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Abstract 

Background: Preeclampsia is a complex syndrome that accounts for considerable maternal and 

perinatal morbidity and mortality. Despite its prevalence, no effective disease-modifying therapies 

are available. Maternal serum placenta-derived proteins have been in longstanding use as markers 

of risk for aneuploidy and placental dysfunction, but whether they have a causal contribution to 

preeclampsia is unknown. 

 

Objective: We aimed to investigate the genetic regulation of serum placental proteins in early 

pregnancy and their potential causal links with preeclampsia and gestational hypertension. 

 

Study design: This study used a nested case-control design with nulliparous women enrolled in 

the nuMoM2b study from eight clinical sites across the United States between 2010 and 2013. The 

first- and second-trimester serum samples were collected, and nine proteins were measured, 

including vascular endothelial growth factor (VEGF), placental growth factor, endoglin, soluble 

fms-like tyrosine kinase-1 (sFlt-1), a disintegrin and metalloproteinase domain-containing protein 

12 (ADAM-12), pregnancy-associated plasma protein A, free beta-human chorionic gonadotropin, 

inhibin A, and alpha-fetoprotein. This study used genome-wide association studies to discern 

genetic influences on these protein levels, treating proteins as outcomes. Furthermore, Mendelian 

randomization was used to evaluate the causal effects of these proteins on preeclampsia and 

gestational hypertension, and their further causal relationship with long-term hypertension, 

treating proteins as exposures. 
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Results: A total of 2,352 participants were analyzed. We discovered significant associations 

between the pregnancy zone protein locus and concentrations of ADAM-12 (rs6487735, 

P=3.03×10-22), as well as between the vascular endothelial growth factor A locus and 

concentrations of both VEGF (rs6921438, P=7.94×10-30) and sFlt-1 (rs4349809, P=2.89×10-12). 

Our Mendelian randomization analyses suggested a potential causal association between first-

trimester ADAM-12 levels and gestational hypertension (odds ratio=0.78, P=8.6×10-4). We also 

found evidence for a potential causal effect of preeclampsia (odds ratio=1.75, P=8.3×10-3) and 

gestational hypertension (odds ratio=1.84, P=4.7×10-3) during the index pregnancy on the onset of 

hypertension 2-7 years later. The additional mediation analysis indicated that the impact of 

ADAM-12 on postpartum hypertension could be explained in part by its indirect effect through 

gestational hypertension (mediated effect=-0.15, P=0.03). 

 

Conclusions: Our study discovered significant genetic associations with placental proteins 

ADAM-12, VEGF, and sFlt-1, offering insights into their regulation during pregnancy. Mendelian 

randomization analyses demonstrated evidence of potential causal relationships between the serum 

levels of placental proteins, particularly ADAM-12, and gestational hypertension, potentially 

informing future prevention and treatment investigations. 

 

Key words: genome-wide association studies, Mendelian randomization, preeclampsia, 

gestational hypertension, long-term postpartum hypertension, a disintegrin and metalloproteinase 

domain-containing protein 12, vascular endothelial growth factor, soluble fms-like tyrosine 

kinase-1, pregnancy zone protein, vascular endothelial growth factor A  
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Glossary of Terms 

• ADAM-12: A disintegrin and metalloproteinase domain-containing protein 12, involved in cell 

adhesion, migration, proliferation, and placental function. 

• AFP: Alpha fetal protein. 

• Bonferroni adjustment: A method to correct for multiple comparisons in GWAS. It reduces 

the chance of false positives by lowering the threshold for statistical significance. It is usually 

set at P-value=5×10-8 for a single GWAS. When multiple GWAS are performed, further 

adjustment may be needed. 

• Circular Manhattan plot: A variant of the traditional Manhattan plot, which is presented in a 

linear format with chromosomes laid out along the x-axis and the -log10 of the P-value on the 

y-axis. In contrast, a circular Manhattan plot arranges this information in a circular format, 

allowing multiple Manhattan plots to be displayed within the same circle. 

• Collider bias: A potential bias in regression models (e.g., Y = X + covariate), where if Y and X 

independently influence the covariate, collider bias may occur. 

• ENG: Endoglin. 

• fβHCG: Free beta-human chorionic gonadotropin. 

• Genome-wide association study (GWAS): A study assessing the association of SNPs across 

the genome with a specific trait. 

• Genome-wide interaction studies (GWIS): A study assessing interactions between SNP-by-

exposure and a specific trait across the genome. 

• Genotype: In the context of GWAS, genotypes are often coded as 0 (homozygous for the 

reference allele), 1 (heterozygous), or 2 (homozygous for the alternative allele) to reflect the 

number of alternative alleles carried by an individual. 
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• Genotype imputation: The process of inferring genotypes that are not directly measured. 

