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ABSTRACT 

 

Identifying cancer driver genes is key for delivering the vision of precision oncology. The 

falling cost of whole genome sequencing (WGS) potentially makes WGS an attractive single 

all-encompassing test to identify cancer drivers in a patient, which may not be captured by 

standard panel testing but are targetable by small molecules. We analysed WGS data on 

10,478 patients spanning 35 cancer types recruited to the UK 100,000 Genomes Project. We 

identified 330 driver genes, including 74 which are novel to any cancer. Across all cancer 

types 16% of the patients would be eligible for a currently approved therapy. Computational 

chemogenomic analysis of cancer mutations identified 96 additional targets of compounds 

that are potentially active and represent candidates for future clinical trials, expanding 

opportunities for improved patient care.  
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INTRODUCTION 

 

The rationale for the one-size-fits-all medical treatment model is being challenged with the 

move towards individualised therapy
1
. This is epitomised in oncology where standard 

therapies are reported to be ineffective in around 75% of patients, representing one of the 

highest therapy failure rates in all diseases
2,3

.  

 

Precision oncology describes a set of strategies tailored to the unique biology of a patient’s 

disease. The potential promise of this approach includes improved treatment efficacy, more 

favourable toxicity profiles and a reduction in the administration of ineffective treatments
4
. 

Underpinning precision oncology is the concept of somatic driver mutations as the 

foundation of cancer development
5
. There are already a number of approved therapies for 

tumours with specific “actionable” driver mutations, with additional ones in development
6
.  

Knowledge of the actionable driver mutational landscape in cancers has recently become 

central to delivering precision oncology. 

 

Currently multiple standalone tests or a panel are typically used to capture a set of genomic 

features for a given tumour type. However, falling costs make whole genome sequencing 

(WGS) a potentially attractive proposition as a single all-encompassing test
7
. Moreover, it 

provides the opportunity to identify additional cancer drivers in a patient which may not be 

captured by standard clinical panel tests. This affords the opportunity to broaden the scope 

of cancers potentially amenable to small molecule therapies. To examine this proposition in 

the real-world setting we analysed WGS data from 10,478 cancer patients recruited to the 

Genomics England (GEL) 100,000 Genomes Project (100kGP) (Fig 1A)
8
.
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METHODS 

 

The GEL cohort  

We restricted our analysis to high-quality data derived from PCR-free, flash-frozen primary 

solid tumour samples from adults (v8 data release), resulting in 10,478 samples (34 bile 

duct, 305 bladder, 2,306 breast, 2,324 colorectal, 440 central nervous system, 91 

esophageal, 201 head and neck, 1,045 renal cell, 24 liver, 1,466 lung, 35 mesothelioma , 607 

soft-tissue, 454 ovarian, 94 pancreas, 366 prostate, 270 melanoma, 72 gastric, 51 testicular, 

649 uterus) from 10,470 individuals (Supplementary Tables 1-3). Complete details on 

sample curation, WGS, somatic variant calling, mutation annotation and power calculations 

are provided in Supplementary Methods. 

  

Identification and actionability of driver genes  

Cancer driver genes were identified using IntOGen
9
, which combines seven computational 

methods to detect signals of positive selection from the mutational patterns of genes in 

each cancer type (Supplementary Methods). Details of pre-processing of mutations, 

combining driver gene identification methodologies, post-processing and annotation of 

driver gene mutations are provided in Supplementary Methods. Information on the  clinical 

actionability of cancer drivers were retrieved by querying OncoKB
6
 and COSMIC

10
. 

 

Sensitivity of WGS 

We tested the sensitivity of WGS in 100kGP to detect driver gene mutations based on 

sample purity and gene coverage and by comparing call rates of panel sequencing reported 

in the IMPACT and MET studies of cancer conducted by Memorial Sloan Kettering Cancer 

Center (MSK) (Supplementary Methods)
11,12

. 

