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ABSTRACT 44 

Objective: Population-based studies investigating the relationship between physical activity and the gut 45 

microbiota composition have mainly relied on self-reported activity, potentially influenced by reporting 46 

bias. Here, we investigated associations of accelerometer-based sedentary behaviour and physical activity 47 

with the gut microbiota composition and functional profile in the large Swedish CArdioPulmonary 48 

bioImage Study. 49 

Methods: In 8507 participants aged 50-65, the proportion of time in sedentary (SED), moderate-intensity 50 

(MPA), and vigorous-intensity (VPA) physical activity were estimated with hip-worn accelerometer. The 51 

gut microbiota was profiled using shotgun metagenomics of fecal samples. We fitted multivariable 52 

regression models, and adjusted for sociodemographic, lifestyle, and technical covariates while also 53 

accounting for multiple testing. 54 

Results: Overall, SED and MPA were associated with microbiota species in opposite directions. For 55 

example, the strongest positive regression coefficient for MPA and the strongest negative for SED were 56 

with Prevotella copri, a plant-polysaccharide-degrading bacteria. Species associated with VPA aligned 57 

with the MPA associations, although with clear discrepancies. For instance, Phocaeicola vulgatus was 58 

negatively associated with MPA, while the association with VPA was non-significant and in the positive 59 

direction. Additional adjustment for dietary variables or adiposity attenuated some of the associations. For 60 

the functional profile, MPA and VPA were generally associated with lower capacity for amino acid 61 

degradation.   62 

Conclusion: Our findings suggest that sedentary behaviour and physical activity are associated with a 63 

similar set of gut microbiota species and functions, but in opposite directions. Furthermore, the intensity 64 

of physical activity may have specific effects on certain species of the gut microbiota. 65 

Word count: 247/250 66 
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INTRODUCTION 67 

Physical activity has well-established health benefits, including reduced risk for cardiovascular disease, 68 

type 2 diabetes,1,2 and psychiatric conditions like depression.3 Conversely, sedentary behaviour, defined 69 

as sitting or non-sleep lying activities with low energy expenditure, is associated with increased risk of 70 

type 2 diabetes and cardiovascular mortality.4–6 Some studies have though indicated that the risks 71 

attributed to sedentary behaviour could be substantially attenuated by physical activity at high 72 

intensities.7–9 73 

 The gut microbiota is a community of microorganisms within the gastrointestinal tract that 74 

interacts with the host.10 Evidence suggests that the gut microbiota plays a role in the development of type 75 

2 diabetes and cardiovascular diseases.11–13 Moreover, the gut microbiota may influence brain homeostasis 76 

through the microbiota-gut-brain axis, which includes microbe-produced neurotransmitters and other 77 

molecules that can affect the central nervous system via neuronal pathways or the immune system.14 78 

Regular physical activity may affect the gut microbiota through various mechanisms, including 79 

modulation of the gut immune system, reduction in the intestinal transit time15 and splanchnic blood flow, 80 

transient increase in the intestinal permeability,16 and modulation of the enterohepatic circulation of bile 81 

acids.17 Smaller intervention studies in specific populations have reported changes to the gut microbiota 82 

composition after structured exercise, with a decrease in Clostridium and Blautia and an increase in 83 

Bifidobacterium and Dorea.18–20 In population-based studies, self-reported moderate and vigorous-84 

intensity physical activity have been associated with higher gut microbiota diversity21, and sedentary 85 

behaviour with increased abundance of Roseburia hominis and Erysipelatoclostridium species.22 86 

However, these studies had limited microbiota taxonomic resolution and used self-reported physical 87 

activity information, which may be affected by reporting bias.23 Therefore, there is a need for larger 88 

population-based studies that combine sensor-based physical activity assessment with gut microbiota 89 

profiled in higher taxonomic resolution. Here, we aimed to identify associations of accelerometer-based 90 

sedentary behaviour and physical activity with the gut microbiota analysed with deep shotgun 91 

metagenomics, in 8507 participants, using cross-sectional data from the Swedish CArdioPulmonary 92 

BioImage Study (SCAPIS). 93 

METHODS 94 

Study Population 95 

The SCAPIS cohort includes 30 154 women and men aged 50 to 65 enrolled between 2013 and 2018 from 96 

six different regions in Sweden.24 Baseline investigation included wear of a hip-accelerometer for 7 days. 97 
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Participants from Malmö and Uppsala were also invited to provide faecal samples for metagenomic 98 

analysis (n = 9831). The Swedish Ethical Review Authority approved the SCAPIS study (DNR 2010-228-99 

