from the simulation setting in

LAVA[21] so that the effect sizes were related to local LD. For each simulation

setting described above, we used both the in-sample reference panel from the

UKB set1 samples and one external reference panel from the 1KG Phase 3

data.

Across the above simulation settings, the performance of LAVA was sen-

sitive to the choice of reference panels. To further investigate the stability of

LAVA, we applied LAVA using six different reference panels, 1) EUR 1KG

Phase3 reference panel, 2) UKB reference panel with 500 randomly selected

individuals from set1, 3) UKB reference panel with 5,000 randomly selected

individuals from set1, 4) UKB reference panel with all 20,000 individuals

from set1 and set2, 5) UKB reference panel with 20,000 individuals ran-

domly selected from unrelated white British populations in UKB which do not
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overlap with set1 and set2, and 6) 20,000 CEU individuals simulated using

HAPGEN2[35](CEU refers to Northern Europeans from Utah).

Even though the ρ-hess-based estimates were more stable when using differ-

ent reference panels, there was a substantial difference in statistical inference.

As ρ-hess allows users to change the number of eigenvalues, we considered

different reference panels and varied the number of eigenvalues to further inves-

tigate the performances of ρ-hess (the EUR 1KG Phase 3 reference panel; the

UKB reference panel with samples from set1 and set2; and the CEU reference

panel using HAPGEN2 with 20,000 individuals). For each reference panel, we

varied the number of eigenvalues to explain 99%, 95%, 90%, 85%, 80%, and

70% variance in the above-selected blocks.

2.5 GWAS summary statistics

We analyzed 31 complex traits whose GWAS summary statistics are pub-

licly available. These GWASs were primarily generated using individuals of

European ancestry. The sources, sample sizes, and global heritability for these

traits are listed in Table 2. To prepare data for analysis, we employed the

munge sumstats.py script from LDSC[32] to reformat and conducted quality

control on the datasets, including the elimination of strand-ambiguous SNPs

and the intersection of the remaining SNPs with those from the 1KG Project.

In our analysis, we considered only autosomal SNPs with MAF > 5% and

excluded the MHC block on chromosome 6 (30-31Mb).

2.6 Polygenic risk score (PRS) analysis

We used the positively correlated and negatively correlated blocks from ρ-

hess, SUPERGNOVA, and LAVA (with FDR < 0.1) between ASD and CP,

CAD and LDL, and T2D and BMI to construct PRS+ and PRS- for ASD,

CAD, and T2D, respectively. These SNPs were clumped using PLINK, with a
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significance threshold of 1 for index SNPs, an LD threshold of 0.1 for clumping,

and a physical distance threshold of 250kb. PRSs were generated for ASD

probands in the SPARK cohort and CAD and BMI cases in the UKB dataset.

In addition, we compared CP (measured by IQ), LDL, and BMI between

patients with high PRS+ and those with high PRS- for relevant disorders.

3 Results

3.1 Simulation Results

3.1.1 Basic Simulation analysis

We compared the performance of ρ-hess, SUPERGNOVA, and LAVA by point

estimation of local genetic correlation, local genetic covariance, local heri-

tability, type I error, and statistical power. Since all three methods can use

customized reference panels, we performed simulations on both the in-sample

reference panel and the external reference panel with matched ancestry to

investigate the robustness of these methods to the choice of LD reference

panels.

We considered the simulation settings described in the Methods section to

simulate traits based on the genotype data in the UKB and used the EUR

1KG Phase3 data and sample set1 from UKB as reference panels. For the

continuous traits generated from non-overlapping samples (set1 and set2),

SUPERGNOVA provided unbiased estimates for local genetic correlation, local

genetic covariance, and local heritability (Figure 1A and Supplementary Figure

2 and 3) in all settings, and the results were robust to the choice of reference

panel. However, SUPERGNOVA sometimes had inflated type-I error (Figure

1B and Supplementary Figure 4). When the EUR 1KG Phase 3 reference panel

was used, which did not match the GWAS samples, LAVA overestimated local
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genetic covariance and local heritability and underestimated local genetic cor-