 

Mutation signature analysis  

Tumours with microsatellite instability (MSI) were identified using MSINGS
13

 and 

homologous recombination deficiency was assessed using HRDetect
14

. Further details are 

provided in the Supplementary Methods. 
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Chemogenomic annotation of cancer networks 

To construct networks for each cancer type, we used protein products of the cancer driver 

genes to seed a search for all interacting proteins in the canSAR interactome
15

, which is 

based on information from 8 databases, including the IMeX consortium
16

, Phosphosite
17

, 

and key publications. The canSAR interactome features interactions where there are: (i) ≥2 

publications with experimental evidence of binary interaction between the two proteins; (ii) 

3D protein evidence of a complex; (iii) ≥2 reports that one protein is a substrate of the 

other; (iv) ≥2 publications reporting that one protein is the product of a gene under the 

direct regulatory control of the other. Each tumour-specific interactome was seeded using 

cancer driver proteins retrieving interacting proteins that had supporting experimental 

evidence. To ensure only additional proteins are likely to function primarily through 

interaction with proteins in the network we adopted the following strategy: Starting with 

the input list of proteins we obtained all possible first neighbours. We then computed, for 

each new protein, the proportion of its first neighbours in the original input list. To define 

proteins likely to function through the network, we calculated the probability of these 

occurring randomly, by permuting the interactome 10,000 times. We corrected empiric P-

values for multiple testing retaining only proteins having a FDR < 0.05. For each cancer type 

we minimised the network by retaining only proteins connected to more than one cancer 

protein, or whose only connection was to a cancer-specific protein. We then annotated 

proteins with pharmacological and druggability data using canSAR’s Cancer Protein 

Annotation Tool (CPAT). Essential and selective genes including lineage specificity were 

ascertained from the ShinyDepMap analysis
18

 .
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RESULTS 

 

We analysed genomes from 10,478 cancers comprising 35 different cancer types (Fig. 1B 

and Supplementary Table 2). While broadly reflecting the spectrum and frequencies of 

cancers diagnosed in the UK population there were differences, with an over-representation 

of colorectal and kidney cancers and paucity of prostate and pancreatic cancers 

(Supplementary Fig. 1). It was also the case that for the major cancer types, patients 

recruited to 100KGP tended to be younger and had earlier stage cancers than the general 

population  (Supplementary Table 3). 

 

Mutation rates varied across the different cancer types with cutaneous melanoma having 

highest single nucleotide variant (SNV) mutation count and meningioma the lowest SNV 

mutation count (Supplementary Fig. 2). 945 samples, notably colorectal and uterine 

cancers, were hypermutated, either as result of deficient mismatch repair (dMMR) or POLE 

mutation. Invasive ductal carcinoma of the breast had the highest power for driver gene 

detection (>90% power for a mutation rate of at least 2% higher than background) and LCLC 

the lowest power  (Fig. 1C and Supplementary Table 4). Compared with the recent PCAWG 

pan-cancer analysis
19

, the 100kGP cohort was better powered to identify a driver mutation 

for 19 cancers. Notably, in breast, colorectal, oesophageal and uterine cancer, lung 

adenocarcinoma and bladder transitional cell carcinoma where the sample sizes were >10-

fold higher.  

 

Spectrum of cancer driver genes 

Across all cancer types we identified 770 unique tumour-driver gene pairs corresponding to 

330 unique cancer driver genes (Fig. 2A and Supplementary Table 5). When compared to 

the largest pan-cancer driver analysis, in 21 of 31 cancer types with matching tumour 

histologies we recovered 61% of all cancer drivers reported by COSMIC, IntOGen and the 

TCGA pan-cancer analysis reported in Bailey et al., 2018 (Supplementary Table 5)
9,20