31M) and the present study (DNR 2018-315 with amendment 2020-06597). All participants provided 100 

written informed consent. 101 

 102 

Accelerometer data processing  103 

Accelerometer data was processed using a previously described protocol25 with the added exclusion of 104 

registrations during estimated bedtime. For details, see  supplemental methods. In brief, participants were 105 

instructed to wear the ActiGraph (Pensacola, USA) tri-axial accelerometer over the hip for 7 consecutive 106 

days, except during sleep and water-based activities. Raw data was transformed into counts per minute 107 

(cpm) over 60s epochs. Sedentary time (SED), low-intensity physical activity (LIPA), moderate-intensity 108 

physical activity (MPA), and vigorous-intensity physical activity (VPA) were defined as <200 cpm, 200 109 

– 2689 cpm, 2690 – 6166 cpm, and ≥6167 cpm, respectively. Non-wear time was defined as periods of 110 

≥60 min with zero counts, with intervals of maximum two minutes of 0 – 199 cpm. A valid day was 111 

defined as a day with >10 hours of wear time. We excluded 467 participants who had <4 valid days. The 112 

percentage of time in SED, MPA, or VPA were calculated by dividing the time spent in each activity by 113 

the total wear time.25 Because SED  and LIPA were highly negatively correlated (Spearman’s correlation 114 

= -0.95,   supplemental figure 1), we chose to exclude LIPA from the subsequent analyses.  115 

 116 

Faecal metagenomics  117 

The gut microbiota was assessed through metagenomic analyses of faecal samples using a previously 118 

described protocol.26 In summary, faecal samples were collected at home, kept in the home freezer until 119 

the second study visit, and stored at -80°C until shipped to Clinical Microbiomics A/S (Copenhagen, 120 

Denmark) for DNA extraction, library preparation, sequencing with Ilumina Novaseq 6000 (Illumina, CA, 121 

USA), bioinformatics processing, and taxonomic annotation. Metagenomic species were defined by 122 

binning of co-abundance genes, as previously described.27 Alpha diversity, a metric of the diversity of 123 

species and the homogeneity of their abundance within a sample28 was estimated using the Shannon 124 

diversity index. Beta diversity, a metric of the composition dissimilarity between samples, was estimated 125 

using the Bray-Curtis dissimilarity.29 These estimations were performed with R package vegan on 126 

sequence data that was rarefied to 210 430 read-pairs for all samples to account for the differences in 127 

sequencing depth. The functional potential of the gut microbiota was defined by the abundance of genes 128 
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of the manually curated gut metabolic modules30 (GMM) and microbiota-gut-brain modules14 (MGB). 129 

GMMs capture the microbiota metabolic potential and anaerobic fermentation capacity30, while MGBs 130 

comprise the capacity to degrade or produce potentially neuroactive compounds.14 To calculate the 131 

abundance of respective modules, we used the R package Omixer-RPM v.0.3.231 considering a minimum 132 

module coverage of 66.6%. Analyses were focused on species identity, GMMs, and MGBs with a relative 133 

abundance >0.01% in ≥1% of individuals, resulting in 1336 species, 76 GMMs, and 28 MGBs for further 134 

analysis. Before statistical analysis, species, GMM, and MGB were log(x+1) transformed, where x 135 

denotes the relative abundance. For details, see supplemental methods.  136 

 137 

Covariates 138 

Covariate information was obtained from the SCAPIS questionnaire, and anthropometric measurements 139 

and fasting plasma samples collected during study site visit. Mean daily intake of alcohol, fibre, added 140 

sugar, protein, carbohydrate, fat, and total energy were estimated from the food frequency 141 

questionnaire.32,33 Fibre, protein, carbohydrate, fat, and added sugar intake were transformed to 142 

percentages of non-alcohol energy intake. We categorized smoking status as current, former, or non-143 

smoker, and highest achieved education level as incomplete compulsory, complete compulsory, 144 

secondary, or university education. Country of birth was grouped as Scandinavia (Sweden, Denmark, 145 