relation (Figure 1A and Supplementary Figure 2 and 3), and the higher the

local genetic covariance, the less accurate the point estimates obtained from

LAVA. LAVA had a higher inflated type-I error (about 20%) (Figure 1B and

Supplementary Figure 4) than SUPERGNOVA and ρ-hess. On the other hand,

if the in-sample UKB reference panel was used, LAVA yielded unbiased esti-

mates for local genetic covariance and local heritability, and more accurate

local genetic correlation estimates with well-controlled type-I error (Figure 1

and Supplementary Figure 2-4). In contrast, regardless of the reference panels

used, ρ-hess always underestimated local genetic covariance and local heri-

tability, particularly when local genetic covariance and local heritability were

high (Supplementary Figure 2 and 3), but it provided unbiased local genetic

correlation estimation, which may be due to compensation for both underesti-

mated local genetic covariance and local heritability. The statistical test based

on ρ-hess was overly conservative, leading to reduced statistical power (Figure

1B, Supplementary Figure 4).

Since the shared sample size between two traits needs to be provided to

ρ-hess, we used both the correct shared sample size and incorrect overlapping

sample size (1,000) to investigate the impact of this parameter on ρ-hess for

the partial and complete overlapping scenarios. In this case, the performance

for point estimate and inference by SUPERGNOVA was the same (Supplemen-

tary Figures 5-10). However, LAVA did not have well-controlled type-I error

with overlapping samples, even when the in-sample reference panel was used

(Supplementary Figures 5 and 8). With an incorrect overlapping sample size,

ρ-hess had much reduced statistical power (Supplementary Figures 5 and 8).

When only some SNPs were causal, the performance of different meth-

ods was similar when all the SNPs were set to be causal, except for



20 local genetic correlation methods comparison

LAVA having some inflated type-I error even using the in-sample reference

panel. This suggests that the sparsity of causal SNPs does not have much

impact on the performances of local genetic correlation/covariance estimation

(Supplementary Figure 11-13).

Since all three methods can be applied to binary traits, we also considered

binary traits in our simulation. Even though the genetic covariance is esti-

mated on the observed scale, there is no distinction between observed- and

liability-scale genetic correlation[14]. The estimates for the genetic correlation

of binary traits had similar performances to that for continuous traits except

with larger variations across the 100 repeats (Supplementary Figures 14A and

15A). However, the statistical power for binary traits was lower for all meth-

ods compared to continuous traits, especially ρ-hess which barely detected any

significant blocks in our simulations (Supplementary Figures 14B and 15B).

3.1.2 LD-related effect sizes

For simulations where the effect sizes were associated with the local LD

structure, similar to the simulation setting in LAVA, there was a substantial

underestimation of local genetic covariance (Supplementary Figure 16) with

nearly no significant block detected by SUPERGNOVA and ρ-hess with the

default settings. When we gave ρ-hess the number of eigenvalues that could

explain 99% variance and used the UKB reference panel, the performance of

ρ-hess improved but still had lower power than LAVA. In this setting, LAVA

had the best performance in this simulation setting except for the inflated

type-I error when using EUR 1KG Phase 3 data as the reference panel.
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3.1.3 Robustness to reference panels

Our simulation results suggest that with different reference panels, the results

from LAVA can be unstable, thus we further investigated the choice of the ref-

erence panels on LAVA. We considered the EUR 1KG Phase 3 reference panel,

four different UKB reference panels, and one CEU reference panel (Method).

As shown in Figure 2, when we used two UKB reference panels with 20,000

participants, LAVA had unbiased estimations and well-controlled type-I errors.

With smaller UKB reference samples, LAVA could not provide reliable local

genetic correlation estimates and well-controlled type-I errors. By comparing

the performance between using the CEU reference panel and the UKB refer-

ence panel with the same sample size (20,000), the sample size of the reference

panel was not a key factor for the performance of LAVA. Our results suggest

that LAVA only performs well with enough individuals from the genotype data

cohorts used as the reference panel.