. We 

were able to detect 80% of drivers reported for colorectal, breast, lung and ovarian cancers 

but only <20% of drivers for hepatocellular and stomach cancers, which is likely a result of 

differing sample size.  The number of identified cancer driver genes varied between cancer 

types, with colorectal and uterine cancers having the most (60 genes) and spindle cell 
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carcinoma having the fewest (4 genes). Across the 35 cancers, we found no correlation 

between average mutation burden and the number of driver genes in each cancer (Pearson 

R=0.19, P-value=0.27). The consensus list also includes 330 tumour-driver pairs that have 

not previously been reported by either the Cancer Gene Census (CGC), Intogen or the 

PanCancerSoftware analysis of TCGA
9,20

 (Supplementary Table 5), and 74 that have not 

previously been associated with any specific tissue. Almost all of the novel drivers identified 

were uncommon with 65/74 (88%) possessing a mutated frequency <10% in each cancer 

type. We observed the highest number of new cancer driver genes for uterine (n=42), 

bladder (n=40) and colorectal (n=37) cancers. Moreover, we are able to identify drivers in 

tumour types which have been relatively unexplored by the Intogen and PanCancerSoftware 

catalogues
9,20

. These include breast lobular carcinoma, meningioma and myxofibrosarcoma. 

Predictions of known cancer driver genes in new cancer types include SPTA1, CHD4 and 

ASXL1 in colorectal cancer, FOXO3,  MUC16 and ZFPM1 in breast cancers and CNTNAP2, 

CTNND2 and TRRAP in lung adenocarcinoma. Entirely novel predictions include MAP3K21 

(mixed-lineage kinase) in colorectal cancer, USP17L22 (deubiquitinating enzyme) in breast 

ductal carcinoma, and TPTE (tyrosine phosphatase) in lung adenocarcinoma 

(Supplementary Table 5).  

 

Considering the prevalence of driver genes across cancer types, some genes  were seen to 

act as drivers across multiple cancer types, while others more specific. Eighty-five genes 

were identified as a driver in more than two tumour types, with 26 genes functioning as 

drivers in more than five tumour types (Fig. 2B). As expected, TP53 was identified as a driver 

gene in the largest number of tumour types, followed by PIK3CA, ARID1A and PTEN, acting 

as cancer driver genes in 29, 18, 16 and 14 different tumour types respectively. While many 

genes function as drivers in multiple cancer types, some drivers are mutated at high 

frequencies only in specific tumours, such as VHL in clear cell renal cell carcinoma and 

FGFR3 in bladder cancer (Fig. 2B). Across drivers operating in multiple cancer types, the 

clearest example of domain specific driver mutations were in EGFR, where protein tyrosine 

and serine/threonine kinase domain mutations predominated in lung adenocarcinoma, in 

contrast to extracellular furin-like cysteine rich region domain mutations in IDH wild-type 

glioblastoma (Supplementary Table 6 and Supplementary Fig. 3a-b). At PIK3CA we also 

observed a preference for p85 binding domain mutations in uterus adenocarcinoma 
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compared to other cancer types, such as breast ductal carcinoma, which are enriched for 

mutations in the PIK family domain (Supplementary Table 6 and Supplementary Fig. 3c-d). 

Hierarchical clustering of cancers based on the presence of identified driver mutations and 

their respective Q-value demonstrated clustering of cancer types by cell of origin (e.g. head 

and neck and lung squamous cell carcinoma) and by organ (e.g. breast ductal and lobular 

carcinomas) (Supplementary Fig. 4). The ratio of predicted activating to tumour suppressor 

driver genes varied across tumour types with meningioma and myxofibrosarcoma 

possessing the highest and lowest ratio respectively (Fig. 2C and Supplementary Table 5). 