Norway, or Finland), non-Scandinavian Europe, Asia, and other countries. Information on medications 146 

prescribed for hypertension, type 2 diabetes, dyslipidaemia, depression, and anxiety within six months 147 

before the first site visit was retrieved from the Swedish Prescribed Drug Register (supplemental 148 

methods). Proton-pump inhibitor usage was defined as a measurable level of omeprazole or 149 

pantoprazole metabolites in plasma. Antibiotic use was defined as a dispensed prescription (Anatomical 150 

Therapeutic Chemical code J01) up to three months before the first visit. 151 

Statistical method 152 

Model specification. Based on current literature21,25,34, we created a directed acyclic graph prior to the 153 

analysis phase using the DAGitty tool (www.daggity.net,  supplemental figure 2), and selected potential 154 

confounders for the main model based on the d-separation criteria.35 The  main model comprised age, sex, 155 

alcohol intake, smoking, education, country of birth, study site, and month of accelerometer wear. We 156 

also adjusted for technical variation covariates including total wear time, percentage of wear time on 157 

weekend, and faecal DNA extraction plate. To identify associations independent of dietary intake or 158 
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adiposity, we explored two additional models: (1) Diet-adjusted model: additional adjustment for total 159 

energy intake and intake from added sugars, proteins, carbohydrates, and fibre, or (2) BMI/WHR-adjusted 160 

model: additional adjustment for body mass index (BMI) and waist-hip ratio (WHR). Statistical analyses 161 

were conducted in R version 4.1.1 (http://www.r-project.org).  162 

Alpha and beta diversity. For alpha diversity, we applied linear regression models with Shannon 163 

index as the dependent variable and SED, MPA, and VPA separately as independent variables, while 164 

adjusting for covariates. Regression coefficients presented represent standard-deviation changes in SED, 165 

MPA, or VPA. For beta diversity, we used distance-based redundancy analysis to estimate the proportion 166 

of the interindividual gut microbiota dissimilarity explained by SED, MPA, and VPA. The analyses 167 

accounted for the covariates by using the parameter “condition” in the function “capscale” (R package 168 

vegan) and p-values were calculated based on 9999 permutations.  169 

Species, gut metabolic modules, and microbiota-gut-brain modules. To identify microbiota 170 

features associated with physical activity overall, we applied a series of linear regression models with each 171 

species, GMM, and MGB introduced as the dependent variable, and SED, MPA, and VPA jointly 172 

introduced as independent variables together with the main model covariates. We used the likelihood ratio 173 

test to compare these models to an alternative model that only contained the covariates. To control for 174 

multiple testing, we applied the Benjamini-Hochberg method with a 5% false discovery rate and reported 175 

significance as q-values.36 The species, GMMs, and MGBs identified (q-value <0.05) where subsequently 176 

evaluated in models where SED, MPA, and VPA were introduced separately as an independent variable 177 

while adjusting for main model covariates, as well as for the diet-adjusted model and the BMI/WHR-178 

adjusted model. To identify associations potentially caused by single influential observations, we 179 

calculated dfbetas for the main model. If removing the observation with the highest dfbeta resulted in a 180 

change in the direction of the association or a p-value ≥0.05, we discarded the association. Lastly, 181 

remaining species were examined in two sensitivity analyses: (1) additional adjustment for use of proton-182 

pump inhibitors and medication for hypertension, type 2 diabetes, dyslipidaemia, anxiety, and/or 183 

depression; (2) exclusion of participants that were prescribed antibiotic treatment within the last three 184 

months.  185 

RESULTS 186 

Study population  187 
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The study population consisted of 4197 participants from Malmö and 4310 participants from Uppsala with 188 

valid accelerometer data, faecal metagenomics data, and complete information on the main model 189 

covariates (Table 1). 190 

 191 

Table 1. Characteristics of the study population stratified by study site.  192 

 
 

All 
 

Malmö 
 

Uppsala 
 

 N=8507 N=4197 N=4310 

Age, years 57.6 [53.8;61.4] 57.4 [53.7;61.2] 57.8 [53.9;61.5] 

Women, N (%) 4533 (53.3%) 2278 (54.3%) 2255 (52.3%) 

Accelerometer: 
   

    Wear time in sedentary, % 55.5 [48.5;62.0] 55.6 [48.7;62.3] 55.4 [48.4;61.7] 

    Wear time in moderate-intensity, % 4.7 [3.2;6.6] 4.3 [2.8;6.3] 5.1 [3.6;6.9] 

    Wear time in vigorous-intensity, % 0.06 [0.00;0.48] 0.03 [0.00;0.37] 0.10 [0.02;0.61] 

