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Summary 31 

Evaluation of host-response blood transcriptional signatures of viral infection have so far failed to test whether 32 

these biomarkers reflect different biological processes that may be leveraged for distinct translational 33 

applications. We addressed this question in the SARS-CoV-2 human challenge model. We found differential 34 

time profiles for interferon (IFN) stimulated blood transcriptional responses represented by measurement of 35 

single genes. MX1 transcripts correlated with a rapid and transient wave of type 1 IFN stimulated genes (ISG) 36 

across all cell types, which may precede PCR detection of replicative infection. Another ISG, IFI27, showed a 37 

delayed but sustained response restricted to myeloid peripheral blood mononuclear cells, attributable to gene 38 

and cell-specific epigenetic regulation. These findings were reproducible in diverse respiratory virus 39 

challenges, and in natural infection with SARS-CoV-2 or unselected respiratory viruses. The MX1 response 40 

achieved superior diagnostic accuracy in early infection, correlation with viral load and identification of virus 41 

culture positivity, with potential to stratify patients for time sensitive antiviral treatment. IFI27 achieved superior 42 

diagnostic accuracy across the time course of symptomatic infection. Compared to blood, measurement of 43 

these responses in nasal mucosal samples was less sensitive and did not discriminate between early and late 44 

phases of infection. 45 

Background 46 

Host response biomarkers of viral infection have multiple potential clinical applications. These include 47 

diagnostic triage tests to direct prioritisation of confirmatory laboratory investigations, and to guide clinical 48 

management decisions with the aim of reducing unnecessary antibacterial prescribing, or directing infection 49 

control measures and antiviral treatment. Attention has mostly focussed on biomarker discovery in whole blood 50 

samples that enable easy and technically consistent access. Genome-wide transcriptional profiling has 51 

emerged as the most common unbiased data-driven approach due to the maturity of technical and analytical 52 

workflows1. 53 

Numerous blood transcriptional signatures for host responses to viral infections have been identified in this 54 

way using case-control studies of natural infection or experimental viral challenge in humans, designed to 55 

discover the most parsimonious measurements that discriminate viral infections from healthy controls or other 56 

diseases. We previously tested the accuracy of such blood transcriptional signatures of viral infection, identified 57 

by systematic review, to detect incident SARS-CoV-2 infection2. We showed that the majority were highly 58 

correlated, and collectively driven by type 1 interferon (IFN) responses. Many, including single gene transcripts 59 

(such as that of IFI27) provided near perfect discrimination of PCR positive individuals compared to uninfected 60 

controls. In some, the transcriptional biomarkers identified infections before the first positive viral PCR in 61 

nasopharyngeal samples. The sensitivity of IFI27 measurements was further leveraged to provide evidence 62 

for abortive infections associated with virus specific T cell responses without detection of the virus by PCR3.  63 

In observational studies of natural infection, it is not possible to synchronise the time course of exposure and 64 

replicative infection. This has precluded identification of temporally distinct host response biomarkers that may 65 

offer optimal solutions for different translational applications such as diagnostic triage or patient stratification 66 

for antiviral therapies. To address this limitation, we leveraged the first controlled human challenge model of 67 

SARS-CoV-2 infection, complemented with high frequency sampling to measure viral replication and host 68 

responses spanning the full time course of viral replication4. We updated our previous systematic review to 69 

undertake comprehensive head-to-head evaluation of all reported host transcriptional signatures of viral 70 
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infection to date. We compared their ability to discriminate between groups of participants with and without 71 

evidence of replicative infection using whole blood samples stratified by time since experimental inoculation. 72 

For selected biomarkers, representative of differential host-responses over the time course, we evaluated 73 

associations with symptoms and viral load. We investigated their cellular source in single cell transcriptomic 74 

data, and the potential epigenetic mechanisms that may underpin their differential expression. We compared 75 

their measurement in blood and nasal swabs, and explored the extent to which our findings were generalisable 76 

to other respiratory viruses, in both experimental challenge and natural infection studies. 77 

Methods 78 

Research ethics 79 

Regulatory approvals for the human studies presented herein were provided by the UK Health Research 80 

Authority under the following reference numbers: 20/UK/2001 and 20/UK/0002 for the SARS-CoV-2 challenge 81 

study; 20/NW/0231 for the INSTINCT study; 19/LO/1441 for the H3N2 influenza challenge study. 82 

Identification of blood transcriptional signatures of viral infection 83 

We updated our previous systematic review of blood transcriptional biomarkers for viral infection2. In the 84 

current analysis, we amended our previous eligibility criteria to identify concise blood transcriptional signatures 85 

discovered or applied with a primary objective of diagnosis of viral infection from human whole-blood or 86 

peripheral blood mononuclear cell samples, excluding those exclusively intended to stratify severity of 87 

infection. Other eligibility criteria remained the same as our previous review. In our update, we searched 88 

MEDLINE for articles published up to 31 December 2022, using comprehensive MeSH and keyword terms for 89 