3.1.4 Number of eigenvalue input

By using the EUR 1KG Phase3, UKB samples from set1 and set2 and 20,000

CEU individuals(Method) as reference panels, we investigated whether the

optimal number of eigenvalues used in ρ-hess stays more or less the same for

different blocks and different reference panels. The optimal number of eigenval-

ues here is the one that could result in well-controlled type-I errors and higher

powers, although the point estimates derived using these numbers could still be

biased. When the reference panel was the same as that from the GWAS sam-

ples, the more eigenvalue used, the better the performance for ρ-hess, although

it still had limited statistical power (Supplementary Figure 18 and Supple-

mentary Figure 4). With an external reference panel that is different from the

GWAS samples, there was no consistent pattern observed, and the optimal
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number of eigenvalues varied for blocks and reference panels (Supplementary

Figures 17, 19 and Supplementary Table 3). When using the EUR 1KG Phase

3 reference panel, the optimal number of eigenvalues was 93 (95%), 153 (90%),

146 (95%), and 85 (70%), respectively. For the CEU reference panel, the opti-

mal number was 93 (95%), 310 (99%), 42 (70%), and 572 (99%), respectively.

These observations could explain the poorer performance of ρ-hess in Figure 1

when using the in-sample UKB reference panel than the external 1KG Phase3

reference panel. This is because when the in-sample reference panels were used,

the larger the number of eigenvalues used, the better the performance, while

in Figure 1, the default number was 50.

Fig. 1 Evaluation of local genetic correlation/covariance methods on continuous traits from
non-overlapping datasets (set1 and set2) using EUR 1KG Phase3 and UKB reference panel.
(A) local genetic correlation estimates. The red dashed lines represent the true value of local
genetic correlation. (B) type-I error and statistical power. The solid grey line represents 5%
p-values below 0.05 in 100 repeats, and the grey dashed line represents 10% p-values below
0.05 in 100 repeats.



local genetic correlation methods comparison 23

Fig. 2 Evaluation of local genetic correlation estimated by LAVA on continuous traits from
non-overlapping datasets (set1 and set2) using different reference panels. (A) local genetic
correlation estimates. The red dashed lines represent the true value of local genetic correla-
tion. (B) type-I error and statistical power. The solid grey line represents 5%, and the grey
dashed line represents 10%. LAVA 1KGrepresents the EUR 1KG Phase3 reference panel;
LAVA CEU 20000 represents the CEU reference panel using HAPGEN2; LAVA UKB 500
represents the UKB reference panel using 500 individuals randomly selected from set1;
LAVA UKB 5000 represents the UKB reference panel using 5,000 individuals randomly
selected from set1; LAVA UKB1 20000 represents the UKB reference panel using 20,000 indi-
viduals from set1 and set2; LAVA UKB2 20000 represents the UKB reference panel using
20,000 individuals that do not overlap with set1 and set2.

3.2 Local genetic correlation/covariance of 31 complex

traits

We considered 31 complex disorders or traits to compare the performance of

the three methods. Table 2 summarizes these traits, abbreviations, sample

sizes (the number of cases and the number of controls for binary traits), global

heritability and its standard error derived from LDSC[14], and the original

papers.

3.2.1 Stability based on different reference panels

When using only EUR 1KG Phase 3 genotype data as our reference panel

to estimate the local genetic correlation for the above 31 complex traits,
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there were substantial differences in point estimates and inferences by ρ-

hess, SUPERGNOVA, and LAVA (Supplementary Material Appendix B). we

focused on comparing the point estimates and detecting significant blocks using

different reference panels for the same method in this section because the sim-

ulation results showed the importance of the reference panels for both ρ-hess

and LAVA. Since the heritability of Height is the largest among all the traits,

for clearer and more efficient comparison we decreased the number of trait

pairs estimated and compared the results of the genetic correlation between

Height and other traits using two other reference panels which were generated

using different randomly selected white British UKB samples (Methods) and

EUR 1KG Phase 3 reference panel. We compared the local heritabilities and

local genetic correlations in the same block for the same trait or trait pairs

using the same methods but different reference panels. As seen in Supplemen-

tary Figures 26-31, SUPERGNOVA displayed the most stable point estimates

for local genetic correlation and local heritability using different reference pan-

els and the estimates from ρ-hess were more stable than LAVA. Even with two

different references from the same cohort, i.e. the two UKB reference panels,

LAVA resulted in different estimates for the same block for the same pair of

traits (Supplementary Figures 30 and 31).

Since the sum of local heritability should equal global heritability and the

local genetic covariance should equal global genetic covariance (Methods), we

further compared the sum of local heritability and local genetic covariance with

global heritability and global genetic covariance with different reference panels.