    Valid days, days 7 [6;7] 7 [6;7] 7 [7;7] 

    Wear time/day, h 14.5 [13.7;15.4] 14.1 [13.3;14.8] 15.0 [14.1;16.0] 

    Wear time registered during weekends, % 28.6 [28.6;28.6] 28.6 [28.6;28.6] 28.6 [28.6;28.6] 

Alcohol intake, g/day 5.4 [1.8;10.3] 5.2 [1.6;10.3] 5.6 [1.9;10.2] 

Smoking, N (%): 
   

    Never 4379 (51.5%) 1834 (43.7%) 2545 (59.0%) 

    Former 3046 (35.8%) 1650 (39.3%) 1396 (32.4%) 

    Current 1082 (12.7%) 713 (17.0%) 369 (8.6%) 

Education, N (%): 
   

    Compulsorya 784 (9.2%) 462 (11.0%) 322 (7.5%) 

    Upper secondary 3790 (44.6%) 1998 (47.6%) 1792 (41.6%) 

    University 3933 (46.2%) 1737 (41.4%) 2196 (51.0%) 

Country of birth, N (%): 
   

    Scandinaviab 7183 (84.4%) 3308 (78.8%) 3875 (89.9%) 

    Europe 752 (8.8%) 584 (13.9%) 168 (3.9%) 

    Asia 382 (4.5%) 210 (5.0%) 172 (4.0%) 

    Other 190 (2.2%) 95 (2.3%) 95 (2.2%) 

BMI and WHR N=8503 N=4193 N=4310 

BMI, kg/m2 26.4 [24.0;29.4] 26.6 [24.1;29.6] 26.3 [24.0;29.1] 

Waist-hip ratio  0.9 [0.9;1.0]    0.9 [0.8;1.0]    0.9 [0.9;1.0]   

Dietary variables N=8416 N=4144 N=4272 

    Total energy intake (kcal/day) 1594 [1239;2049] 1572 [1221;2059] 1611 [1268;2040] 
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    Protein, E% 16.6 [14.7;18.6] 16.5 [14.5;18.7] 16.7 [15.0;18.6] 

    Carbohydrate, E% 43.8 [39.4;48.0] 43.9 [39.2;48.2] 43.8 [39.5;47.9] 

    Fat, E% 37.2 [33.3;41.1] 37.3 [33.3;41.3] 37.1 [33.3;40.8] 

    Fibre, E%  2.3 [1.8;2.9]    2.3 [1.8;2.9]    2.4 [1.9;2.9]   

    Added Sugar, E%  7.3 [4.9;10.6]   7.3 [4.8;10.9]   7.2 [5.1;10.3]  

 Sensitivity analysis – medication use N=7560 N=3295 N=4265 

    Type 2 diabetes, N (%)  301 (4.0%)  145 (4.4%)  156 (3.7%)  

    Hypertension, N (%) 1823 (24.1%) 830 (25.2%) 993 (23.3%) 

    Dyslipidaemia, N (%) 798 (10.6%)  380 (11.5%) 418 (9.8%)  

    Depression, N (%) 786 (10.4%)  342 (10.4%) 444 (10.4%) 

    Anxiety, N (%)  278 (3.7%)  143 (4.3%)  135 (3.2%)  

    Proton pump inhibitors, N (%)  285 (3.8%)  155 (4.7%)  130 (3.0%)  

Sensitivity analysis – antibiotic use N=8507 N=4197 N=4310 

Antibiotic last 3 months, N (%) 498 (5.9%) 270 (6.5%) 228 (5.3%) 

Continuous variables described as median and 25th and 75th percentiles. Categorical variables described 193 

as absolute numbers and percentages. WHR: Waist-hip ratio. a Incomplete or complete compulsory 194 

education.  b Sweden, Denmark, Finland or Norway. E%: percentages of non-alcohol energy intake.   195 

 196 

Sedentary behaviour and physical activity associations with alpha diversity and beta diversity  197 

We found that SED was associated with lower alpha diversity ( = -0.020, p-value = 1.2×10-5), whereas 198 

MPA and VPA were associated with higher alpha diversity (MPA:  =0.024, p-value = 5.5×10-8; VPA:  199 

= 0.032, p-value = 1.7×10-12). Similar results were found in the diet-adjusted model. In the BMI/WHR-200 

adjusted model, only MPA and VPA were associated with alpha diversity (MPA:  = 0.017, p-value = 201 