• Horizontal pleiotropy: In Mendelian Randomization, horizontal pleiotropy occurs when 

instrumental variable SNPs influence the outcome through pathways other than the exposure, as 

shown in pathway (3) in Figure 1B. It is assumed that horizontal pleiotropy is absent. The 

existence of horizontal pleiotropy can be assessed by statistical tests, such as Cochran’s Q and 

the MR-PRESSO global pleiotropy test. 

• INHA: Inhibin A. 

• Instrumental variables: In Mendelian Randomization, an instrumental variable is a SNP used 

as a proxy for the exposure to estimate its causal effect on the outcome. 

• Linear mixed model: A statistical model that can account for both fixed effects and random 

effects. In this study, it is used to control for genetic relatedness in association studies. 

• Manhattan plot: A graphical representation of GWAS results that displays the -log10 of the P-

value for each SNP across the genome. Each dot represents a single SNP, with its height 

indicating the level of significance of its association with the outcome. This plot helps to 

highlight genomic regions significantly associated with the outcome.  

• Mediation analysis: A statistical method used to understand how the exposure influences the 

outcome through an intermediate variable, known as a mediator. 

• Mendelian randomization: A statistical method using SNPs as instrumental variables to 

estimate the causal effect of a risk factor on an outcome, aiming to minimize unmeasured 

confounding bias. Multiple approaches are recommended for consistency due to untestable 

assumptions like horizontal pleiotropy. 

• PAPP-A: Pregnancy-associated plasma protein A. 

• PlGF: Placental growth factor. 
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• Population stratification: Confounding in genetic studies due to sampling from different 

ancestries. 

• Principal component analysis (PCA): In the context of GWAS, PCA reduces the 

dimensionality of genetic data, summarizing genetic variations into principal components that 

represent genetic ancestry. 

• PZP: Genetic locus of pregnancy zone protein, which encodes a protein thought to inhibit T-cell 

function during pregnancy, thereby helping to prevent fetal rejection. 

• Regional plot: A detailed visualization of GWAS results focused on a specific genomic region, 

displaying the association P-value relative to genomic positions, local linkage disequilibrium 

reflecting SNP correlations, and the genes located in the region.  

• sFlt-1: Soluble fms-like tyrosine kinase-1, a circulating antagonist to VEGF and PlGF. 

• Single nucleotide polymorphism (SNP): A variation at a single position in the DNA sequence 

among individuals, which is labeled by the “rs” number, a unique identifier assigned to a specific 

SNP. The "rs" stands for "reference SNP". 

• VEGF: Vascular endothelial growth factor, required for regulating the proliferation, migration, 

and survival of embryonic endothelial cells during the female reproductive cycle. 

• VEGFA: Genetic locus of vascular endothelial growth factor A, which encodes the VEGF 

protein. 

• VLDLR: Genetic locus of very low-density lipoprotein receptor.  
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Introduction 

Preeclampsia (PE) is a complex syndrome of widespread maternal endothelial activation and 

intravascular inflammation with a range of contributing factors arising from a final common 

pathway of dysfunction at the maternal-placental interface, with progressive clinical deterioration 

unless placental delivery is achieved.1 Despite considerable etiologic complexity, the placenta 

appears to be central to the development of PE, either as the primary pathological source or as a 

secondary affected organ in the setting of other insults.2 Because the perturbations leading to PE 

occur in early pregnancy and are followed by a long pre-clinical phase that precedes clinical signs, 

prior efforts have focused on early, non-invasive detection of placental dysfunction as a means for 

clinical prediction.3-6 We previously analyzed clinical and biospecimen data from the Nulliparous 

Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, in which we found 

that the maternal serum levels of nine placenta-derived proteins collected during the first and 

second trimesters (n=2,352) were associated with PE.7 Other studies also have found that 

circulating levels of placental proteins, particularly angiogenic factors produced by the placenta, 

are associated with PE.3, 4, 8-10  

 

Beyond the short-term implications of PE, there is increasing recognition of its long-term maternal 

associations with later-life hypertension, cardiovascular (CV) disease, and renal disease.11-15 In 

this setting, the incidence of PE or gestational hypertension (gHTN) serves as an indicator of future 

CV risk, but it remains unclear whether the PE/gHTN is causal or is merely an indicator of 

underlying genetic predisposition to CV disease. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 30, 2024. ; https://doi.org/10.1101/2023.05.25.23290460doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290460


 

 

10 

10 

Addressing these knowledge gaps in PE care may be possible through interrogation of the maternal 

genome using an approach called Mendelian randomization.16 This approach, which uses genetic 

variants randomly assigned at conception as proxies for risk factors, has become increasingly 

popular in clinical research, mimicking a randomized clinical trial.17-19 Such an approach has the 

potential to identify a biomarker as a therapeutic target or clarify that PE may cause rather than 

merely predict future CV risk.  