“viral infection”, “transcriptome”, “biomarker”, and “blood”, as previously2. Additional studies were identified in 90 

reference lists. Title and abstract screening was independently performed by two reviewers (CT and JGB); 91 

shortlisted articles were reviewed in full, with input from a third reviewer (RKG) to resolve conflicts. For eligible 92 

signatures, constituent genes, modelling approaches and gene weightings were extracted, with verification by 93 

a second reviewer. Multi-gene signatures are referred to using a prefix of the first-author’s name from the 94 

corresponding publication, and a suffix of the number of component genes. Single-gene signatures are referred 95 

to by the gene symbol. 96 

Human challenge and patient cohorts 97 

The SARS-CoV-2 human challenge model in healthy seronegative volunteers has been described previously4. 98 

Briefly, 36 SARS-CoV-2 volunteers were inoculated intranasally with a standardized dose of D614G-containing 99 

pre-alpha wild-type SARS-CoV-2 under quarantine conditions. From 24 hours after inoculation, virus was 100 

quantified by PCR and culture in samples obtained at 12 hourly intervals from nose (mid-turbinate) and throat 101 

swabs for at least 14 days of quarantine, or longer if they remained in quarantine beyond 14 days because 102 

they still had detectable virus. A final sample was obtained at 28 days after challenge. Blood samples for RNA 103 

sequencing were collected into PAXgene tubes (Qiagen) before virus challenge, 6 hours after challenge, daily 104 

thereafter for 14 days and on day 28. Mid-turbinate MW013, X nose swabs (MW013, MedWire) for RNA 105 

sequencing were collected before virus challenge, and on days 1, 3, 5, 7, 10 and 14 after challenge, preserved 106 

in RNAprotect (Qiagen). Quantitation of viral load and symptoms has been described previously4. Two 107 

individuals who seroconverted in the interval between screening and inoculation were excluded from the 108 

present analysis, on the basis that they experienced a recent infection that may affect the biomarker expression 109 

that is the focus of this study. 110 
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The SARS-CoV-2 household contact study (INSTINCT) has been described previously5. Briefly, 52 household 111 

contacts of SARS-CoV-2 infected index cases recruited within 5 days of index case symptom onset provided 112 

nasopharyngeal swabs and blood RNA samples collected in PAXgene tubes on day of enrolment (day 0), day 113 

7, day 14 and day 28. Nasopharyngeal swabs were used to measure viral copy number using PCR against 114 

the E-gene. 115 

The Influenza H3N2 human challenge model has been described previously6. Briefly, 20 healthy volunteers 116 

were inoculated intranasally with a standardized dose of Influenza A/Belgium/4217/2015 (H3N2) under 117 

quarantine conditions. From 24 hours after inoculation, virus was quantified by PCR in nasal lavage samples 118 

obtained at 12 hourly intervals. Participants were ascertained to have replicative viral infection if found to have 119 

consecutive positive PCR tests at least 24 hours after challenge. Blood samples for RNA sequencing were 120 

collected into PAXgene tubes before virus challenge and days 1, 2, 3, 7, 10, 14, and 28 after challenge. Nasal 121 

curettage samples were collected on days -14 (baseline), 1, 2, 3, 7, 10 and 14 and preserved in TRIzol 122 

(ThermoFisher Scientific) as previously described7. 123 

All RNA samples were stored at -80°C until processing. 124 

Transcriptional profiling 125 

Total RNA was extracted from SARS-CoV-2 challenge PAXgene tubes using the PAXgene Blood RNA kit 126 

(Qiagen), including on-column DNase treatment and depleted of globin mRNA using the GLOBINclear Human 127 

Kit (Thermo Fisher Scientific). Total RNA was extracted from the INSTINCT SARS-CoV-2 household contact 128 

study and the H3N2 influenza challenge PAXgene tubes using the Qiasymphony PAXgene blood RNA kit, with 129 

subsequent DNase I treatment (Zymo) and clean-up using the RNA Clean and Concentrator-96 kit (Zymo), 130 

followed by globin mRNA and rRNA depletion using NEBNext® Globin & rRNA Depletion kits (New England 131 

BioLabs). Total RNA from SARS-CoV-2 challenge nasopharyngeal swabs and curettage samples was 132 

extracted using the RNeasy mini kit (Qiagen), including on-column DNase treatment. RNA concentrations were 133 

quantified using Qubit 2.0 Fluorometer (ThermoFisher Scientific). RNA integrity scores were determined using 134 

the Bioanalyser (RNA Nano 6000 Chip, Agilent) or 4200 Tape Station (Agilent). 135 

Blood RNA samples from SARS-CoV-2 challenge underwent total RNA sequencing. DNA libraries were 136 

constructed using the KAPA RNA HyperPrep Kit with RiboErase (Roche) and sequenced on the Illumina 137 

NovaSemq 6000 platform using the NovaSeq 6000 S4 Reagent Kit (200 cycles) (Illumina), giving a median of 138 

69.3 million (range 29.3-152.8) 100 base pair (bp) paired-end reads per sample. Nose swab RNA samples 139 

underwent mRNA sequencing. DNA libraries were constructed using the Kappa mRNA HyperPrep kit (Roche) 140 

and sequenced on the Illumina NextSeq platform the using the NextSeq 500/550 High Output Kit (75 cycles) 141 

(Illumina), giving a median of 32.4 million (range 3.2-176.2) 41bp paired-end reads per sample. Blood RNA 142 

samples from the INSTINCT SARS-CoV-2 household contact study underwent mRNA sequencing. DNA 143 

libraries were constructed using the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina (New 144 

