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Abstract 

Adverse pregnancy outcomes (APOs) are major risk factors for women’s health during 

pregnancy and even in the years after pregnancy. Due to the heterogeneity of APOs, only few 

genetic associations have been identified. In this report, we conducted genome-wide association 

studies (GWAS) of 479 traits that are possibly related to APOs using a large and racially diverse 

study, Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b). To 

display the extensive results, we developed a web-based tool GnuMoM2b 

(https://gnumom2b.cumcobgyn.org/) for searching, visualizing, and sharing results from GWAS 

of 479 pregnancy traits as well as phenome-wide association studies (PheWAS) of more than 17 

million single nucleotide polymorphisms (SNPs). The genetic results from three ancestries 

(Europeans, Africans, and Admixed Americans) and meta-analyses are populated in 

GnuMoM2b. In conclusion, GnuMoM2b is a valuable resource for extraction of pregnancy-

related genetic results and shows the potential to facilitate meaningful discoveries.  
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Introduction 

Pregnancy is a unique window into women’s future health. Adverse pregnancy outcomes 

(APOs) are frequent and are related to adverse health, such as hypertension, even years after 

pregnancy (JOWELL et al. 2022). The burden of APOs varies across racial groups in the United 

States. For example, Black and Hispanic women have a greater prevalence of APOs than White 

women (CHO et al. 2020). To identify genetic determinants of APOs, we recently conducted 

genome-wide association studies (GWAS) of four APOs (GUERRERO et al. 2022) (preterm birth, 

preeclampsia, gestational diabetes, and pregnancy loss) using samples from a large and racially 

diverse study, Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) 

(HAAS et al. 2015), gathered from eight clinical centers in the United States. However, few 

single nucleotide polymorphisms (SNPs) were identified, probably due to the heterogeneity of 

APOs. For example, preeclampsia is an heterogenous APO characterized by high blood pressure 

and proteinuria. It can be classified by severity (mild, severe, superimposed, and eclampsia) and 

onset time (early or late), and dichotomizing it into cases and controls may affect statistical 

power, as the genetic influence on mild preeclampsia could be closer to controls than other cases. 

Thus, to provide additional insights into genetic influence on APOs, we conducted GWAS of 

479 traits that are possibly related to APOs using nuMoM2b. 

To display such extensive results, we have developed a web application, GnuMoM2b 

(https://gnumom2b.cumcobgyn.org/), for interactively searching, visualizing, and sharing GWAS 

results. In addition, GnuMoM2b searches for traits associated with any particular SNP to expose 

pleiotropy across 479 traits (i.e., phenome-wide association study [PheWAS]).  
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Results 

The GWAS summary statistics of nuMoM2b traits from three individual ancestry group 

analyses and meta-analyses are populated in GnuMoM2b. The starting page includes usage 

guidelines. Descriptions of all nuMoM2b traits are provided and searchable by key words. The 

web interface offers two interactive visualizations: GWAS results queried by trait and PheWAS 

results queried by SNP. Multiple filters can be used to customize the output, including ancestry 

selection, P-value cutoff, minor allele frequency (MAF) cutoff, and number of studies 

contributing to meta-analysis. The results can be downloaded in text files. GnuMoM2b also links 

to NCBI dbSNP to provide additional information on a particular SNP. Furthermore, the genomic 

control (GC) value will appear after loading a GWAS. The density plot (Figure S1) of GC values 

from all GWAS indicates well-controlled continuous traits across ancestry-specific and meta-

analyses and binary traits in the European (EUR) analysis, with slight deflation in some binary 

traits in the African (AFR), Admixed American (AMR), and meta-analyses, likely due to smaller 

sample sizes in AFR and AMR. Therefore, users should consistently check GC values. 

GnuMoM2b can facilitate meaningful discoveries. In the online example, GWAS shows that 

rs988551 in LAMA2 is the most significant SNP (P-value=4.7×10-9) associated with gestational 

hypertension (Trait ID: acog_PEgHTN_7) from the meta-analysis (NEUR=5,636, NAFR=1,278, and 

NAMR=759) (Figure S2), and PheWAS shows that rs988551 is also associated with other 

hypertension-related traits (P-value<1×10-3). Lately, LAMA2 has been implicated to be a 

preeclampsia-dysregulated gene (ZHOU et al. 2019). In a recent large GWAS of preeclampsia and 

gestational hypertension (HONIGBERG et al. 2022), rs167479 in RGL3 was found to be associated 

with both conditions in the discovery analysis. Our GnuMoM2b replicates this SNP association at 

a nominal level (P-value=1.2×10-3) with gestational hypertension. Note that nuMoM2b 
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participated as a follow-up cohort in that study, but was not included in the discovery analysis. As 

another example, a large GWAS reported that WNT4 was associated with gestational length, and 

the subsequent functional analysis suggested that WNT4 was a key regulator of decidualization of 

the human endometrial stromal cell and subsequent embryo implantation (ZHANG et al. 2017). 