 

To fill the knowledge gap, we first set out to clarify the genetic influences on early pregnancy 

placental protein levels, which had previously not been done during pregnancy.20-26 Thus, we 

performed genome-wide association studies (GWAS) on nine placental protein levels measured in 

maternal serum during the first (visit1) and second (visit2) trimesters, as well as the change 

between the two time points (visit2-1), among nuMoM2b participants. Identifying protein-genetics 

associations can pinpoint disease linked proteins influenced by genetic variations, thereby 

facilitating novel therapeutic target identification.27, 28 We then carried out Mendelian 

randomization, based on the GWAS findings for these nine proteins and the most recent large 

GWAS on PE,29 to investigate whether maternal serum placental protein levels in early pregnancy 

are potential causal factors for PE and gHTN. Finally, we used Mendelian randomization to 

examine the potential causal relationship between PE/gHTN and long-term maternal HTN.  

 

Materials and Methods 

The nuMoM2b study was designed as a prospective cohort study aimed at investigating the 

underlying causes and pathophysiological pathways associated with adverse pregnancy outcomes 

(APOs) in nulliparous pregnant women. The objective of this study is to identify the associations 
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between placental proteins and genetic variations, and to further explore their roles in causing PE, 

gHTN, and long-term HTN. A subsample of the nuMoM2b cohort was used to perform the GWAS 

of placental proteins. Leveraging external large-scale GWAS data on PE/gHTN,29 combined with 

nuMoM2b data, Mendelian randomization was employed to investigate the causal relationships. 

Details of the data and analysis are described in the sections that follow. 

 

Cohorts 

The nuMoM2b study enrolled 10,038 women from eight geographically disparate clinical sites in 

the United States and was designed to recruit a large, racially, and geographically diverse cohort 

of nulliparous pregnant women (Supplemental Table 1).30 The study participants were 

longitudinally followed and underwent four study visits, from the first trimester to after birth. 

Throughout pregnancy, various data were obtained, including detailed interviews, questionnaires, 

research ultrasounds, maternal biometric measurements, and biospecimens (Supplemental Table 2). 

Peripheral maternal blood samples were collected at three study visits during pregnancy: visit1 (6-

13 weeks), visit2 (16-21 weeks), and visit3 (22-29 weeks). The methods of the nuMoM2b study 

have been described in detail elsewhere,30 and the study was approved by the Institutional Review 

Boards at all participating centers.30-32 Genome-wide genotyping of 9,757 women with sufficient 

material was performed with whole blood samples collected at visit1, using the Infinium Multi-

Ethnic Global D2 BeadChip (Illumina, Miami, USA). The nuMoM2b Heart Health Study 

(nuMoM2b-HHS) was carried out as a sequel study to gain a better understanding of the influence 

of pregnancy outcomes on subsequent health,32 and 4,484 women completed the laboratory 

assessments at the 2-7 year postpartum in-person visit (Supplemental Table 2).  
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Maternal serum samples were collected at visit1 and visit2 to measure the levels of nine placental 

proteins, including vascular endothelial growth factor (VEGF) (pg/mL), placental growth factor 

(PlGF) (pg/mL), endoglin (ENG) (ng/mL), soluble fms-like tyrosine kinase-1 (sFlt-1) (pg/mL), a 

disintegrin and metalloproteinase domain-containing protein 12 (ADAM-12) (ng/mL), pregnancy-

associated plasma protein A (PAPP-A) (mU/mL), free beta-human chorionic gonadotropin 

(fβHCG) (ng/mL), inhibin A (INHA) (pg/mL), and alpha fetal protein (AFP) (IU/mL). They fall 

into three categories that reflect different aspects of placental function: (1) angiogenesis (VEGF, 

PlGF, ENG, and sFlt-1);4, 8, 33-38 (2) placental implantation and development (ADAM-12 and 

PAPP-A);39, 40 and (3) biomarkers for fetal chromosomal abnormalities (fβHCG, INHA, and 

AFP).41, 42 While AFP does not originate from the placenta, its increased levels in maternal serum 

during the second trimester are associated with APOs, likely linked to excessive placental 

permeability.43, 44 The analysis was conducted in a subsample of the nuMoM2b cohort with 

available genotypes (n=2,352), which included women who experienced any of the following 

APOs (n=1,463): delivery prior to 37 weeks’ gestation, PE or eclampsia, birth weight for 

gestational age <5th percentile, or stillbirth. It also included 889 controls who delivered at term 

without complications. The protein levels were log-transformed for subsequent analyses. 

 

Analytical workflow for quality control and genome-wide association study with multi-ethnic 

data 

In multi-ethnic GWAS, it is common to split the total sample into separate populations, perform 

genotype data quality control (QC), imputation, and GWAS in each population separately, 

followed by a meta-analysis. However, in our study, the sample size for GWAS of protein levels 

is relatively small, at around two-thousand individuals. Further splitting the data into separate 
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populations would make GWAS unreasonable for certain populations with limited sample sizes. 