England Biolabs) and sequenced on the Illumina HiSeq 4000 using the HiSeq 3000/4000 PE Cluster and SBS 145 

kits (Illumina), giving a median of 26.1 million (range 18.34-56.04) 75bp paired-end reads per sample. Nose 146 

curettage RNA samples from the H3N2 human challenge underwent mRNA sequencing. DNA libraries were 147 

constructed using the NEBNext® Ultra™ II Directional RNA Library Prep Kit for Illumina (New England Biolabs) 148 

and sequenced on the Illumina HiSeq 4000 using the HiSeq 3000/4000 SBS kit (Illumina), giving a median of 149 

74.9 million (range 44.2-122) 75bp paired-end reads per sample. Whole blood RNA samples from the H3N2 150 
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influenza challenge underwent mRNA sequencing, DNA libraries were constructed with the NEBNext® Ultra 151 

II Directional RNA Library Prep Kit for Illumina (New England BioLabs) and sequenced on the Illumina 152 

NovaSeq 6000 platform using the NovaSeq 6000 S2 200 cycles Flowcell (Illumina), with a target of 40 million 153 

paired-end reads per sample. 154 

SARS-CoV-2 challenge sequencing reads were mapped to the reference transcriptome (Ensembl Human 155 

GRCh38 release 108) using Kallisto (version 0.46.1)8. 371 blood RNA samples from 34 seronegative 156 

individuals gave a median of 28.7 million (range 12.2-73.5) mapped reads per sample. 99 nose swab RNA 157 

samples gave a median of 23.9 million (range 2.5-138.6) mapped reads per sample. Transcript-level output 158 

Deseq2 normalised counts and transcripts per million values were summed on gene level and annotated with 159 

Ensembl gene ID, gene name, and gene biotype using the tximport (version 1.20.0) and biomaRt (version 160 

2.48.0) Bioconductor packages in R9–13. 161 

Sequencing reads from the INSTINCT SARS-CoV-2 household contact study were mapped to the reference 162 

transcriptome (NCBI Human GRCh38.p13) using STAR aligner (version 2.7.1a)14. 134 blood RNA samples 163 

from 52 individuals gave a median of 14.37 million (range 7.30-37.67) mapped reads per sample. Read count 164 

matrices were generated using featureCounts from the Rsubread package15 and normalised using the variance 165 

stabilised transformation from the DESeq2 package. 166 

For the sequencing reads of whole blood RNA from the H3N2 influenza challenge, quality control was 167 

performed using with FastQC (v 0.11.7; https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and 168 

adapter sequences were removed using Trimmomatic (v 0.36)16. The reads were mapped against hg38 169 

reference genome using STAR aligner (v 2.7.1a). The featureCounts tool from Subread package (v 1.5.2) was 170 

used for transcript quantification. Computed gene counts were used for downstream analyses. Whole blood 171 

samples from 19 donors gave a median of 10.1 million (range 8.5-12.7) mapped reads per sample (read length 172 

= 100bp). Transcript-level output Deseq2 normalised counts were annotated with Ensembl gene ID and gene 173 

name using biomaRt (version 2.46.3) Bioconductor packages in R.Sequencing reads from the H3N2 challenge 174 

were mapped to the reference transcriptome (Ensembl Human GRCh38.p13) using STAR (version 2.7.10a). 175 

Nasal RNA samples from 17 donors gave a median of 21.4 million (range 3.32–34.7) mapped reads per 176 

sample. Transcript-level output Deseq2 normalised counts were annotated with Ensembl gene ID and gene 177 

name using biomaRt (version 2.52.0) Bioconductor packages in R.  178 

For RNAseq datasets that were generated in more than one batch, processing batch effects were excluded by 179 

principal component analysis of all RNAseq data (Supplementary Figure 2). Additional genome-wide 180 

transcriptomic microarray data were derived from previously published experimental challenge datasets of 181 

other respiratory viruses (GEO accession: GSE73072)17 and from a natural infection study of respiratory 182 

viruses (GEO accession: GSE68310)18. In each case, we used log-2 transformed and normalised data 183 

matrices to quantify biomarker scores, standardized to baseline samples. 184 

Signature scores 185 

Analyses were performed in R (version 4.0.2). Scores for candidate transcriptional signatures were calculated 186 

as per the original author’s descriptions using transcripts per million values, as previously. Where component 187 

genes could not be identified in the RNA sequencing dataset (for example due to genes being withdrawn from 188 

the reference transcriptome), these genes were excluded from calculations. Scores were standardised to Z 189 

scores by subtracting the mean and dividing by the standard deviation of pre-inoculation samples, and were 190 
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multiplied by -1 for scores intended to decrease in the presence of viral infection. Discrimination of each 191 

signature for the outcome of replicative infection was calculated as the area under the receiver operating 192 

characteristic curve (AUROC), with 95% confidence intervals, and stratified by day since inoculation, using the 193 

pROC package in R19. Correlation between signatures and with viral loads was quantified as Spearman rank 194 

correlation coefficients. 195 

Analysis of ATACseq data 196 

Publicly available ATAC (Assay for Transposase Accessible Chromatin) sequencing fastq datasets derived 197 

from unstimulated human monocytes, B-cells and CD4 T-effector cells (GEO accession: GSE118189, 198 