1.3×10-4; VPA:  = 0.022, p-value = 1.4×10-6).  202 

To evaluate the contribution of sedentary behaviour and physical activity on the interindividual 203 

variation of the gut microbiota composition, we performed distance-based redundancy analysis on the 204 

Bray-Curtis dissimilarly matrix. After conditioning on the main model covariates, the adjusted R2 for SED 205 

was 0.083%, for MPA 0.084%, and for VPA 0.081%. The adjusted R2 for SED, MPA and VPA jointly 206 

was 0.188% in the main model, 0.141% in the diet-adjusted model, and 0.154% in the BMI/WHR-adjusted 207 

model (all p-values = 1×10-4). For comparison, the R2 for BMI without accounting for other variables was 208 

0.76%, for fibre intake 0.39%, and for the dietary variables combined 0.69%. 209 

 210 

Sedentary behaviour and physical activity were associated with a large number of the species 211 

present in the human gut 212 
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We identified 345 species associated with physical activity (supplemental table 1). Among these, SED 213 

was associated with 224 species (q-value <0.05), MPA with 245 species, and VPA with 228 species. 214 

However, we found that six associations for SED, 16 associations for MPA, and 31 associations for VPA 215 

were caused by single influential observations (supplemental table 2). Overall, associations for SED and 216 

MPA mirrored each other (figure 1). The Pearson correlation between the main model regression 217 

coefficients for SED and MPA was -0.92, while between SED and VPA was -0.67. Amongst the largest 218 

coefficients, SED was positively, and MPA and VPA were negatively associated with Blautia obeum 219 

(unique identifier HG3A.0001) and Ruminococcus torques. Additionally, SED was negatively and MPA 220 

was positively associated with Prevotella copri and an unclassified Eubacteriales species (identifier 221 

HG3A.0100). The largest positive coefficients for VPA were with four unclassified Eubacteriales species 222 

(HG3A.0125, HG3A.0100, HG3A.0062, HG3A.0162).  223 

Regression coefficients for MPA and VPA were in largely consistent in direction and magnitude 224 

(Pearson correlation = 0.67). However, for specific species, there were marked differences in the 225 

association with MPA or VPA. For instance, P. copri and Faecalibacterium prausnitzii (HG3A.0025) 226 

were among the largest positive coefficients for MPA, but were not associated with VPA. Other 227 

differences include Phocaeicola vulgatus and Bacteroides uniformis, which were negatively associated 228 

with MPA, but not with VPA (figure 1).  229 

The main model and the diet-adjusted model regression coefficients were highly correlated 230 

(Pearson correlation >0.99 for SED, MPA, and VPA), although generally attenuated in diet-adjusted 231 

model (supplemental table 2 and supplemental figure 3). The BMI/WHR-adjusted model also produced 232 

similar coefficients for MPA and VPA compared to the main model coefficients (Pearson correlation 233 

>0.97). However, regression coefficients for SED from the BMI/WHR model and from the main model 234 

were not as strongly correlated (Pearson correlation = 0.89). Certain main model associations for SED 235 

were substantially attenuated in the BMI/WHI model, especially for B. obeum (HG3A.0001) which was 236 

no longer associated with SED (figure 1 and supplemental table 2). On the other hand, the negative 237 

association between SED and F. prausnitzii (HG3A.0025) became stronger in the BMI/WHR model.  238 

To investigate the potential effect of medication usage on the associations identified in the main 239 

model (q-value <0.05), we performed further adjustment for use of proton-pump inhibitors and 240 

medications for hypertension, type 2 diabetes, dyslipidaemia, anxiety, and/or depression. After this 241 

adjustment, SED was associated (p-value < 0.05) with 187 of the 224 species associated in the main model, 242 

MPA with 205 of 245, and VPA with 169 of 228 species. In the sensitivity analysis removing 498 243 
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participants who had used any antibiotic in the last 3 months, SED was associated (p-value < 0.05) with 244 

215 species, MPA with 221, and VPA with 195 (supplemental table 3). The direction of the associations 245 

did not change. 246 

 247 

Sedentary behaviour and physical activity are associated with the gut microbiota functional 248 

potential  249 

The functional potential was determined by the abundance of previously curated functional modules, 250 

which include modules of carbohydrate, amino acid, or lipid degradation,30 and modules of the microbiota-251 

gut-brain axis.14 We identified 74 functional modules associated with physical activity (supplemental table 252 