The principal component analysis (PCA) revealed a continuous population structure in the 

nuMoM2b cohort (Supplemental Figure 1). Consequently, we have developed an analytical 

workflow for QC and GWAS with multi-ethnic data that maximizes the sample size while 

minimizing bias due to population stratification (Supplemental Figure 2). Genotype imputation 

was performed using the TOPMed Imputation Server,45 retaining genotyped and imputed SNPs 

with imputation quality r2>0.3. Our refined nuMoM2b cohort included 9,742 women. In the 

protein GWAS, 2,263, 2,134, and 2,045 women were analyzed for visit1, visit2, and visit2-1 

analyses, respectively. Given our sample size, we concentrated on SNPs with MAF>0.05. To 

control for population stratification, we used the GENESIS R/Bioconductor package46, 47 to fit 

linear mixed models that integrated a random effect to control for genetic relatedness. The 

covariates included age and age-squared at visit1, first 10 principal components (PCs) calculated 

by genotypic data, self-reported race, clinical sites, and status for any APOs. Additionally, we 

conducted supplementary genome-wide interaction studies (GWIS) to remove SNPs with different 

effects across ancestries. We also ensured no impact from collider bias in our analyses. A genome-

wide significance threshold was set at P<5.6×10-9 (Bonferroni-adjusted for nine proteins: 5×10-

8/9=5.6×10-9). This analytical workflow is detailed in the supplemental text. 

 

Causal inference 

Mendelian randomization uses SNPs as instrumental variables (IVs) to estimate the causal effect 

of a risk factor on the outcome of interest, while removing unmeasured confounding bias. The 

design of our Mendelian randomization study for causal inference is depicted in Figure 1A, which 

includes three analyses: 1) proteins → PE/gHTN, 2) PE/gHTN → long-term postpartum HTN, and 
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3) proteins → PE/gHTN → long-term HTN. Several large-scale GWAS have been conducted on 

PE.29, 48, 49 Our study leverages the most recent large GWAS,29 analyzing PE with 17,150 cases 

and 451,241 controls, as well as gestational hypertension (gHTN) with 8,961 cases and 184,925 

controls. As with any Mendelian randomization analysis, some assumptions, such as horizontal 

pleiotropy, are untestable. To address this, employing multiple approaches with different 

assumptions and achieving consistent results can enhance confidence in causal effect estimates. In 

this study, we considered three commonly used approaches to ensure result robustness. Our 

primary method was the Mendelian randomization-robust adjusted profile scoring (MR-RAPS)50, 

given its capability to adjust for weak instrument bias which is particularly relevant in our study 

with a limited number of strong IV SNPs. We also used random-effect inverse variance weighting 

(IVW),51 and Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO)52 as 

sensitivity analyses. We set the threshold at P<5.6×10-3, Bonferroni-adjusted for nine proteins. 

The two Mendelian randomization analyses, proteins → PE/gHTN and PE/gHTN → long-term 

postpartum HTN, were used for mediation analysis using the product of coefficients method to 

estimate the mediated effect for the pathway from proteins → PE/gHTN → long-term postpartum 

HTN.53 Details of Mendelian randomization analyses can be found in the supplemental text. 

 

Protein PE/gHTN long-term HTN

IV SNPs from 
nuMoM2b GWAS

IV SNPs from 
external GWAS

Genetic effect on 
outcome from 

nuMoM2b GWAS

Genetic effect on 
outcome from 

external GWAS

(1) (2)

(3)

SNPs (IVs) Exposure Outcome

Confounders

(1)

(2)

(3)

(B)

(A)
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Figure 1 Mendelian randomization for causal inference. (A) Flowchart for two-sample 
Mendelian randomization. (1) Causal relationship between placental protein levels and PE/gHTN; 
(2) Causal relationship between PE/gHTN and long-term postpartum HTN; and (3) Causal 
mediation effects of placental protein levels on long-term postpartum HTN via PE/gHTN. (B) 
Illustrative diagram of Mendelian randomization. Its validity relies on 3 assumptions: IVs need to 
be (1) associated with the exposure, (2) not associated with any confounder of the exposure-
outcome association, and (3) independent of the outcome conditional on the exposure and 
confounders (the horizontal pleiotropy assumption). 
 