European Nucleotide Archive accession: PRJNA484801)20 were analysed with the nf-core ATAC-seq analysis 199 

pipeline (v2.0) curated in Nextflow21,22, using default parameters. Adaptors were trimmed using trimgalore 200 

(v0.6.7) and reads were aligned to the reference genome (NCBI GRCh38) using BWA (v 0.7.17)23. Duplicate 201 

reads were identified using picard (v2.27.4)24. Reads were filtered using SAMtools (v1.16.1)25. BEDtools 202 

(v.2.30.0)26 was used to remove duplicates, reads mapping to blacklisted regions and mitochondrial DNA, 203 

multimappers, unmapped reads or those not marked as primary alignments. Replicate datasets were merged 204 

using picard for some downstream analyses. Normalised scaled bigWig files were created using BEDtools and 205 

tracks were visualised using Integrative Genomics Viewer (v2.16.0)27. Peak calling was performed using 206 

MACS2 (v2.2.7.1)28 in broadpeak mode. Peaks were annotated to gene features using HOMER (v4.11)29 and 207 

a consensus peak-set was generated using BEDtools. Matrices of reads falling within consensus peaks were 208 

generated using featureCounts from the subread package (v2.0.1)15 for quantitation. 209 

Publicly available single-cell ATACseq data from the COMBAT consortium30 (EGAD00001007963; Zenodo: 210 

https://doi.org/10.5281/zenodo.6120249) were reanalysed for read counts per cell type in established COVID 211 

infection from hospitalised COVID patients. Data were processed as described in the original publication using 212 

the ArchR software package (v0.9.3)31. The sequencing reads at the IFI27 locus were plotted per cell type with 213 

the plotBrowserTrack function. 214 

Results  215 

Blood transcriptional signatures of viral infection 216 

We updated our previous systematic review of the literature, to identify 26 blood transcriptional signatures 217 

associated with viral infection (Supplementary Figure 1A, Supplementary Table 1)32–56. These included six 218 

single gene biomarkers. The remaining multigene signatures were made up of 2-47 constituent genes. The 219 

composition of these signatures was generally distinct, reflected by low Jaccard indices in a matrix of pairwise 220 

comparisons (Supplementary Figure 1B). 221 

Viral infection outcomes in the SARS-CoV-2 controlled human challenge model 222 

34 SARS-CoV-2 seronegative healthy volunteers subjected to nasal inoculation of a standardized dose of 223 

SARS-CoV-2 divided into two groups with (N=18) and without (N=16) evidence of sustained replicative 224 

infection from 2 days after challenge (Figure 1). Although the individual viral load profiles were different in nose 225 

and throat swabs, both measurements segregated the same participants into two groups with and without 226 

replicative infection.  227 
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Blood transcriptional biomarker discrimination of participants with and without sustained replicative 228 

SARS-CoV-2 infection 229 

Blood transcriptional biomarker scores were calculated for each of the 26 signatures identified by systematic 230 

review, from RNA sequencing of whole blood samples at selected time points before and after viral inoculation 231 

(Figure 2A). Across this time course, all the biomarkers showed a transient increase in expression 232 

(Supplementary Figure 3) associated with replicative SARS-CoV-2 infection. We first ranked all biomarkers by 233 

their ability to discriminate between participants with and without replicative infection by area under the receiver 234 

operating characteristic curve (AUROC) across 14 days. We limited calculations to data from days 3, 7, 10 235 

and 14, in order to achieve equal sampling frequency distribution across the time course of infection 236 

(Supplementary Figure 3). Point estimates of the AUROCs ranged between 0.6-0.99. 22 of the 26 biomarkers 237 

with point estimates ranging 0.92-0.99 were statistically comparable with overlapping 95% confidence 238 

intervals, suggesting most biomarkers were able to accurately discriminate participants with and without 239 

replicative infection. 240 

Identification of blood transcriptional biomarkers of early and late phases of SARS-CoV-2 infection 241 

Next, we compared the AUROC of each signature stratified by time point. Most achieved near perfect 242 

discrimination of participants with and without replicative infection in days 4-10 (Supplementary Figure 4A). 243 

We found greater variation in performance of each signature before and after this time interval, suggesting 244 

differential ability to identify early and late phases of viral infection. To investigate this hypothesis further, we 245 

focused on the single gene transcripts with highest AUROC on day 3 (MX1) and on day 14 (IFI27). On day 3, 246 

MX1 achieved an AUROC of 0.97 (0.93-1) which reduced to 0.8 (0.64-0.96) by day 14. In contrast, IFI27 247 

achieved an AUROC of 0.73 (0.56-0.91) on day 3, increasing to 1 by day 14 (Figure 2B). These findings 248 

reflected an early but transient increase in MX1 expression and a comparatively delayed but sustained 249 

increase in IFI27 expression (Figure 2C). A number of other single gene biomarkers (IFI44L, IFIT3 and RSAD2) 250 

were highly correlated to MX1 and distinct from IFI27 (Supplementary Figure 4B). 251 

Relationship of MX1 and IFI27 expression in blood to symptoms and SARS-CoV-2 viral load 252 