4). Out of 17 modules of carbohydrate degradation, SED was associated with lower or higher abundance 253 

of 12 modules in the main model (figure 2 and supplemental table 5). The strongest negative association 254 

was between SED and degradation of arabinoxylan, which is a dietary fibre. Even in the diet-adjusted 255 

model, SED was associated with degradation of arabinoxylan. Out of the 26 modules of amino acid 256 

degradation, SED was associated with higher abundance of 17 in the main model. In the diet-adjusted 257 

model, SED was associated with higher abundance of 15 modules of amino acid degradation, whereas 258 

MPA was associated with lower abundance of 14, and VPA with lower abundance of 7.  259 

Among the modules of the microbiota-gut-brain axis, the largest main model coefficient was found 260 

for heat-shock protein ClpB, which was negatively associated with SED, and positively associated with 261 

MPA and VPA (figure 3 and supplemental table 5). Comparing main model and BMI/WHR-adjusted 262 

model associations, we observed marked differences for the butyrate synthesis I module. In the main 263 

model, VPA was positively associated with butyrate synthesis I, while no association was detected for 264 

SED or MPA. In the BMI/WHR-adjusted model, we could not detect the association for VPA; instead, 265 

SED was positively and MPA was negatively associated with this module. No association was driven by 266 

a single influential observation. 267 

 268 

DISCUSSION  269 

In this largest-to-date population-based study of physical activity with gut microbiome encompassing 270 

8507 individuals, we found that, from the 1336 species investigated, 345 (25.8%) were associated with 271 

physical activity. Overall, SED and MPA were associated with the same set of species but with regression 272 

coefficients in opposite directions. Furthermore, MPA and VPA had concordant associations with gut 273 

microbiota species, although with notable exceptions. Similar results were observed after adjustment for 274 
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dietary variables, but some associations for SED were markedly affected by the adjustment for 275 

BMI/WHR. Additionally, SED, MPA, and VPA were associated with specific microbial functions, some 276 

potentially involved in the microbiota-gut-brain axis. 277 

 278 

The associations of sedentary behaviour and physical activity with gut microbiota species 279 

Among the strongest findings with species-level annotation, MPA was associated with higher abundance 280 

of P. copri and F. prausnitzii (HG3A.0241 and HG3A.0025). Time spent in exercise has previously been 281 

associated with higher P. copri abundance in cyclists.37 Nevertheless, the associations between P. copri 282 

and health outcomes have been inconsistent, with some studies suggesting a role in fibre fermentation and 283 

improved glucose metabolism,38 while others reported associations with insulin resistance39 and 284 

hypertension.40 MPA and VPA had similar associations, but there were some clear exceptions. MPA was 285 

associated with higher abundance of P. copri and F. prausnitzii (HG3A.0025), and lower abundance of B. 286 

uniformis and P. vulgatus, while we could not detect the same associations for VPA. We found that VPA 287 

was positively associated with Roseburia homininis and F. prausnitzii (HG3A.0241), but negatively 288 

associated with another subspecies of F. prausnitzii (HG3A.0010). In general, F. prausnitzii is considered 289 

to have anti-inflammatory properties41 and individuals with type 2 diabetes have been reported to have a 290 

lower abundance of this bacteria.42 A higher abundance of F. prausnitzii and R. hominis has also been 291 

reported in active premenopausal women, based on accelerometer assessment.43 Both F. prausnitzii and 292 

R. hominis are important producers of butyrate, which is a main energy source for colonocytes and critical 293 

for gut homeostasis.44 A previous study in a small sample of young adults has also reported an association 294 

between cardiorespiratory fitness and fecal butyric acid.45 295 

In the present study, SED was associated with higher abundance of B. obeum (HG3A.0001 and 296 

HG3A.0009), R. torques, P. vulgatus, and Escherichia coli. An increased abundance of the 297 

Escherichia/Shigella taxon was also reported in sedentary individuals in the Healthy Life in an Urban 298 