Results 

Genome-wide association study of placental protein concentrations 

Tables 1 and 2 show the characteristics of the 2,352 nulliparous women included in the GWAS of 

placental protein levels. The heritability estimates from Genome-wide Complex Trait Analysis 

(GCTA)54 indicated that genome-wide SNPs accounted for approximately 14.5% to 31% of the 

variance in the nine proteins (Supplementary Table 3). The quantile-quantile plots (Supplemental 

Figure 3) for all GWAS (Supplemental Figure 4) showed no inflation of the test statistics. A 

summary of all GWAS SNPs with P<5×10-8 can be found in Supplemental Table 4. The SNP 

rs6487735, located near the pregnancy zone protein (PZP) gene, exhibited the strongest association 

(MAF=0.47, effect=-0.1, P=3.03×10-22; Figure 2C) with ADAM-12 levels at visit2. A likely causal 

missense variant, rs2277413 in the PZP gene, independent of rs6487735 (linkage disequilibrium 

r2=0.003, Figure 2C), was also significantly associated with ADAM-12 levels at visit2 (MAF=0.3, 

effect=0.07, P=3.32×10-11) and showed the strongest association after additional adjustment for 

rs6487735 (P=2.37×10-10). The GWAS of ADAM-12 at visit1 also identified the same PZP locus, 

which was marginally significant (Figure 2B). The results suggested that PZP was associated with 

ADAM-12 levels in maternal serum, and this association increased as pregnancy progressed. In 

sensitivity analyses, we repeated the GWAS of ADAM-12 using only those of self-reported as 

White, most of whom clustered tightly in the PCA plot (Supplemental Figure 1). We obtained 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 30, 2024. ; https://doi.org/10.1101/2023.05.25.23290460doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290460


 

 

16 

16 

similar but less significant results compared to using all available individuals (Supplemental Figure 

5 and Supplemental Table 5).  

 

Table 1. Summary of women characteristics included in the GWAS of placental protein levels   
Total (n=2352) 

Age at visit1 (mean±SD) 26.77±5.84 
Self-reported race 

 

White 1356 (57.65%) 
Black 389 (16.54%) 

Hispanic 394 (16.75%) 
Asian 80 (3.4%) 
Other 133 (5.65%) 

Adverse pregnancy outcome status 1463 (62.2%) 
Preeclampsia or eclampsia 552 (23.47%) 

Preterm birth 776 (32.99%) 
Spontaneous preterm birth 451 (19.18%) 

Stillbirth 48 (2.04%) 
Small gestational age 396 (16.84%) 

 

 

Table 2. Summary of the serum levels of nine placental proteins (mean±SD) included in GWAS  
visit1 

(n=2,263) 
visit2 

(n=2,134) 
visit2-1 

(n=2,045) 
P-value* 

(visit2-1) 
ADAM-12 log(ng/mL) 1.49±0.43 2.25±0.34 0.77±0.36 <0.0001 
AFP log(IU/mL) 2.53±0.71 3.81±0.48 1.29±0.69 <0.0001 
ENG log(ng/mL) 1.83±0.22 1.7±0.23 -0.14±0.17 <0.0001 
fβHCG log(ng/mL) 2.99±0.62 1.39±0.75 -1.6±0.59 <0.0001 
INHA log(pg/mL) 5.75±0.49 5.35±0.44 -0.39±0.44 <0.0001 
PAPP-A log(mU/mL) 6.74±1.05 9.05±0.8 2.33±0.9 <0.0001 
PlGF log(pg/mL) 3.68±0.56 5.18±0.66 1.5±0.61 <0.0001 
sFlt-1 log(pg/mL) 6.77±0.43 6.77±0.48 0±0.33 0.57 
VEGF log(pg/mL) 0.18±0.96 0.27±0.88 0.17±0.77† <0.0001 

* P-value represents the difference between visit2 and visit1 on the logarithm scale using t-test (i.e., H0: visit2-1=0) 
† The discrepancy between the difference in mean VEGF levels at visit1 and visit2 and the visit2-1 is attributed to the 
fact that individuals who had VEGF levels measured at both visits had a much higher mean VEGF level at visit2 
(mean=0.37) compared with all individuals who had their VEGF levels measured at visit2 (mean=0.27).   
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Figure 2 GWAS of ADAM-12. (A) Circular Manhattan plots. Manhattan plot displays the 
associations between SNPs across the genome and a specific trait, with the spikes indicating regions 
of significant associations. This circular format presents results from multiple GWAS 
simultaneously. The chromosomal position of each single SNP is displayed along the circle and the 
negative log10 of the association P-value is displayed on the radius. The red line represents the 
genome-wide significance level (P<5.6×10-9) and blue line represents the suggestive significance 
level (P<5×10-8). Results for visit1 are displayed on the outer circle, visit2 on the middle circle, and 
visit2-1 on the inner circle. (B) Regional plot for SNP rs4316551 from the visit1 analysis. A regional 
plot provides a detailed view of a specific genomic region, showing the association between SNPs 
and a specific trait. The lower portion of the figure displays the relative location of genes and the 
direction of transcription, while the middle portion shows known GWAS associations at the locus 
from the GWAS catalog. The x-axis displays the chromosomal position and the y-axis shows the 
significance of the associations. The purple diamond shows the P-value for the reference SNP. The 
circles show the P-values for all other SNPs and are color coded according to the level of linkage 
disequilibrium with the reference SNP using the nuMoM2b cohort. (C) Regional plots for SNPs 
rs6487735 and rs2277413 from the visit2 analysis. 
 