As shown in Supplementary Figure 32, LAVA tended to overestimate local

heritability which is consistent with simulation results when the samples of the

reference panel and the GWAS did not match. The sum of local heritability

was highly concordant with the estimated global heritability for ρ-hess. For
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SUPERGNOVA, except for three traits, Lupus, OCD, and T1D, the sum of

local heritability was also highly concordant with the global heritability. The

sum of local genetic covariance had a high correlation with the global genetic

covariance for SUPERGNOVA and LAVA but was lower for ρ-hess (Figure

3). As shown in Figure 4 and Supplementary Figure 34, the significant blocks

found by SUPERGNOVA and ρ-hess were consistently detected using different

reference panels, while the results differed substantially for LAVA with different

reference panels.

3.2.2 PRS analysis

Several studies[20, 36] including SUPERGNOVA have investigated the

shared genetics among autism spectrum disorder (ASD), Attention-

deficit/hyperactivity disorder (ADHD), and cognitive ability (CP) by uti-

lizing local genetic information. To further compare the results of ρ-hess,

SUPERGNOVA, and LAVA, we applied these methods to ASD, ADHD, and

CP. By using a false discovery rate (FDR) cutoff of 0.1, we identified one block

by ρ-hess, 55 blocks by SUPERGNOVA, and 126 blocks by LAVA with signif-

icant local genetic covariances between ADHD, ASD, and CP (Supplementary

Table 8), respectively. The only block identified by all three methods was on

chromosome 6 which was positively correlated between ASD and CP (POS:

97094444-98938023). Additionally, this is the same block that was significantly

correlated between ASD and CP by both LAVA and SUPERGNOVA. The

global genetic correlation between ASD and CP was 0.2 (p=1.8e-10), between

ASD and ADHD was 0.36 (p=1.14e-11), and between ADHD and CP was

-0.38 (p<1e-11) revealing that the local correlations of CP with ASD and

ADHD were bidirectional. As in Supplementary Figure 33, there was no sig-

nificant block with a negative correlation between ASD and ADHD identified

using LAVA and there were only two such blocks detected by SUPERGNOVA.
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Besides, there was no block where ASD and ADHD showed opposite correla-

tions with CP. SUPERGNOVA identified 12 blocks with positive correlations

and four blocks with negative correlations between ASD and CP. LAVA identi-

fied 14 positively correlated blocks and 14 negatively correlated blocks between

the two traits. We constructed positive and negative polygenic risk scores

(Methods), referred to as PRS+ and PRS-, of ASD based on independent SNPs

from blocks with significant positive or negative local correlations between

ASD and CP detected by SUPERGNOVA or LAVA, respectively, for 1,026

ASD probands who had both genotypes and IQ scores in SPARK (Methods).

We observed probands with high PRS+ had higher IQ than probands with

high PRS- only in PRSs generated utilizing SUPERGNOVA (Figure 5A-I). No

negative blocks were detected by ρ-hess, resulting in only PRS+ constructed

based on ρ-hess (Figure 5C, F, I). When using PRS+ and PRS- based on

SUPERGNOVA, there was a sharp change in the right tails of the PRS dis-

tribution analysis of the average full-scale IQ, from 84.7 and 83.1 in the 75th

percentile to 89.9 and 75.0 in the 99th percentile for PRS+ and PRS-, respec-

tively (Figure 5A). Similarly, the average non-verbal IQ (Figure 5D) and verbal

IQ (Figure 5G) also showed a sharp change in the right tail of the PRS distribu-

tion, with respective changes from 93.2 and 92.5 in the 75th percentile to 101.7

and 84.0 in the 99th percentile, and from 94.9 and 91.4 in the 75th percentile

to 102.1 and 80.4 in the 99th percentile for PRS+ and PRS-, respectively.