Most biomarker discovery and validation has focused on naturally acquired symptomatic viral infection. We 253 

and others have shown that host response biomarkers are able to detect asymptomatic infection2,39. Consistent 254 

with this, we found no correlation between blood transcriptional scores and prospective quantitation of daily 255 

symptom scores among individuals who developed replicative infection (Figure 3A). We found elevated 256 

biomarker scores (>Z2 threshold) at time points in which participants who experienced replicative infection 257 

were completely asymptomatic. This was more evident with MX1 measurements at early time points and with 258 

IFI27 measurements at late time points. 259 

In addition, we investigated the relationship between blood transcriptional signature scores and viral load 260 

stratified by time from inoculation in samples from individuals who developed replicative infection. Examples 261 

of elevated MX1 and IFI27 scores (Z>2) were evident at time points with negative virus PCR in contemporary 262 

nose or throat swabs (Figure 3B). Elevated MX1 scores associated with negative virus PCR tests were more 263 

evident at early time points, and elevated IFI27 scores associated with negative virus PCR tests were more 264 

evident at late time points. Importantly, MX1 and IFI27 scores in the normal range (<Z2) were also evident at 265 

time points with positive virus PCR tests in contemporary samples. False-negative biomarker results were 266 

more evident for IFI27 at early time points, and for MX1 at late time points. To underscore the differential 267 
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temporal relationship of each biomarker with viral load, we examined longitudinal biomarker measurements 268 

per participant who developed replicative infection, indexed by time from first PCR detection of virus (>4 Log10 269 

copies/mL) in nasal swabs, which we have recently reported to correlate best with viral emissions57. The rise 270 

in MX1 scores was generally co-incident with PCR detection of the virus, and in some individuals evident 271 

before detection of virus by PCR. However, the MX1 response generally peaked before the peak in viral load, 272 

suggesting that clearance of MX1 transcript enrichment was faster than clearance of the virus. In contrast, 273 

IFI27 scores increased after detection of the virus and remained elevated after viral load started to fall (Figure 274 

3C). 275 

Both blood transcriptional biomarkers showed statistically significant correlation with viral load when including 276 

PCR negative time points (Supplementary Figure 5A) consistent with the fact that they provided good 277 

discrimination of groups of participants with and without replicative infection. However, when restricting the 278 

analysis to time points with positive virus PCR tests, we found a significant correlation only to MX1, suggesting 279 

this biomarker provided better prediction of viral load than IFI27 (Supplementary Figure 5B). Consistent with 280 

this observation, we also found that MX1 provided a better biomarker of infectiousness than IFI27, by predicting 281 

positive viral culture in contemporary samples. Among individuals who developed replicative infection, blood 282 

MX1 transcript levels discriminated virus culture positivity in nose or throat samples with AUROC 0.85 (0.79-283 

0.92), significantly better than IFI27 which achieved AUROC of 0.66 (0.57-0.75). In this analysis false positive 284 

MX1 levels were limited to early time points, consistent with the observation that the rise in MX1 levels can 285 

precede PCR detection of the virus (Figure 4).  286 

Differential regulation of MX1 and IFI27 expression in blood 287 

Both MX1 and IFI27 are widely recognised as interferon stimulated genes (ISG)58,59. To explore this 288 

relationship among participants in the replicative infection group, we compared MX1 and IFI27 levels with the 289 

average expression of a multigene signature (“STAT1 regulated module”) that we had previously derived and 290 

validated as a measure of type 1 IFN bioactivity60. Both biomarkers showed a statistically significant correlation 291 

with the STAT1 module, but the relationship with MX1 was stronger with near perfect correlation and 292 

covariance, suggesting that IFI27 expression was subject to additional levels of transcriptional regulation 293 

(Figure 5A-B). To obtain a deeper insight into the mechanisms of differential regulation of MX1 and IFI27, we 294 

investigated their expression in our previously reported single cell RNA sequencing analysis of PBMC from a 295 

subset of participants with replicative infection in the present SARS-CoV-2 challenge study61. We found a clear 296 

increase of MX1 expression in all major PBMC subsets in pooled day 3 data, and subsequent reduction by 297 

day 7. In contrast, increased expression of IFI27 was almost exclusively restricted to myeloid cells (monocytes 298 

and conventional dendritic cells). Modest upregulation was evident at day 3, but then increased further at day 299 

7 and day 10 before reducing again by day 14, although expression levels remained higher than baseline 300 

through to day 28 (Figure 5C). 301 

In published ATAC sequencing data20, we tested the hypothesis that differential time and cellular distribution 302 

of MX1 and IFI27 expression reflected differential epigenetic regulation (chromatin accessibility) of MX1 and 303 

IFI27 loci in circulating immune cells. In datasets from unstimulated monocytes, CD4 T effector cells and B-304 

cells from healthy individuals, we found evidence that the MX1 locus contained areas of open chromatin 305 

(enrichment of sequencing peaks) close to the transcription start site and exon-1 (Supplementary Figure 6A-306 