 

Across the 35 different tumour types we identified 12,606 distinct oncogenic mutations in 

tumour-relevant cancer driver genes, in 9,070 unique samples. The median number of 

oncogenic mutations in cancer driver genes per sample was 2 across all tumours. The 

highest median number of oncogenic mutations in cancer driver genes per sample was seen 

in uterine cancer (Supplementary Fig. 5). We observed significant differences in oncogenic 

mutation frequency in cancer driver genes across different tumour histologies arising from 

the same organ. Examples include CDH1, TBX3 and TP53 in breast cancers, ATRX, CIC, IDH1, 

PTEN and TP53 in central nervous system tumours, IDH1 and TP53 in connective tissue 

tumours, PBRM1 and VHL in renal cancers and EGFR, KMT2D, KRAS, NFE2L2, PTEN, STK11 

and TP53 in lung cancer (Fig. 2D).  

 

Of the 330 cancer driver genes, 214 possessed at least one oncogenic mutation annotated 

as clonal, 167 as early and 114 as late events (Supplementary Table 7). APC, TP53 and 

PIK3CA possessed the highest number of clonal oncogenic mutations. Of the 162 driver 

genes that harboured at least one subclonal oncogenic mutation, ARID1A, TP53 and PIK3CA 

possessed the highest number (Supplementary Fig. 6). In tumours with >10 oncogenic 

mutations, meningioma possessed the greatest proportion of clonal oncogenic mutations 

(Supplementary Fig. 7a). Large-cell lung, testicular germ cell tumour and oligodendroglioma 

carried the highest proportion of early clonal, late clonal and subclonal oncogenic mutations 

respectively (Supplementary Fig. 7b-d). 

 

Sensitivity of WGS mutation detection as compared to cancer gene panels 
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For primary tumours represented in the MSK and 100kGP cohorts, the rate of mutations 

called for each driver gene were comparable (Supplementary Fig. 8 and 9). In 88% of cancer 

driver genes, the expected sensitivity for mutation detection was >99% in the 100kGP 

cohort. In 90% of cancer driver genes >98% of the coding sequence had  sufficient coverage 

such that >6 reads could be used for mutation detection (Supplementary Fig. 10-14). These 

findings are in agreement with internal testing of panel sequencing compared to WGS at 

Genomics England (sensitivity of 99% for VAF > 5% and coverage >70x). 

 

Clinical implications of genomic features 

 

Systematic analyses of cancer genomes provide an opportunity of estimating the number of 

individuals eligible for a targeted therapy and identify potentially novel therapeutic 

interventions. We first used two different databases to evaluate the therapeutic 

implications of the genetic events: Precision Oncology Knowledge Base (OncoKB) and the 

COSMIC Mutation Actionability in Precision Oncology Product
6,10

. Both databases catalogue 

approved marketed drugs having demonstrated efficacy in tumours with specified driver 

gene mutations, based on clinical trials and published clinical evidence. OncoKB also 

provides compelling biological evidence supporting the cancer driver gene as being 

predictive of a response to a given drug. 

 

We observed that both the fraction of samples and proportion of alteration types varied 

across tissue types. Data from COSMIC indicates that 85% of all samples (8,874/10,478) 

possess at least one putatively actionable alteration being targeted in a clinical setting (Fig. 

3A and Supplementary Table 8), while 55% of samples (5,805/10,478) had at least one 

putatively actionable or biologically relevant alteration from OncoKB (Fig. 3B  and 

Supplementary Tables 9 and 10). Across all cancer types, 16% (1,633/10,470) of the patients 

would be eligible for a currently approved therapy as defined by OncoKB. Of the actionable 

mutations defined by OncoKB (n=9,639), 5,823 were clonal, 2,632 were early clonal, 229 

were late clonal and 852 were subclonal.  