The LAVA study[21] explored the relationship between LDL and CAD,

and between BMI and T2D from the angle of multivariate correlation. Here

we conducted a PRS analysis using the results of the bivariate local genetic

correlation between LDL and CAD, and BMI and T2D. The global genetic

correlation between LDL and CAD was 0.3 (p< 1 × 10−15). SUPERGNOVA

identified 36 positive blocks and 5 negative blocks with significant local genetic
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correlations between LDL and CAD at an FDR level of 0.1, and LAVA iden-

tified 108 positive blocks and 30 negative blocks (Supplementary Table 9). No

significant block was identified using ρ-hess. SUPERGNOVA and LAVA iden-

tified 22 common blocks that had consistent correlation directions, including

21 positive blocks and one negative block on chromosome 5. As displayed in

Figure 5J-5K, CAD cases with high PRS+ had higher LDL than cases with

high PRS- for both SUPERGNOVA and LAVA, with an average LDL changing

from 3.41 and 3.32 for the 75 percentile to 3.54 and 3.10 for the 99 percentile

when using SUPERGNOVA. However, the trend in LAVA was less apparent,

with the average LDL moving from 3.39 and 3.38 for the 75 percentile to 3.38

and 3.21 for the 99 percentile.

When analyzing the local correlations between T2D and BMI whose global

genetic correlation was 0.57 (p< 1 × 10−15), ρ-hess identified 279 significant

blocks, SUPERGNOVA identified 176 ones, and LAVA identified 589 blocks

(Supplementary Table 10). A total of 93 blocks were found by all three meth-

ods with just one block on chromosome 3 showing a negative correlation

between T2D and BMI, and all these 93 blocks had consistent correlation

direction. Among the significant blocks, ρ-hess found 271 that were positively

correlated and eight that were negatively correlated, SUPERGNOVA identi-

fied 170 that were positively correlated and 6 that were negatively correlated,

and LAVA identified 66 that were positively correlated and 23 that were neg-

atively correlated. As demonstrated in Figure 5L-5N, T2D cases with high

PRS+ had a greater BMI than cases with high PRS- for all three methods.

For SUPERGNOVA, the average LDL changed from 32.1 to 31.2 for the 75

percentile to 32.9 and 31.6 for the 99 percentile. For LAVA, the average LDL

changes from 32.5 to 30.9 for the 75 percentile to 33.1 and 30.2 for the 99
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percentile. For ρ-hess, the average LDL changes from 32.4 and 30.9 for the 75

percentile to 33.4 and 30.7 for the 99 percentile.

4 Discussion

In recent years, there has been an increasing interest in inferring local genetic

correlation in post-GWAS analyses in addition to global genetic correlation.

This trend can be attributed to advancements in methodologies for estimating

local genetic correlation and detecting locally significant blocks, as well as a

growing knowledge of the limitations of global genetic correlation for reveal-

ing the underlying genetic similarity between complex traits. Local genetic

correlation has also been utilized to improve association studies and PRS

prediction.

The first step for local genetic correlation is determining how to parti-

tion the whole genome into approximately independent blocks. The larger the

blocks, the more independent the partitions, but larger blocks may mask local

information in the same way that global genetic correlation does. On the other

hand, smaller blocks may result in LD leakage and biased estimates. The three

methods compared in this paper all provide their own partitions, but also allow

users to use their own partitions. Another issue that needs to be addressed

for local genetic correlation is also considered for global correlation, i.e. how

to deal with pervasive sample overlap across GWASs. The common solution

for these three methods is to utilize the cross-trait LDSC intercept to calcu-

late the phenotypic correlation. ρ-hess is the only method that requires the

shared sample size between two GWASs as input. However, as the number

of GWASs generated by meta-analysis grows, the exact number of overlap-

ping sample sizes is difficult to obtain. Our simulation results suggest that

the power of ρ-hess will decrease if an incorrect number of shared sample size
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is given. The other two methods have more stable performances in terms of