B), which would enable rapid transcriptional upregulation of this gene across multiple cell types. In contrast, 307 
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the IFI27 locus contained little evidence of open chromatin (Supplementary Figure 6A-B) in any of these cell 308 

types, and therefore inaccessible for rapid transcriptional upregulation. To evaluate subsequent epigenetic 309 

modifications following infection, we leveraged single cell ATACseq data from patients admitted to hospital 310 

with COVID-1930. Despite the sparsity in single cell data and relatively low coverage of the IFI27 locus, in 311 

samples from patients with acute COVID-19, we found a higher number of IF27 sequencing reads in 312 

monocytes compared to all lymphocyte populations. This difference was less evident in data from convalescent 313 

patients (Supplementary Figure 6C), and consistent with transient cell-type specific opening of the IFI27 locus 314 

in established infection, providing a mechanistic basis for the temporal delay and cellular restriction of IFI27 315 

responses compared to MX1. 316 

Generalisable differential utility of blood MX1 and IFI27 transcriptional biomarkers in acute respiratory 317 

virus infection. 318 

In order to investigate whether the differential host responses represented by MX1 and IFI27 were 319 

generalisable to other acute respiratory viral infections, we investigated their expression profiles in collated 320 

data from previously reported influenza, respiratory syncytial virus, and rhinovirus human challenges among 321 

participants with evidence of infection following inoculation as per original study definitions17. In every case 322 

MX1 upregulation in whole blood transcriptional profiles preceded that of IFI27 (Figure 6A). The data from 323 

these experiments were limited to approximately 6 days post-challenge and did not allow us to fully compare 324 

the temporal profiles of these biomarker measurements to the present SARS-CoV-2 challenge. Therefore, we 325 

undertook transcriptional profiling of blood samples from another recent H3N2 influenza human challenge 326 

model that included sampling beyond day 76. This analysis also reproduced our findings in the SARS-CoV-2 327 

challenge (Figure 6B). 328 

We further sought to extend the generalisability of our findings to natural infections. In a household contact 329 

study of index cases with COVID-195, blood transcript levels of MX1 and IFI27 achieved equivalently good 330 

discrimination of contacts with and without prevalent SARS-CoV-2 infection at recruitment (day 0, AUROC 331 

0.97, 0.92-1). This level of discrimination was maintained for IFI27 in follow up samples 7 days later, but 332 

significantly reduced for MX1, consistent with earlier resolution of this biomarker (Figure 7A). In a further data 333 

set from patients with unselected community acquired respiratory virus infections, we evaluated MX1 and IFI27 334 

expression in whole blood transcriptional profiles of individuals with PCR confirmed respiratory virus infections 335 

within 48 hours of symptom onset, in four sequential samples on alternate days18. Compared to baseline (pre-336 

infection) samples from the same individuals, increased levels of MX1 expression (Z>2) were largely confined 337 

to early time points day 0-2 after presentation within 4 days of symptom onset. Increased levels of IFI27 338 

expression (Z>2) were evident over a longer time course including day 4-6 after presentation, up to 8 days 339 

after symptom onset (Figure 7B, Supplementary Figure 7A). Across all time points, IFI27 measurements 340 

achieved statistically better AUROC than MX1 measurements for discrimination of infection from baseline 341 

uninfected samples (Supplementary Figure 7B). However, when the analysis was stratified by sample time 342 

point, MX1 achieved the highest AUROC for discrimination of infected samples on the day of presentation 343 

(Supplementary Figure 7C). The AUROC for MX1 reduced significantly at each subsequent time point. The 344 

time point stratified analysis of IFI27, showed stable AUROC discrimination of infection. A combined biomarker 345 

signature, comprising the average expression of MX1 and IFI27 improved the AUROC discrimination at early 346 

time points compared to IFI27 alone, and at late time points compared to MX1 alone (Supplementary Figure 347 

7C). 348 
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Comparison of host response biomarkers of acute respiratory virus infection in blood and nose 349 

samples 350 

The potential to measure host response transcriptional signatures in samples from upper respiratory tract 351 

swabs has recently been reported62,63. We compared MX1 and IFI27 transcript measurements in samples from 352 

blood and nose swabs in the present SARS-CoV-2 challenge. Surface nose swabs only yielded adequate RNA 353 

for sequencing in 103 of 238 samples (43%), reflecting an inherent technical limitation in this approach. 354 

Nonetheless, for nose samples which did yield RNA sequencing data, we found clear evidence of MX1 and 355 

IFI27 responses in participants who developed a replicative infection. In comparison to blood measurements 356 

of these biomarkers, the signal strength in nose swab samples was weaker than in blood, the response in the 357 

nose was delayed in comparison to blood, and the differential time course for each biomarker evident in blood 358 

samples was lost in nose swab samples (Figure 7C). These findings were replicated in blood and nasal 359 

mucosal curettage samples from the H3N2 influenza human challenge and indicate that in general, blood 360 

biomarker measurements are likely to provide better diagnostic discrimination for prevalent infection as well 361 

as better differentiation of early and late phases of infection, compared to nasal swabs (Figure 7C). 362 

Discussion  363 

We present a comprehensive evaluation of previously reported transcriptional signatures as host response 364 

biomarkers of viral infection in high frequency longitudinal blood and nose swab samples from the first SARS-365 

CoV-2 human challenge experiment. We provide compelling evidence showing that single gene transcripts for 366 

MX1 and IFI27 in blood, discriminate temporally distinct phases of infection, and we show that these findings 367 

are generalisable across a range of clinically important respiratory viruses in both experimental and naturally 368 

acquired infections. The earliest phase of replicative SARS-CoV-2 infection was associated with rapid 369 

upregulation of MX1 transcripts in blood, which may precede PCR detection of the virus and correlated with 370 