The rs12037376 in WNT4 was reported in their paper. As their paper focused on European 

ancestry, we examined the EUR results in GnuMoM2b. In our PheWAS results, we replicated this 

SNP at a nominal level (P-value=6.8×10-4) in association with gestational length (Trait ID: 

GAwksEND). Given that cervical length is a crucial determinant of gestational length 

(BERGHELLA et al. 2003), we further examined the association between this SNP and cervical 

length at 22-29 weeks (Trait ID: U3BB02), resulting in a genome-wide significant P-

value=1.0×10-15 in EUR. In GnuMoM2b, the meta-analysis of GWAS of cervical length reveals 

that the most significant SNP is rs12404660 (P-value=2.3×10-12) in WNT4 (Figure S3), and 

PheWAS shows its association with gestational length is P-value=0.01. However, the association 

of both rs12037376 and rs12404660 in WNT4 with gestational length is not significant at the 

genome-wide level, probably because stillbirth, fetal demise, elective termination, and indicated 

termination subjects were not excluded from the gestational length analysis. Thus, GnuMoM2b 

should be used as an exploration tool to search for preliminary results for further analyses. To 

reach any solid conclusions, refinement of phenotype definitions and statistical analyses as well 

as experimental validations are needed. Therefore, caution is needed when interpreting the results 

from GnuMoM2b. Moreover, the nuMoM2b study measured 9 placental analytes at 2 visits (6-13 

weeks and 16-21 weeks) searchable under the “Trait Description” tab. The sample sizes 

(NEUR>1,000, NAFR<400, and NAMR<200) indicate that it could be only reasonable to conduct 

GWAS in EUR. The GWAS results in EUR show multiple significant loci associated with 
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placental analytes, such as endoglin and sFlt-1 at visit 1, ADAM-12 at visit 2, and fbHCG at both 

visits (Figure S4). With the advent of summarized GWAS data and two-sample Mendelian 

randomization (MR) methods, conducting MR analyses have become easier for data scientists. 

Coupled with external large GWAS of APOs, GnuMoM2b results offer an opportunity to 

investigate the causal relations between placental analytes and APOs through MR with SNPs as 

instrumental variables. However, caution is needed to conduct a credible MR analysis and 

provide a reasonable interpretation.  

In addition to searching and visualizing results online, GnuMoM2b allows users to download 

the summary statistics of three individual ancestry analyses and meta-analyses, which offers users 

an opportunity to perform summary data-based analysis, such as fine-mapping, colocalization, 

and MR.  

 

Discussion 

We have conducted GWAS of 479 pregnancy-related traits using the nuMoM2b study and 

hosted the results on GnuMoM2b that is an easy-to-use web-based application for searching, 

visualizing, and sharing both genome-wide and phenome-wide association results. The 

nuMoM2b is a comprehensive cohort with racially diverse participants, offering in-depth clinical 

and psychosocial phenotyping and longitudinal follow-up during pregnancy. This cohort presents 

a unique opportunity for a holistic approach to investigating genetic and environmental factors 

contributing to population morbidity originating in pregnancy. Our GnuMoM2b results 

complement other large-scale biobank studies, such as the UK Biobank (BYCROFT et al. 2018), 

which lack detailed pregnancy phenotypes. These results greatly expand our understanding of 

genetic influence on pregnancy traits. GnuMoM2b offers researchers, and obstetricians in 
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particular, a new resource to readily extract pregnancy-related genetic results. In the future, we 

will further add nuMoM2b Heart Health Study (nuMoM2b-HHS) genetic results to GnuMoM2b. 

The nuMoM2b-HHS, a follow-up study of nuMoM2b, is conducted in a subset of nuMoM2b 

women, 2-7 years after delivery to better understand the impact of pregnancy outcomes on future 

health (HAAS et al. 2016). Lastly, we want to emphasize that GnuMoM2b is a valuable resource 

for pregnancy data exploration, but understanding the existing biases (e.g., small sample size in 

particular ancestries, suboptimal trait definitions, and spurious results due to small MAF) is 

important when interpreting the results, and further analyses are needed to reach any 

conclusions. 