the sample-overlapping level. The third and most crucial challenge with these

three methods is estimating the local LD structure using external reference

panels. Ideally, the external reference panels applied should have the same LD

structure as the genotype data used to calculate summary statistics. In the

real world, because access to individual-level data from the GWAS dataset is

typically limited due to practical constraints, it is common to choose an exter-

nal reference panel. Through extensive simulations and real data analysis, we

have demonstrated that the choice of the local LD matrix is critical for both

estimation and inference. SUPERGNOVA is the most robust method for the

choice of reference panels because it has an adaptive procedure to choose the

number of eigenvalues and eigenvectors used for different blocks and different

reference panels. However, the type-I error of SUPERGNOVA is still inflated

in some simulation settings which indicates a better adaptive procedure is still

needed. LAVA recommends using the number of eigenvalues and eigenvectors

that explain 99% of the variances and performed the best when the genotype

data and the reference panel were perfectly matched. However, with different

reference panels, LAVA could provide different estimations, and the signifi-

cant blocks detected were also not consistent. ρ-hess needs to be given the

number of eigenvalues as input and the default number is set to be 50. How-

ever, the optimal number of eigenvalues and eigenvectors depends on both the

local LD structure of the reference panels and the LD structure of the blocks

in the genotype data. In summary, ρ-hess can provide unbiased estimates if

the proper number of eigenvalues is selected based on different reference pan-

els, while SUPERGNOVA yields unbiased estimates assuming the underlying

assumption holds true. Additionally, LAVA produces unbiased estimates when
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an in-sample reference panel with sufficient sample sizes is utilized. While ρ-

hess generally has well-controlled type-I error rates, it may have lower power.

SUPERGNOVA is generally more stable across different reference panels, but

may have slightly inflated type-I error at times. LAVA only produces well-

controlled type-I error rates when an in-sample reference panel with sufficient

sample sizes is used.

Despite extensive simulation settings and real data sets considered, there

are limitations in our study. First, the methods compared in this study are

those that can reveal correlated blocks between two traits within a single pop-

ulation (e.g. European). All these three methods can provide both estimates

and references with user-defined partitions. However, there are other methods

that could detect corrected blocks between different populations (e.g. Euro-

pean and African) for the same trait[37] or evaluate the concordance of two

traits on the method-defined regions[22]. Thus, a more general comparison or

review is needed. Secondly, there is no gold standard to compare these methods

in real-world data applications since true local genetic correlations or signifi-

cantly correlated blocks between phenotypic pairs are unknown. Even though

we have conducted PRS analysis to help assess the performances of these meth-

ods, other downstream analyses can be done to compare the performance of

different methods.
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Fig. 3 Comparisons of the sum of local genetic covariance for 465 trait pairs
with the global genetic covariance derived from LDSC. A. Comparisons of the sum
of local genetic covariances estimated from A ρ-hess, B SUPERGNOVA or C LAVA with
the global genetic covariances using three different reference panels. Each point represents
a trait pair. The color and shape of each data point denote the significance status in global
and local correlation analyses. ’local +’ denotes that there are significant blocks detected
between that trait pair and ’local -’ denotes that there are no corrected blocks detected.
’global +’ denotes the global genetic correlation is significant, while ’global -’ denotes that
the global genetic correlation is not significant. The figures are divided into multiple panels,
with each panel corresponding to different reference panels (EUR 1KG reference panel and
two UKB reference panels with different samples). The ashed, grey reference line with a slope
of 1 represents the line of perfect correlation in each panel. The strength of the relationship
is indicated by Pearson correlation coefficients, which are displayed at the bottom of each
panel.
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Fig. 4 Comparisons of blocks with significant local genetic correlations when
using different reference panels. These plots used bars to break down the Venn dia-
gram of overlapped significant blocks using different reference panels using FDR at 0.1 level
detected by A. ρ-hess, B. SUPERGNOVA, and C. LAVA.

Fig. 5 Phenotype heterogeneity of ASD probands, CAD and T2D patients with
high PRS+ and PRS. Average full-scale IQ is computed for different groups defined
by PRS based on the significant blocks found by A. SUPERGNOVA B. LAVA and C. ρ-
hess. Average non-verbal IQ is computed for different groups defined by PRS based on the
significant blocks found by D. SUPERGNOVA E. LAVA and F. ρ-hess. Average verbal IQ
is computed for different groups defined by PRS based on the significant blocks found by
G. SUPERGNOVA H. LAVA and I. ρ-hess. Average LDL is computed for different groups
defined by PRS based on the significant blocks found by J. SUPERGNOVA K. LAVA.
Average BMI is computed for different groups defined by PRS based on the significant blocks
found by L. SUPERGNOVA M. LAVA and N. ρ-hess. Each interval indicated the standard
error of the average values.
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Table 2 Overview of the traits included in this study
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