PCR positive viral load measurements. In contrast, blood transcriptional upregulation of IFI27 occurred after 371 

PCR detection of the virus. IFI27 expression did not correlate with PCR positive viral load measurements and 372 

was sustained above baseline levels after viral clearance. Of note, transcriptional upregulation of both 373 

biomarkers was independent of symptoms. 374 

Both MX1 and IFI27 are widely recognised as ISGs58,59. The MX1 response closely reflected generalised type 375 

1 ISG expression across all major cell types. We focused on MX1 because it achieved the highest single gene 376 

point estimate AUROC for discriminating groups of individuals with and without replicative viral infection at the 377 

first time point at which any biomarker achieved significant discrimination. Alternative interferon inducible single 378 

gene biomarkers such as IFI44L, IFIT3 and RSAD2 provided statistically comparable discrimination at this 379 

time point, and are highly correlated to MX1. These biomarkers are likely to share the same mechanisms for 380 

transcriptional regulation, and offer the same utility as MX1. Delayed transcriptional upregulation of IFI27 381 

compared to other canonical ISGs has also been reported following in vitro stimulation of cells with IFN64,65. In 382 

vivo, IFI27 expression in blood samples was restricted to myeloid PBMC. We found evidence of differential 383 

epigenetic silencing of the IFI27 locus compared to the MX1 locus in resting PBMC, and cell type specific 384 

epigenetic modulation of this locus in monocytes during established COVID-19 infection. These data provide 385 

a mechanistic explanation for the differential temporal and cellular expression of the two biomarkers, namely 386 

that IFI27 is epigenetically silenced in resting cells but becomes accessible for transcription in specific myeloid 387 

lineages during the evolving immune response to infection.  388 
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The differential temporal expression of MX1 and IFI27 in the SARS-CoV-2 challenge model was replicated in 389 

challenge experiments with multiple influenza strains, respiratory syncytial virus, or rhinovirus, and in data from 390 

household contacts with naturally acquired SARS-CoV-2 infection. Likewise, in unselected community 391 

acquired symptomatic respiratory virus infections, in which MX1 measurements achieved high diagnostic 392 

accuracy for infections within 4 days of symptom onset, and IFI27 measurements achieved higher diagnostic 393 

accuracy at later time points. The combination of both measurements provided highest diagnostic accuracy 394 

across all time points.  395 

In SARS-CoV-2 and H3N2 Influenza challenge experiments, we found no evidence that measuring these 396 

biomarkers in nose swab samples offered any advantage to blood samples. Lower upregulation of gene 397 

expression in nose samples compared to blood, and the loss of temporal differentiation between the 398 

biomarkers may reflect the biology of superficial cell populations compared to circulating leukocytes. 399 

Unexpectedly, upregulation of these biomarkers in nose samples of individuals with replicative infection was 400 

also temporally delayed compared to the blood. This finding is also evident in our analysis of comparative 401 

single cell sequencing data from blood and nose swab samples61. Whether it reflects faster transmission of 402 

IFN signalling to circulating blood cells, later onset of viral replication in the nose compared to the throat, or 403 

local suppression of IFN signalling by the virus in the nasal mucosa require future mechanistic investigation. 404 

We propose that these blood transcriptional biomarkers of early and late phase of viral infection offer a range 405 

of research and clinical applications. Upregulation of MX1 expression may be used to detect pre-symptomatic 406 

infection in contacts of index cases. Its correlation with viral load and culture results suggests it may also 407 

provide clinical utility to infer infectiousness and thus trigger infection control interventions. Finally, since 408 

specific antiviral treatment efficacy diminishes with duration of infection66,67, MX1 measurements may be used 409 

to stratify patients most likely to benefit from treatment. Conversely, IFI27 expression may offer a more time-410 

stable diagnostic triage test for viral infection due to sustained upregulation beyond the initial acute phase of 411 

infection. To account for differential temporal profiles, a combined approach including both MX1 and IFI27 (as 412 

averaged expression, or where a positive test for either gene triggers further confirmatory testing) may be the 413 

optimal approach to diagnostic triage.  414 

Comprehensive identification of reported blood transcriptional biomarkers of viral infection by systematic 415 

review, and their application in standardised human SARS-CoV-2 and influenza human challenges with high 416 

frequency sampling are major strengths of this study, thus enabling identification of differential temporal 417 

profiles of MX1 and IFI27 responses. Single cell data from the SARS-CoV-2 challenge model, and analyses 418 

of publicly available data also allowed investigation of the mechanism for differential temporal profiles of MX1 419 

and IFI27 responses, and to confirm reproducibility of our findings across a range of respiratory virus infections. 420 

Our conclusions are currently limited to data derived from individuals with non-severe infection. Therefore, 421 

future validation in hospitalised cohorts for whom the time of exposure can be estimated will be required to 422 

assess whether severe disease alters the temporal profiles of these biomarkers. Finally, we do not address 423 

the specificity of our findings for respiratory virus infections. Therefore, we have limited our discussion of 424 

potential translational applications to diagnostic triage tests to trigger confirmatory virological investigations, 425 

stratification of patients with confirmed viral infections for antiviral treatment, and pre-symptomatic screening 426 

of contacts of index cases of confirmed viral infections. Notably, for each of these applications, the 427 

generalisability of blood transcriptional biomarkers across respiratory viruses may be considered a strength. 428 
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Translation of these viral biomarkers to near-patient platforms is now required to enable further evaluation of 429 

clinical utility and impact in prospective observational and interventional studies. 430 
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Figure 1. 629 