Our GWAS analysis of VEGF identified rs6921438, located near the vascular endothelial growth 

factor A (VEGFA) gene, as the variant with the strongest association with VEGF levels at visit1 
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(MAF=0.45, effect=-0.36, P=7.94×10-30) and visit2 (MAF=0.47, effect=-0.32, P=2.49×10-28) 

(Figure 3AD). This locus has consistently been replicated in multiple studies as being associated 

with circulating VEGF levels in non-pregnant populations.23-26 Our study confirms the presence 

of cis-acting genetic associations with VEGF levels in nulliparous pregnant women. We 

subsequently investigated whether SNPs previously linked to VEGF levels in non-pregnant 

populations at the VEGFA and very low-density lipoprotein receptor (VLDLR) loci were also linked 

to VEGF levels in pregnant women. Our analysis confirmed an association with SNPs at VEGFA, 

but not with VLDLR (Supplemental Table 6). These findings suggest that the genetic regulation of 

VEGF levels may differ between early pregnancy and non-pregnant periods. 

 

Figure 3 GWAS of sFlt-1 and VEGF. (A) and (B) Circular Manhattan plots for sFlt-1 and VEGF. 
Manhattan plot displays the associations between SNPs across the genome and a specific trait, with 
the spikes indicating regions of significant associations. This circular format presents results from 
multiple GWAS simultaneously. The chromosomal position of each single SNP is displayed along 
the circle and the negative log10 of the association P-value is displayed on the radius. The red line 
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represents the genome-wide significance level (P<5.6×10-9) and blue line represents the suggestive 
significance level (P<5×10-8). Results for visit1 are displayed on the outer circle, visit2 on the 
middle circle, and visit2-1 on the inner circle. (C) Regional plot for SNP rs4349809 from the sFlt-
1 visit1 analysis. A regional plot provides a detailed view of a specific genomic region, showing the 
association between SNPs and a specific trait. The lower portion of the figure displays the relative 
location of genes and the direction of transcription, while the middle portion shows known GWAS 
associations at the locus from the GWAS catalog. The x-axis displays the chromosomal position 
and the y-axis shows the significance of the associations. The purple diamond shows the P-value 
for the reference SNP. The circles show the P-values for all other SNPs and are color coded 
according to the level of linkage disequilibrium with the reference SNP using the nuMoM2b cohort. 
(D) Regional plots for SNP rs6921438 from the VEGF visit1 and visit2 analyses.  
 

In the GWAS of sFlt-1, rs4349809 at the same VEGFA locus was found to be significantly associated 

with sFlt-1 levels at visit1 (MAF=0.49, effect=-0.09, P=2.89×10-12), but this association was not 

observed at visit2 (Figure 3BC). Furthermore, rs4349809 was also associated with VEGF levels in 

the same direction at visit1 (effect=-0.33, P=7.91×10-25) and visit2 (effect=-0.3, P=2.34×10-25) as 

with sFlt-1. VEGF stimulates blood vessel growth crucial for supporting fetal development, while 

sFlt-1 inhibits VEGF by binding to it.55 Despite their opposing roles in regulating angiogenesis 

during pregnancy, both were influenced by the VEGFA locus, which showed a stronger association 

with VEGF than sFlt-1. We performed sensitivity analyses by repeating the GWAS analysis of 

VEGF and sFlt-1 using only self-reported White. The results were similar to those obtained using 

all individuals, but less statistically significant (Supplemental Figures 6 and 7 and Supplemental 

Table 5).  

 

All the significant genetic associations persisted even after further adjustment for gestational age 

at the time of blood collection (Supplemental Figure 8). To further explore the relationship 

between VEGF and sFlt-1, we conducted additional GWAS focusing on the VEGF/sFlt-1 ratio at 

visit1, visit2, and visit2-1. The same VEGFA locus was found to be associated with the ratio at 

visit1 and visit2 (Supplemental Figure 9). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 30, 2024. ; https://doi.org/10.1101/2023.05.25.23290460doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.25.23290460


 

 

20 

20 

Evidence for potential causal associations: placental protein levels, preeclampsia/gestational 

hypertension, and long-term postpartum hypertension 

Our MR-RAPS analyses revealed a significant effect between ADAM-12 at visit1 and gHTN (odds 

ratio (OR)=0.78, P=8.6×10-4) (Figure 4 and Supplemental Figure 10). Both IVW51 and MR-

PRESSO52 analyses confirmed this association (Supplemental Figures 11 and 12). Although 

