Abstract
Adverse drug event (ADE) is a significant challenge in clinical practice. Many ADEs have not been identified timely after the approval of the corresponding drugs. Despite the use of drug similarity network demonstrates early success on improving ADE detection, false discovery rate (FDR) control remains unclear in its application. Additionally, performance of early ADE detection has not been explicitly investigated under the time-to-event framework. In this manuscript, we propose to use the drug similarity based posterior probability of null hypothesis for early ADE detection. The proposed approach is also able to control FDR for monitoring a large number of ADEs of multiple drugs. The proposed approach outperforms existing approaches on mining labeled ADEs in the US FDA’s Adverse Event Reporting System (FAERS) data, especially in the first few years after the drug initial reporting time. Additionally, the proposed approach is able to identify more labeled ADEs and has significantly lower time to ADE detection. In simulation study, the proposed approach demonstrates proper FDR control, as well as has better true positive rate and an excellent true negative rate. In our exemplified FAERS analysis, the proposed approach detects new ADE signals and identifies ADE signals in a timelier fashion than existing approach. In conclusion, the proposed approach is able to both reduce the time and improve the FDR control for ADE detection.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work has been supported by the NIH grant R01GM141279.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
FDA Adverse Event Reporting System (FAERS) data which is available to the public.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors