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Abstract. Identification of key phenotypic regions such as necrosis, contrast enhance-
ment, and edema on magnetic resonance imaging (MRI) is important for understanding 
disease evolution and treatment response in patients with glioma. Manual delineation 
is time intensive and not feasible for a clinical workflow. Automating phenotypic re-
gion segmentation overcomes many issues with manual segmentation, however, current 
glioma segmentation datasets focus on pre-treatment, diagnostic scans, where treatment 
effects and surgical cavities are not present. Thus, existing automatic segmentation 
models are not applicable to post-treatment imaging that is used for longitudinal eval-
uation of care. Here, we present a comparison of three-dimensional convolutional neu-
ral networks (nnU-Net architecture) trained on large temporally defined pre-treatment, 
post-treatment, and mixed cohorts. We used a total of 1563 imaging timepoints from 
854 patients curated from 13 different institutions as well as diverse public data sets to 
understand the capabilities and limitations of automatic segmentation on glioma images 
with different phenotypic and treatment appearance. We assessed the performance of 
models using Dice coefficients on test cases from each group comparing predictions 
with manual segmentations generated by trained technicians. We demonstrate that 
training a combined model can be as effective as models trained on just one temporal 
group. The results highlight the importance of a diverse training set, that includes im-
ages from the course of disease and with effects from treatment, in the creation of a 
model that can accurately segment glioma MRIs at multiple treatment time points. 
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1 Introduction 

Gliomas are highly invasive primary brain malignancies. The most aggressive form, 
glioblastoma, has a dismal median survival of ~15 months, despite extensive treatment 
[1]. As their eloquent location limits longitudinal access to the tumor tissue, pragmatic 
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insights into tumor changes are inferred through the lens of clinical imaging, particu-
larly magnetic resonance imaging (MRI). Clinical imaging and accurate segmentations 
are central to the modern management of glioma and are crucial to advancing person-
alized medicine. Ideally, treatment planning and response evaluation for gliomas would 
be based on accurate segmentations from MRI, resulting in quantitative measurements 
of tumor size, measured across the full timeline of patient care. However, in clinical 
practice, subjective summary assessments are typically made to ascertain disease pro-
gression/regression [2]. Clinicians often adopt more granular measures because manual 
glioma segmentation is an extraordinarily time-consuming and visually difficult task 
where variability can be difficult to minimize between even highly trained observers. 

When evaluating post-treatment brain scans, tumor segmentation is demonstrably 
more challenging than the pre-treatment setting. This is due to the added effects that 
surgery, radiation, chemotherapy, and immunotherapy can have on brain appearance 
including surgically imposed cavities, treatment-induced inflammation, and radiation 
necrosis. For example, a resection cavity containing a hematoma or cerebrospinal fluid 
(CSF) can be confounded with enhancing tumor on T1-weighted post contrast injection 
MRI (T1Gd) due to post-surgical blood degradation products [3] (see Fig. 1; Day 18). 
Another post-surgical challenge is that residual tumor tissue often appears as small en-
hancing volumes that are more difficult to measure with consistency while avoiding 
other image and therapy artifacts [4].  

Although the literature on brain tumor segmentation is abundant, the published work 
and segmentation challenges tend to focus on pre-treatment data because of the diffi-
culty and uncertainty in the post-treatment setting. To the best of our knowledge, no 
previous work has assessed the effect of combined pre- and post-treatment training data 
on the performance of glioma segmentation models. In this work, we address this gap 
in research to showcase the difference between performance of models trained and 
tested on pre-treatment, post-treatment, and mixed data and applied to data from each 
scenario.  

2 Materials and Methods 

2.1 Study Design, Patients, and Imaging Data 

This study was approved by the institutional review board of the main data collection 
site and followed the Health Insurance Portability and Accountability Act. The internal 
repository was searched for adult patients with a diagnosis of glioma of any grade, with 
available 3D post gadolinium contrast injection T1-weighted images (T1Gd) and T2 
fluid-attenuated inversion recovery (FLAIR) imaging as well as manual tumor annota-
tion. Cases with a low-quality of brain mask (see brain mask generation process de-
scribed in section 2.2) were excluded from the analysis. The final cohort included im-
aging sets from 1563 imaging timepoints from 854 patients (mean age, 53 years ±14 
(SD), 51.4% men) evaluated between 1990 and 2021 across 13 institutions and from 
the TCGA and TCIA public datasets. Patients had a range of diagnoses (610 glioblas-
toma Grade IV, 57 Grade III, 63 low-grade glioma, 25 metastases, and 99 Unknown) 
and had undergone various treatment plans typical for glioma patients including gross 
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total or subtotal tumor resection, rounds of radiation and chemotherapy. No treatment-
related exclusion criterion was applied to the schedule or type of therapy to allow for 
the full diversity of treatment effects present on MRI. Similarly, we did not select cases 
based on whole tumor or region size, as presentation varies widely across grades and 
post-treatment MRI abnormalities are often smaller in size due to therapy (particularly 
for enhancing tumor). 