 

Materials and methods 

The nuMoM2b study enrolled 10,038 women between 2010-2013 from eight centers in the 

United States. The study aimed to recruit a large and racially diverse cohort of nulliparous 

pregnant women (Table S1). Its main objective was to identify maternal characteristics, such as 

genetic factors, physiological responses, and environmental factors that can predict APOs (HAAS et 

al. 2015). Participants were followed longitudinally and underwent four study visits from the first 

trimester to delivery. Throughout pregnancy, various data were collected, such as interviews, 

questionnaires, research ultrasounds, maternal biometric measurements, and biospecimens (Table 

S2). The nuMoM2b study methods have been described in detail elsewhere (HAAS et al. 2015), 

and the study was approved by the Institutional Review Boards at all participating centers 

(GUERRERO et al. 2022). Genome-wide genotyping was conducted using the Infinium Multi-

Ethnic Global D2 BeadChip (Illumina, Miami, USA). Quality control measures included 

assessing sex inconsistencies, autosome missingness, and contamination. Using KING-Robust 
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(MANICHAIKUL et al. 2010), kinship was inferred and one participant from each pair with first- or 

second-degree relatedness was randomly removed. Instead of directly using self-reported race, 

ancestry was determined using SNPweights, leveraging data from 1000 Genomes Project 

(GENOMES PROJECT et al. 2015), resulting in five ancestry groups: EUR (n=6,082), AFR 

(n=1,425), AMR (n=846), East Asian (EAS; n=323), and South Asian (SAS; n=112). Due to 

insufficient sample sizes, EAS and SAS were excluded from downstream GWAS. Furthermore, 

genotype imputation was performed with the TOPMed Imputation Server 

(https://imputation.biodatacatalyst.nhlbi.nih.gov/). Other details about genome-wide genotyping, 

genotype imputation, quality control, and ancestry estimation were previously described 

(GUERRERO et al. 2022). In this study, after quality control, 8,076 independent subjects 

(estimated ancestries: 5,891 EUR, 1,374 AFR, and 811 AMR) and 17,177,813 genotyped and 

imputed SNPs were included in the analyses. The mean age (±standard deviation) at visit 1 was 

28.06±5.23 for EUR, 23.42±5.38 for AFR, and 24.75±5.66 for AMR participants. In selecting 

traits, our aim was to include as many genetically related traits as possible. We first excluded 

traits that had no genetic relevance, and further filtering was done based on sample size (Figure 

1). In the end, we retained 479 traits. Detailed procedures are provided in the supplementary 

material. The analyses were conducted with PLINK software, version 2 (CHANG et al. 2015), 

using linear regression for continuous or ordered categorical traits and logistic regression for 

binary traits under an additive genetic model, adjusting for maternal age, distance to median 

maternal age, and the first 10 principal components calculated using genotypic data. For each 

trait, GWAS was performed in three ancestry groups separately, and only SNPs with MAF>0.01 

and Hardy-Weinberg equilibrium (HWE) P-value>1×10-3 were kept. Next, results from three 

individual ancestry groups for each trait were pooled using the DerSimonian and Laird method 
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for meta‐analyses with random effects implemented in METAL (WILLER et al. 2010; HEMANI 

2022), which allows different true effect sizes across three ancestry groups for each SNP.  

 

 

Figure 1. Preprocessing of GWAS traits. The continuous or ordered categorical traits were 
analyzed using linear regression models. The unordered categorical traits were recoded into 
several binary traits following the one vs. rest manner, and the binary traits were analyzed using 
logistic regression models. 

 

Manhattan plots are standard tools to visualize P-values of GWAS on a genome-wide level 

and identify genetic loci associated with the trait. GnuMoM2b is developed to highlight top 

genetic hits and draw Manhattan plots of GWAS as well as PheWAS using R shiny 

(http://shiny.rstudio.com/). This web application is easy to use through a graphical user interface.  

 

Data availability 

The summary-level GWAS and PheWAS data are available and can be downloaded at 

GnuMoM2b (https://gnumom2b.cumcobgyn.org/). The individual-level phenotype and genotype 

data have been reported earlier (HAAS et al. 2015; GUERRERO et al. 2022) and are available upon 

request. 

continuous

Exclude if sample 
size <2,000

linear

Categorical

ordered unordered binary

one vs. rest

Exclude any 
category <100

Exclude if remaining subjects 
have the same value

logistic

479 original traits: 
• 12 Behavior
• 17 Clinical measurements
• 32 Labor delivery postpartum
• 14 Maternal hypertensive disorders
• 44 Medical conditions
• 107 Mental
• 30 Newborn outcomes
• 18 Placental analytes
• 14 Pregnancy outcome
• 26 Prenatal labs
• 96 Sleep
• 69 Ultrasound

Exclude if sample 
size <2,000
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