Setting cohort (HELIUS, N = 1334), the largest population-based study on physical activity and gut 299 

microbiota until the present study.22 A higher abundance of E. coli has been observed in individuals with 300 

atherosclerotic cardiovascular disease46 and users of the anti-diabetes medication metformin,47 suggesting 301 

a link between physical activity, gut microbiota, and cardiometabolic diseases. Due to different microbiota 302 

profiling methods, our findings cannot be directly compared with the HELIUS study. We confirmed 303 

though the positive association between P. copri and physical activity but found a positive association 304 

between VPA and R. hominis, which was more abundant in sedentary individuals in the HELIUS study. 305 
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The median VPA in our study sample was only 0.06%. A previous study has suggested that as 306 

little as 15 min/week of VPA reduces the risk for all-cause mortality by 18%;48 therefore, effects of VPA 307 

could be expected even with little time spent in these activities. Vigorous-intensity activities include 308 

running and high-intensity sports, while moderate-intensity activities cover a wider range of activities, 309 

including brisk walking and bicycling at low speed, but also household chores.49 Future studies could 310 

further investigate the associations of subcategories of MPA with the gut microbiota. 311 

 312 

Adjustment for BMI and WHR had a pronounced effect on the associations observed between SED 313 

and species of the gut microbiota 314 

In the models additionally adjusted for dietary variables or for BMI/WHR, we observed attenuated 315 

coefficients. The largest effect was observed for associations with SED after adjustment for BMI/WHR.  316 

This attenuation could be caused by BMI acting as a confounder or a mediator. However, for 14 species, 317 

including F. prausnitzii (HG3A.0025), the association with SED became stronger after BMI/WHR 318 

adjustment. This could be due to a negative confounding effect of adiposity, which masked the true 319 

associations in the main model, or that the adjustment for BMI/WHR led to collider bias. The greater 320 

impact of adjusting for BMI/WHR on SED coefficients than on MPA or VPA coefficients aligns with 321 

previous Mendelian randomization analyses, which have demonstrated stronger bidirectional effects 322 

between SED and BMI than between physical activity time and BMI.50,51 323 

 324 

Sedentary behaviour associated with higher gut microbiota capacity to degrade amino acids and to 325 

produce certain short-chain fatty acids 326 

With regards to the functional potential of the gut microbiota, we found that SED was associated with 327 

lower capacity for fibre degradation and higher capacity for amino acid degradation. Likewise, a previous 328 

study has reported an increased abundance of carbohydrate degradation pathways in athletes.52 These 329 

findings could be due to lower fibre content in the diet of sedentary individuals, which we aimed to address 330 

by adjusting for fibre intake. A lower availability of fermentable carbohydrates in the distal gut can result 331 

in a reduction in saccharolytic bacteria and an increase in proteolytic bacteria.30 Intervention studies with 332 

standardized diet would be needed to disentangle physical activity associations from associations due to 333 

differences dietary intakes.  334 

 In our main model results, MPA was negatively associated with modules for short-chain fatty acids 335 

synthesis, more specifically acetate and propionate synthesis, while SED was positively associated with 336 
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these modules. Conversely, six weeks of exercise training has been reported to increase the abundance of 337 

bacterial genes involved in propionate synthesis.53 The same study also reported a BMI-dependent 338 

exercise-induced increase in bacterial genes of butyrate synthesis. In our study, VPA was positively 339 

associated with butyrate synthesis in the main model, while in the BMI/WHR-adjusted model, it was SED 340 

that was positively associated with this same module. For other modules in the microbiota-gut-brain axis, 341 

SED was negatively and MPA positively associated with the module for the heat-shock protein ClpB that 342 

has been suggested to influence appetite regulation.54 SED was also associated with higher abundance of 343 

the GABA synthesis module and higher abundance of E. coli, one of the main GABA-producing bacteria 344 

in the gut.55 Although lower plasma levels of GABA have been described in individuals with depression,56 345 

recent studies found elevated levels in a mixed sample of medicated and non-medicated individuals with 346 

major depressive disorder.57,58  347 

 348 

Strengths and limitations  349 

The strengths of this study are the accelerometer-based assessment of sedentary behaviour and physical 350 

activity phenotypes, the large sample of participants from the general population, and the high taxonomic 351 

resolution microbiome data. Moreover, we had access to comprehensive information on potential 352 

confounders. Some limitations apply. One concern is whether the associations described reflect the 353 

lifestyle of health-conscious individuals. Despite covariate adjustments, it is implausible to capture all 354 

dimensions of dietary intake and residual confounding may remain. Accelerometers measure absolute 355 

physical activity intensity, but relative intensity could be more clinically relevant. Standardized 356 

accelerometer cut-offs can misclassify low and high fitness individuals. Estimating relative intensity 357 

would though require data on individual maximal capacity, such as maximal oxygen uptake.59 358 