ADAM-12 levels did not meet the significance threshold for a causal link with PE, the consistent 

direction and similar ORs for ADAM-12 levels at both visits for PE and gHTN (Figure 4) suggest 

that a similar relationship to PE remains possible. This is consistent with clinical evidence that 

gHTN is on the spectrum of hypertensive disorders with PE, as it has similar clinical features and 

frequently progresses to PE when expectantly managed.56, 57 Our results also revealed potential 

causal effects of PE (OR=1.75, P=8.3×10-3) and gHTN (OR=1.84, P=4.7×10-3) on the 

development of long-term postpartum HTN (Figure 5 and Supplemental Figure 13). Having 

demonstrated the potential causal pathway, ADAM-12 → PE/gHTN and PE/gHTN → long-term 

postpartum HTN, we conducted further mediation analysis to examine the existence of the 

ADAM-12 → PE/gHTN → long-term postpartum HTN pathway.  The results showed a significant 

effect, whereby ADAM-12 at visit1, inversely associated with gHTN, was further inversely 

associated with postpartum HTN 2-7 years later, as estimated by MR-RAPS (mediated effect=-

0.15, P=0.03). In all Mendelian randomization analyses, we observed no heterogeneity, as 

indicated by Cochran's Q, and the MR-PRESSO global pleiotropy test revealed no evidence of 

horizontal pleiotropy in the IV SNPs. 
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Figure 4 Causal estimates of the serum levels of nine placental proteins on PE and gHTN. P-
values were determined by the two-sample MR-RAPS method. The squares represent the causal 
estimates on the odds ratio (OR) scale, and the whiskers show the corresponding 95% confidence 
intervals.  
 

 

Figure 5 Causal estimates of PE and gHTN on long-term postpartum HTN. P-values were 
determined by the two-sample MR-RAPS, IVW, and MR-PRESSO methods. The squares 
represent the causal estimates on the odds ratio (OR) scale, and the whiskers show the 
corresponding 95% confidence intervals.  
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(visit2-1)
OR=0.78, P-value=8.6×10-4, IVn=18

OR=0.86, P-value=0.02, IVn=18

HTN (2−7 years) ~ HTN

MR−RAPS
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MR−PRESSO

0.5 1 2 3 4

HTN (2−7 years) ~ PE
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MR−PRESSO
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OR P-value     IVn

1.75   8.3×10-3 10

1.73   6.5×10-3 10

1.73   1.4×10-3 10

1.84   4.7×10-3 7

1.82   3.6×10-3 7

1.82   0.015         7

gHTN
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Discussion 

Principal findings 

In our GWAS, we identified significant associations between the PZP locus and ADAM-12 levels, 

and the VEGFA locus with levels of both VEGF and sFlt-1 during pregnancy. Mendelian 

randomization analyses provided evidence for a potential causal relationship between ADAM-12 at 

visit1 and gHTN, as well as between PE/gHTN in the first pregnancy and HTN occurring 2-7 years 

postpartum.  

 

Results in the context of what is known 

Our identification of PZP as being important for ADAM-12 levels is consistent with existing 

literature on the biological effects of PZP. 58-62  PZP encodes a protein (PZP) that plays a critical 

protective role during pregnancy by managing inflammation and oxidative stress.58, 59 It assists in 

clearing misfolded proteins and pro-inflammatory cytokines, both enhanced by oxidative stress, to 

prevent inflammatory responses that could impair placental function.59 Additionally, it modulates 

immune activity by inhibiting T-helper 1 (Th1) cells in conjunction with placental protein-14 

(PP14), helping maintain a pregnancy-friendly immune environment and preventing maternal 

immune rejection of the fetus.58-60 Low levels of PZP can lead to uncontrolled inflammation, 

contributing to placental dysfunction and the onset of conditions like PE.59 ADAM-12, a 

metalloproteinase secreted by the placenta, cleaves insulin-like growth factor binding proteins 

(IGFBPs).39, 63 It promotes cell invasion and direct column outgrowth in early placental 

development.62 ADAM-12 has been localized to anchoring trophoblast columns of first-trimester 

placentas and to highly invasive trophoblasts within placental villous explants that degrade the 

extracellular matrix.61, 62 Recent studies further highlight the role of its shorter variant, ADAM12S, 
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in regulating the migration and invasion of trophoblasts into the uterine lining.39 Moreover, the 

placenta expresses ADAM-12 at high levels, leading to elevated concentrations in the maternal 

circulation during pregnancy.63 Low first-trimester levels of ADAM-12 in maternal circulation 

have been consistently associated with the development of PE.39, 64, 65 These known functions of 

ADAM-12 as a key regulator of early placental implantation and development are consistent with 

our finding of statistical evidence for its a causal role in gHTN and possibly PE.  