 

The most common putatively actionable alterations across all of the 35 cancer types were 

mutations in PIK3CA, KRAS and PTEN. Specific oncogenic missense mutations in PIK3CA  are 
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present in 40% of lobular breast cancers and 30% of ductal breast cancers and their 

presence are an indication for the use of PI3Kα- inhibitor Alpelisib
21

. These mutations are 

present in a number of cancers including  colorectal (20%) and uterine cancers (47%) and 

are subject to early clinical studies with an allosteric inhibitor of  PI3Kα. We found high 

fractions of patients with pancreatic, colorectal cancers and lung adenocarcinoma with 

actionable KRAS mutations (between 34% and 69% of all cases). The G12C mutation was 

present in 17% of lung adenocarcinoma cases and is targeted by mutation specific selective 

covalent inhibition with Adagrasib or Sotorasib
22,23

. PI3Kβ inhibition is of significant 

biological interest in patients with oncogenic PTEN mutations as PI3Kβ is thought to drive 

cellular proliferation in these tumours. These PTEN mutations were prevalent in melanoma 

(10%), hepatocellular carcinoma (13%), squamous cell carcinoma of the lung (15%), 

glioblastoma multiforme (29%) and uterine carcinoma (66%) and their presence would 

result in eligibility for early studies of PI3Kβ inhibition
24

. 

 

319 tumours possessed a HRD mutational signature, providing support for the use of a PARP 

inhibitor in these individuals. Furthermore, 1,309 tumours possessed a high coding tumour 

mutational burden (≥10 mutations/megabase) and 144 cancers had evidence of dMMR
6,25

. 

Considering these collectively would suggest that 1,312 patients may be eligible for 

checkpoint inhibition. To explore the prospect of multiple targeted therapies being used in 

the same patient, we combined the OncoKB clinical actionability annotations with that of 

TMB, dMMR and HRD clinical actionability annotations. In total, 11,534 independent gene 

targets were present with 28% (2,941/10,478) possessing one, 8% two (828/10,478), and 6% 

(594/10,478) possessing >3 clinically actionable driver mutations. 

 

Controlling for age, sex and tumour, oncogenic TP53 mutations were associated with worse 

survival in breast ductal carcinoma and  (P=6.4 x 10
-6

, HR=2.59 (95% CI: 1.71-3.92) and 

oncogenic KRAS mutations in colorectal cancer (P=1.1 x 10
-3

, HR=1.43 (95%CI: 1.17,1.77) 

(Supplementary Fig. 15). 

 

Expanding the druggable cancer genome 

An opportunity emerging from the systematic analysis of cancer genomes is the 

identification of novel therapeutic intervention strategies. Of the 330 cancer driver genes 
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identified in this study, 261/330 (79%) are not currently identified as targets in either 

COSMIC or OncoKB databases. As a means of triaging these genes as candidates for 

therapeutic intervention, we assessed the essentiality and selectivity of driver genes and 

their druggability using RNAi/CRISPR DepMap data and the integrative cancer-focused 

knowledgebase, canSAR respectively. We found 96/261 (37%) of these genes are predicted 

to be commonly essential and of these 12/96 (13%) have a chemical probe available and 

35/96 (36%) have a ligandable 3-dimensional structure (Supplementary Table 11). 

 

Motivated by the observation that targeting proteins that interact with cancer driver genes 

can result in successful precision oncology strategies, we sought to expand the network of 

druggable targets in cancer. To this end, we used canSAR to map and pharmacologically 

annotate networks of the cancer genes identified for each tumour type. Specifically, we 

seeded networks with driver genes identified in each tumour group and used transcriptional 

and curated protein-protein interactions to recover a refined cancer specific-network of 

proteins, each protein being annotated based on multiple assessments of ‘druggability’, i.e. 

the likelihood of the protein being amenable to small molecule drug intervention. After 

seeding each cancer specific network with their respective drivers, we yielded a total of 631 

distinct proteins across all cancers (Supplementary Table 12). The median number of 

unique proteins in each network across all cohorts was 57 with colorectal cancer possessing 

the largest network (n=231, Fig. 4) and spindle cell carcinoma (n=10) possessing the smallest 

network. As expected there was a correlation between network size and number of 

identified drivers for each cancer type (Pearson R = 0.9, P=1.23×10
-9

).  