 630 

SARS-CoV-2 PCR viral load in nose and throat swabs following virus challenge. 631 

Quantitative viral load measurements by PCR from (A) nose and (B) throat swabs per participant (rows) 632 

stratified by time point (columns) after virus challenge, and clustered into two groups of participants with (N=18) 633 

and without (N=16) evidence of replicative virus replication. Grey colour denotes unavailable data points. 634 
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Figure 2. 635 

 636 

Blood transcriptional discrimination of participants with and without replicative infection by time from 637 

SARS-CoV-2 challenge. 638 

(A) Time points for blood RNA sampling in relation to virus challenge. (B) Point estimates for area under the 639 

receiver operating characteristic curve (AUROC) stratified by blood transcriptional signature and time after 640 

virus challenge. (C) Individual (data points) and loess smoothed summary (line ±95% CI) for standardised 641 
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blood transcript levels of MX1 and IFI27 in sequential time points after challenge, for participants with (N=18) 642 

and without (N=16) replicative viral infection.643 
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Figure 3. 644 

 645 

Relationship between blood transcript levels of MX1 and IFI27 with symptoms and viral load by time 646 

from SARS-CoV-2 challenge. 647 

Individual standardised blood transcript levels of MX1 and IFI27 against (A) symptom scores and (B) nose and 648 

throat viral loads in participants who developed replicative virus infection (N=18), stratified by time after virus 649 

challenge, with dashed line to represent the threshold (Z>2) for elevated transcript levels. (C) Individual 650 

standardised blood transcript levels of MX1 and IFI27 (connected data points, left axis) and loess smoothed 651 

summary for nose viral load (black line ±95% CI, right axis) in participants who developed replicative virus 652 

infection (N=18), by time from virus detection in nose swabs >4 Log10 copies/mL. 653 
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Figure 4. 654 

 655 

Discrimination of virus culture positivity by blood transcript levels of MX1 and IFI27. 656 

(A) Individual standardised blood transcript levels of MX1 and IFI27 at each time point for all individuals who 657 

develop replicative infection (N=18), stratified by contemporary virus culture positivity in either nose or throat 658 

swabs, with dashed line to represent the threshold (Z>2) for elevated transcript levels. (B) Area under the 659 

receiver operating characteristic curve (AUROC) discrimination of virus culture positivity by blood transcript 660 

levels of MX1 and IFI27 across all time points, showing AUROC point estimates and 95% confidence intervals.661 
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Figure 5. 662 

 663 

Differential regulation of MX1 and IFI27 expression in blood. 664 

(A) Individual standardised blood transcriptional expression of a type 1 IFN stimulated gene signature (STAT1 665 

module) by standardised blood transcriptional expression of MX1 and IFI27 at all time points in participants 666 

who developed replicative virus infection (N=18), showing Spearmen correlation coefficients and p value. (B) 667 

Standardised blood transcriptional expression of MX1 and IFI27 stratified by cell type and time after virus 668 

challenge, in pooled data from participants who developed replicative virus infection (N=6).669 
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Figure 6. 670 

 671 

Generalisable differences in temporal profiles of blood MX1 and IFI27 expression in diverse respiratory 672 

virus challenges. 673 

(A) Individual (data points) and loess smoothed summary (line ±95% CI) for standardised blood transcript 674 

levels of MX1 and IFI27 over the first 6 days after challenge in selected human respiratory virus challenge 675 

models (GSE73072) among participants who develop replicative infection, and (B) over 14 days in an H3N2 676 

influenza human challenge model, among participants with (N=16) and without (N=3) replicative infection.677 
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Figure 7. 678 

 679 

Differences in temporal profiles of blood MX1 and IFI27 expression in naturally acquired respiratory 680 

virus infections, and delayed responses in the nose to virus challenge. 681 

(A) Discrimination between SARS-CoV-2 infected (N=20) and uninfected (N=26) household contacts of index 682 

cases with COVID-19 by blood transcript levels of MX1 and IFI27, at participant recruitment (study day 0) and 683 

7 days later. Data points represent individual study participants, summarised by box and whisker plots. 684 

Discrimination accuracy is shown as AUROC point estimate and 95% confidence intervals. (B) Individual 685 

standardised blood transcript levels of MX1 against IFI27 for sequential samples before infection (baseline, 686 

N=128) and at time points indicated (day0, N=103; day 2, N=106, day 4, N=100; day 6, N=102) after 687 

presentation within 48 hours of symptoms onset among prospectively recruited participants with unselected 688 

respiratory virus infections. (C) Loess smoothed summary (line ±95% CI) for standardised transcript levels of 689 

MX1 and IFI27 in blood (N=18) and nose samples (N=5-13) from participants who developed replicative virus 690 
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infection by time after SARS-CoV-2 challenge, and in blood (N=16) and nose samples (N=12-13) from 691 

participants who developed replicative virus infection by time after H3N2 influenza challenge. 692 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.23290819doi: medRxiv preprint 

https://doi.org/10.1101/2023.06.01.23290819
http://creativecommons.org/licenses/by-nd/4.0/