Given the range of dates and the number of institutions included in the study, image 
acquisition protocols were diverse and span across a wide variety of scanner manufac-
turers, field strengths (both 1.5T and 3T), repetition times, echo times, field of view, 
matrix size, and slice thickness. We did not exclude any imaging based on image ac-
quisition protocol. 

 

 
Fig. 1. Dynamic change in tumor appearance throughout treatment. Images belong to a male 
patient in his 40s with a left lateral inferior frontal lobe glioblastoma. Hyperintense signal in 
T1Gd imaging (top) is gadolinium leakage through disrupted blood brain barrier, associated with 
the bulk of the tumor, with dark internal signal showing a necrotic core. Hyperintensity signal on 
T2/FLAIR imaging (bottom) reflects tumor-associated edema. The strikingly hyperintense 
FLAIR signal at 18 days is related to post-surgical effects in the resection cavity. Texture and 
intensity of the bright signal are variable across time in both MRI sequences. 
 
Image sets with available manual labels were split into train and test cohorts using a 
70-30 ratio (train:1090, test:473) on the axis of patient, ensuring that all scans from a 
given patient were assigned to either the train or test cohort to avoid data leakage. No 
additional biological or demographic variables were considered in the inclusion or ex-
clusion criteria. 

 
2.2 Image Preprocessing 

We implemented an automated image processing pipeline which included co-registra-
tion of T1Gd and FLAIR images using the elastix toolbox [5], 1 x 1 x 2mm interpola-
tion, and zero padding or cropping to a 280 x 280 x 112 image dimension to resize 
images. Next, denoising with ITK’s CurvatureFlow algorithm, N4 intensity bias field 
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correction [6], and z-score intensity normalization (zero mean and unit standard devia-
tion) were applied. Finally, each image was skull-stripped using the union of SPM12 
[7] tissue probability maps, following the process described in Ranjbar et al. [8]. The 
final brain masks were reviewed by a trained individual prior to their use for skull strip-
ping and timepoints with a low quality of brain mask were excluded from the analysis. 

 
2.3 Reference Tumor Annotations 

The reference tumor segmentations were generated by a team of junior technicians 
trained and refereed by an experienced technician. Annotations included contrast en-
hancing tumor (CE), necrotic core (NEC), and edema (ED). In brief, contrast enhance-
ment (CE) is defined as hyperintense regions on T1Gd images, necrotic (NEC) core is 
defined as the hypointense areas within the CE region and hyperintensity on FLAIR is 
defined as edema (ED) [9]. The union of all 3 labels was defined as the whole tumor 
(WT). We also used the union of CE and NEC (CE+NEC), as these are the abnormali-
ties present on T1Gd MRI. 
 
2.4 Convolutional Neural Network Architecture and Training 

The 3D full resolution nnU-Net [10] was utilized for model training with default set-
tings. The nnU-Net is a self-configuring framework that has shown remarkable success 
in previous medical segmentation tasks including in previous BraTS challenges [11]. 
We used the default setting of nnU-Net. This included training in a 5-fold cross valida-
tion scheme with a fixed 1000 epochs, 250 iterations, and batch size of 2. Details of the 
optimization method were left at default, which included using an SGD optimizer with 
initial learning rate of 0.01 and momentum of 0.99.  
   We conducted three rounds of training with this architecture and setting, changing the 
training cohort each time. First, we used only pre-treatment training cases (N=502) 
which is referred to as the ‘Pre’ model in the subsequent sections. Second, we con-
ducted model training with only post-treatment training cases (N=588). This model is 
referred to as the ‘Post’ model here on. Finally, we merged the pre- and post- treatment 
cohorts and trained with the combined cases (N=1090). This model is referred to as the 
‘Mixed’ model in the following section. All models were validated against previously 
unseen test cases from pre-treatment (N=219) and post-treatment (N=254).  