Additionally,  social desirability bias and adherence to the study instructions could affect accelerometer-359 

based assessment. However, these misclassifications would be non-differential. The accelerometer needed 360 

to be removed during water-based activity and may also underestimate physical activity intensity during 361 

cycling, upper body activities, and weight-lifting.25 Our study was conducted in a Swedish population 362 

aged 50-65, thus generalizability to other populations is limited. Additionally, we cannot assess the 363 

direction of the associations using cross-sectional data. It is suggested that gut microbiota may favour the 364 

practice of exercise by enhancing the enjoyment of physical activity60 or improving the host 365 

performance.61 The gut microbiota can also affect adiposity,62 which is negatively associated with physical 366 
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activity. Lastly, the use of relative abundances incur on the issues of compositional data, which can 367 

produce false-positive associations.63 368 

 In summary, sedentary behaviour and physical activity were associated with a large number of gut 369 

microbiota species and functional modules. Our findings can be used to guide research on the interplay 370 

between physical activity, the gut microbiota composition, and health outcomes.  371 
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FIGURES  567 

Figure 1 568 

 569 

Figure 1. Top 20 associations based on the absolute regression coefficients for SED, MPA, and VPA with 570 

gut microbiota species. Effect estimates show changes in the log(relative abundance+1) of species by 571 

standard-deviation changes in SED, MPA, or VPA. Main model: adjustment for age, sex, alcohol intake, 572 

smoking, education, country of birth, study site, month of accelerometer wear, total accelerometer wear 573 

time, percentage of wear time on weekend, and fecal DNA extraction plate. Diet model: main model with 574 

additional adjustment for total energy intake, and percentage of energy intake from carbohydrates, protein, 575 
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fibers, and added sugars. BMI/WHR model: main model with additional adjustment for BMI and waist-576 

hip ratio. Circles are the regression coefficients and bars represent the 95% confidence intervals. Filled 577 

circles are associations with q-values <0.05. SED: percentage of time in sedentary behaviour; MPA: 578 

percentage of time in moderate-intensity physical activity; VPA: percentage of time in vigorous-intensity 579 

physical activity.  580 

 581 
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Figure 2 583 

 584 
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Figure 2. Associations of SED, MPA and VPA with functional modules of carbohydrate, amino acid, and 585 

lipid degradation. Effect estimates show changes in the log(relative abundance+1) of modules by standard-586 

deviation change in SED, MPA, or VPA. Main model: adjustment for age, sex, alcohol intake, smoking, 587 

education, country of birth, study site, month of accelerometer wear, total accelerometer wear time, 588 

percentage of wear time on weekend, and fecal DNA extraction plate. Diet model: main model with 589 

additional adjustment for total energy intake, and percentage of energy intake from carbohydrates, protein, 590 

fibers, and added sugars. BMI/WHR model: main model with additional adjustment for BMI and waist-591 

hip ratio. Circles are the regression coefficients and bars represent the 95% confidence intervals. Filled 592 

circles are associations with q-values <0.05. SED: percentage of time in sedentary behaviour; MPA: 593 

percentage of time in moderate-intensity physical activity; VPA: percentage of time in vigorous-intensity 594 

physical activity. 595 
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Figure 3  597 

 598 

Figure 3. Associations of SED, MPA and VPA with microbiota-gut-brain modules and other functional 599 

modules. Effect estimates show changes in the log(relative abundance+1) of modules by standard-600 

deviation change in SED, MPA, or VPA. Main model: adjustment for age, sex, alcohol intake, smoking, 601 

education, country of birth, study site, month of accelerometer wear, total accelerometer wear time, 602 

percentage of wear time on weekend, and fecal DNA extraction plate. Diet model: main model with 603 

additional adjustment for total energy intake, and percentage of energy intake from carbohydrates, protein, 604 

fibers, and added sugars. BMI/WHR model: main model with additional adjustment for BMI and waist-605 

hip ratio. Circles are the regression coefficients and bars represent the 95% confidence intervals. Filled 606 
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circles are associations with q-values <0.05. SED: percentage of time in sedentary behaviour; MPA: 607 

percentage of time in moderate-intensity physical activity; VPA: percentage of time in vigorous-intensity 608 

physical activity. 609 
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