 

Our finding that VEGFA was associated with VEGF levels at visits 1 and 2 is in line with previous 

reports in non-pregnant populations.23-26 Our study extends these findings to confirm the presence 

of cis-acting genetic associations with VEGF levels during pregnancy. Surprisingly, VEGFA’s 

association with sFlt-1 levels at visit1 showed the same effect direction as for VEGF levels, despite 

their antagonistic functions during pregnancy.55 Both VEGF and sFlt-1 are known to be crucial for 

the development of the placenta, and their balance is essential for normal placental angiogenesis.66-

68 VEGF, a potent angiogenic factor, stimulates the formation of new blood vessels and supports 

endothelial cell function.66, 67 sFlt-1, a soluble receptor of VEGF, acts as an anti-angiogenic protein 

by antagonizing the actions of VEGF and PlGF.66-68 An imbalance, characterized by increased 

levels of sFlt-1 and decreased levels of both VEGF and PlGF, is believed to contribute to the 

development of PE.4, 8, 69-73  

 

Clinical implications 

Our results suggest the potential utility of early pregnancy ADAM-12 serum levels as a biomarker 

and potential therapeutic target for gHTN and PE. Its established role in early placental 

development and trophoblast invasion,61, 62 a process that is known to be incomplete in PE and 
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other placenta-mediated conditions,1 makes it an attractive candidate for early pregnancy disease 

modification. Finally, our findings suggest a role for ADAM-12 in the long-term development of 

postpartum HTN, suggesting that early intervention targeting pathways regulated by ADAM-12 

may also mitigate the long-term CV risks in women affected by gHTN or PE. 

 

Research implications 

Further work is needed to confirm both the predictive and causal roles of ADAM-12 for 

hypertensive disorders of pregnancy. ADAM-12 administration and the importance of PZP can be 

investigated in animal models, while confirmation of ADAM-12’s utility as a biomarker requires 

validation in large human cohorts. Future research should focus on validating the predictive value 

of ADAM-12, elucidating its biological mechanisms, and exploring aspects of its practical 

application in clinical settings. While ours was a targeted approach, additional opportunities for 

biomarker and therapeutic target discovery are available via untargeted proteomics techniques, 

such as Olink or SomaScan.74 Establishing a comprehensive profile of genetically regulated 

proteins during pregnancy may identify additional biomarkers and therapeutic targets as well as 

provide a unique resource for further Mendelian randomization studies examining pregnancy and 

postpartum outcomes. Finally, investigating the fetal genetic influences on placental proteins is 

essential, as many circulating proteins (e.g., VEGF and sFlt-13, 4, 9) are predominantly derived from 

the placenta. Future studies incorporating fetal genotypes will also enable researchers to 

distinguish between genetic contributions originating from the fetus or the mother. 

 

Strengths and limitations  
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We analyzed the changes in placental proteins from maternal serum during early pregnancy. These 

early pregnancy proteins may serve as predictors for outcomes during and after pregnancy. This 

study is the first to systematically examine multiple protein levels during pregnancy using a 

GWAS approach. Our findings provide insights into the genetic regulation of placental protein 

levels during pregnancy. Moreover, we employed the two-sample Mendelian randomization, a 

method recognized for its conservative and unbiased approach to causal inference,75 and took 

advantage of a recent large PE/gHTN GWAS29 in Mendelian randomization analyses. 

 

We recognize several study limitations. First, the sample size was limited, although this is the first 

GWAS examining the specific phenotypes. Second, while our analytical workflow was designed 

to minimize bias due to population stratification in our multi-ethnic cohort, it is possible that this 

approach inadvertently biased the results toward SNPs more common or with stronger effects in 

White, given their larger proportion. Additionally, this method may have eliminated SNPs with 

genetic effects specific to a single ancestry. Third, only nine proteins related to placental health 

were examined. Untargeted proteomics data may identify additional genetically regulated proteins 

during pregnancy. Fourth, the lack of available data concerning the same questions prevented the 

replication of the GWAS of placental proteins in other cohorts. Fifth, fetal SNPs, which could be 

important, are lacking. The use of fetal SNPs as IVs might be a more effective approach in 

Mendelian randomization analysis to avoid horizontal pleiotropy. Sixth, the correlation between 

maternal and fetal genotypes makes it challenging to discern the source of the genetic effects.  

 

Conclusions 
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In conclusion, our study identified significant genetic associations with placental proteins ADAM-

12, VEGF, and sFlt-1, providing insights into their regulation during pregnancy. Mendelian 

randomization analyses revealed evidence for potential causal relationships between the serum 

levels of placental proteins, particularly ADAM-12, and PE/gHTN, which could lead to potential 

prevention and treatment strategies for hypertensive disorders of pregnancy. Further research is 

needed to understand the biological mechanisms underlying these associations and confirm their 

causal relationships with PE/gHTN. 

 

Availability of data and materials 

The individual-level data are available through the NICHD's Data and Specimen Hub (DASH) at 

https://doi.org/10.57982/gjxm-yz73.  
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