 
2.5 Performance Metrics and Statistical Analysis 

We report Dice coefficients of NEC, CE, CE+NEC, ED, and WT for the Pre, Post, and 
Mixed models on pre-treatment and post-treatment test cases. The statistical signifi-
cance between models was assessed on each label region using within-subjects 
ANOVA analyses, with post-hoc pairwise Wilcoxon tests. The type I error rate was set 
at 0.05 after Bonferroni correction. 
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3 Results 

Table 1 presents the mean and standard deviation of Dice coefficients of the Pre, Post, 
and Mixed models when applied to pre- and post-treatment test cohorts. The boxplot 
version of these scores is presented in Fig. 2. As expected, the Pre model outperformed 
the Post model on pre-treatment test data, and the Post model outperformed the Pre 
model on post-treatment test data (p-values <0.0001, with moderate to large effect sizes 
between 0.31 and 0.85).  On pre-treatment data, the average Dice coefficients for Pre 
and Mixed models were quite similar (Fig. 3, top). The Pre model outperformed the 
Mixed model in segmenting ED and WT (both p-values <0.0001, moderate effect sizes 
of 0.30 and 0.33 respectively), but not in NEC, CE or CE+NEC regions.  

Table 1. Comparison of Models in pre- and post-treatment data 

Model Test data Mean±Std of Dice Coefficient per label 
ED CE NEC CE+NEC WT 

Pre Pre 
N=219 

0.78±0.13 0.80±0.14 0.53±0.29 0.81±0.16 0.86±0.11 
Post 0.71±0.18 0.75±0.17 0.46±0.28 0.76±0.19 0.79±0.15 

Mixed 0.77±0.13 0.79±0.16 0.53±0.29 0.80±0.17 0.85±0.12 
Pre Post 

N=254 
0.73±0.13 0.69±0.12 0.28±0.26 0.68±0.13 0.78±0.09 

Post 0.75±0.14 0.75±0.12 0.36±0.25 0.74±0.13 0.80±0.09 
Mixed 0.75±0.14 0.74±0.13 0.35±0.25 0.73±0.14 0.80±0.09 

 

Fig. 2. Comparison of model performance on different regions, on different test sets (*p<0.05, 
**p<0.01,***p<0.001,****p<0.0001; red indicates significant comparisons between the mixed 
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model and the model trained and tested on the same type of  data). As expected, the post-treat-
ment model (orange) tested on pre-treatment data (top) consistently performs the worst, as does 
the post-treatment model (green) tested on pre-treatment data (bottom: all comparisons p<0.001 
in gray). The mixed model (blue) consistently competes across both test sets with the model 
trained solely on the test set data. The mixed model was slightly outperformed by the pre-treat-
ment model in the pre-treatment test case within CE+NEC (p<0.0001) and WT (p<0.0001) re-
gions, while the mixed model slightly outperformed the post-treatment model in the post-treat-
ment test case in WT regions (p=0.038). 
 

 
Fig. 3. Comparison of Dice coefficients between pre-treatment, post-treatment, and mixed mod-
els for whole tumor (WT) segmentation. Dotted line indicates the line of identity. Overall, for 
pre-treatment test data, the pre-treatment model performs better whereas for the post-treatment 
test data, the post-treatment model performs better.  Mixed model predictions are very similar to 
both pre- and post-treatment specific model predictions (96.8% and 95.6% of cases within 0.05 
of each other respectively) while pre- and post-treatment models do not agree closely (only 56.0% 
and 46.9% of cases within 0.05 for pre- and post-treatment test data, respectively). 
 
Similarly, in the post-treatment analysis, the Mixed model average Dice coefficients 
were comparable to the Post model (Fig. 3, bottom), while the Pre model underper-
formed in the same task. Interestingly, the Mixed model performed significantly better 
than the Post model in segmenting WT (p=0.038, a small effect size of 0.16). Fig. 4 
visualizes predictions of models in example pre- and post-treatment cases. As expected, 
not having previously seen cases from the other cohort, the pre-treatment model had 
some difficulty excluding the resection cavity (second example from the right) and the 
post-treatment model, in some cases, with the necrotic core. 

4 Discussion 

Few automatic segmentation papers, all of which aimed to measure longitudinal change 
in tumor burden to assess treatment response, have reported the performance of models 
in the post-treatment setting [12-14]. Rudie et al. [12] focused on proposing a solution 
for assessing change in tumor size (progressed vs not) by training a model on subtracted 
images in two consecutive timepoints to detect longitudinal change in a cohort of pa-
tients with diffuse gliomas. Although the context of their work was not directly com 
parable to ours, as part of their analysis the authors trained a baseline model on post-
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treatment images and reached mean Dice coefficients of 0.85 in Edema and 0.71 in 
active tumor regions. 
 

 
Fig. 4. Examples of tumor segmentation predictions from each model on pre- and post-treatment 
data for the three regions of edema (ED - blue), contrast enhancement (CE - red), and necrotic 
core (NEC - green). Four example cases are shown for each time frame with input FLAIR and 
T1Gd images, the manually segmented labels, and predictions from each model. The numbers 
on prediction rows represent the whole tumor Dice score of the models. 
 
Chang et al. [13] trained separate models for segmenting CE and ED in a small post-
treatment glioma cohort and reached mean Dice coefficients of 0.70 for Edema, and 
0.696 for CE. Kickingereder et al. [14] conducted a similar analysis but with a much 
larger sample size and reached a median Dice coefficient of 0.93 in non-enhancing tu-
mor (equivalent to ED label) and 0.88 in CE. Our results are within the range of these 
works with mean Dice coefficients of 0.75 for edema, 0.73 for CE+NEC, and 0.80 for 
WT for the mixed model. It is largely understood that because of the various ways that 
treatment can affect patient images, a model trained solely on pre-treatment data will 
likely have decreased performance on post-treatment images. The result of the compar-
ison between pre- and post-treatment models tested on data from the opposing cohort 
confirmed this assumption, as each model’s performance dropped drastically. Yet, our 
results also demonstrate that the combined information from both datasets can be 
trained together to provide a singular mixed model that produces comparable segmen-
tation results to the specialized models. 
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One of the differences between our work and others is the number of input images 
included in our training data. The use of all four anatomical MRI sequences (T1, T1Gd, 
T2 and FLAIR) is common practice in the literature, especially as the commonly used 
BraTS challenge datasets offer all four. Previous works have demonstrated that using 
fewer sequences can result in comparable dice scores in glioma segmentation tasks 
[15]. We chose to include only two sequences because of the prevalence of these two 
sequence types in our clinical database, and the fact that in a clinical setting, all four 
sequences may not be incorporated in an imaging protocol or available for access. An 
alternative approach to excluding sequence types in favor of practicality could be train-
ing a sequence-agnostic model where the model is robust to missing sequences [16]. 
Including T2W images may improve the model’s ability to distinguish resection cavi-
ties.  Besides increasing available information, T2W images generally have better sig-
nal to noise ratio and image quality which could improve the segmentation perfor-
mance. 

We recognize several limitations in this work. First, we use trained technician-gen-
erated labels for segmentations, rather than expert neuroradiologist-annotated labels. 
While it is possible these labels have reduced accuracy compared to experts, our tech-
nicians follow rules devised and described by our experts to try to maximize accuracy 
and minimize variability. The quality of training labels is a well-known factor in model 
performance and one that we would like to address further in future works. We took a 
minimal approach to our inclusion criteria apart from the patient age (>18) and availa-
bility of imaging and segmentation labels. As a result, while our data includes mostly 
examples from high- and low-grade glioma, some metastatic and unconfirmed cases 
are included in our work and treatments for patients were highly varied. These cases 
may impair model training and resulting segmentations in certain regions. Yet, we be-
lieve our segmentation accuracy demonstrates that segmentations can be robust while 
including this wide heterogeneity from many cases. Having a more selective data col-
lection approach might explain higher performance of Kickingereder et al. [14] com-
pared to others, showcasing the importance of quality training data for model training. 
Aggregating a rich dataset that more specifically tracks the broad range of possible 
phenotypic appearance of gliomas after treatment and ensuring a good representation 
of difficult cases could result in model improvement in the future. 

To summarize, this work demonstrated that it is reasonable to combine pre- and post- 
treatment data for segmenting gliomas across all stages of treatment. Given that the 
majority of data in clinical practice follows the administration of therapy to the patient, 
this finding can help guide future work in incorporating this information for model 
training. In the future, we anticipate applying our mixed model for segmentation pre-
dictions that enable building a longitudinal glioma segmentation approach for response 
assessment. 
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