 

Of these 631 proteins, 58% (n=369) were retrieved solely through network analysis of which 

the majority (n=323) were novel to any of the cancer types (hereon referred to as cancer-

network proteins). Notable examples include HDAC1, CDK2 and CDK1 which were present in 

31, 29 and 28 cohorts respectively. We observed 70% (n=225) of these cancer-network 

proteins as being targetable by existing approved or investigational therapies with notable 

examples including BCL2 and BTK. Of the remaining 97 genes, 34 are commonly essential, 11 

possess concordant lineage specificity, 48 are ligandable by 3D structure and 11 have an 

existing high quality probe available (Supplementary Table 13). Collectively these data 

provide potential future opportunities for therapy for a number of cancers.
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DISCUSSION 

 

Delivering precision oncology to all patients is partly constrained because routine patient 

tumours are generally only testing for a restricted set of common actionable mutations. One 

of the main aims of the 100,000 Genomes Project is to improve cancer care for NHS patients 

through personalised medicine by implementing WGS as part of routine care
8
. Herein we 

have analysed WGS data on 10,470 patients recruited to the 100kGP study to explore the 

value of WGS to inform patient care. The strengths of this study not only include the cohort 

size but the combination of systematic processing of samples and data arising from multiple 

treatment centres across England.  

 

Although we primarily focussed on point mutations and small indels we identified 330 

cancer driver genes, 74 of which are novel to a cancer type. The similarities and differences 

in driver mutation frequencies in cancers arising from the same organ suggest shared and 

divergent pathways in oncogenesis. Importantly, many driver mutations are common across 

different tumour types. If clinically translated, these observations suggest currently  55% of 

patients harbour an actionable mutation, either in terms of predicting sensitivity to certain 

treatments or clinical trial eligibility. This contrasts to around 22% achievable if based on the 

routine small variant testing panels in widespread use
26

. While this is predicated on the 

assumption the use of approved drugs is a proxy for effective cancer therapies a  recent 

study  of cancer drug approvals by the U.S. Food and Drug Administration concluded that 

new cancer drug approvals reduce the risk of death and tumour progression
27

. To inform 

potential future therapeutic opportunities, we applied established chemogenomic 

technologies to map and pharmacologically annotate the cellular network of cancer genes 

identified by WGS. Through annotation of the cellular network with measures of essentiality 

and selectivity we are able to highlight additional potential therapeutic targets in cancer. It 

is likely that such endeavours will be improved upon through the use of high-throughput 

assays assessing more detailed functional consequences of somatic mutations
28

.   

While the 100KGP was predicated on delivering diagnostic tests for well-established 

actionable mutations in NHS cancer patients with high sensitivity, concern has been raised 

of missing well-recognized clinically actionable mutations. In our analysis the frequency of 
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established cancer-specific oncogenic drivers recovered was comparable to MSK-IMPACT 

and MSK-MET . Moreover, the sensitivity of 100x WGS to identify variants was high even for 

samples with low tumour purity (Supplementary Methods, Supplementary Fig.7-11). There 

are however technical limitations to current short read WGS, notably structural variants are 

not robustly identifiable with low concordance being a feature of currently implemented 

algorithms. While a consensus approach in the clinical setting can be adopted for the 

identification of such genomic features, it will  likely only be addressed by adoption of long-

read sequencing, albeit with a high requirement for DNA. Finally, the cost of WGS may be 

seen as currently prohibitive being around 12 times more costly than gene panels such as 

RMH200. Hence, as new panels informed by WGS findings are being developed, the 

attractiveness of WGS as a standalone test is  questionable.
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FIGURE LEGENDS 

 

Figure 1. (A) Study design; (B) Number of samples per tumour type; (C) Power estimates 

for driver gene identification per tumour type. The number of samples needed to achieve 

90% power for 90% of genes (y axis). Grey vertical lines indicate exome-wide background 

mutation rates (x axis). Black dots indicate sample sizes in the current study. For most 

tumour types, the current sample size is inadequate to reliably detect genes mutated at 5% 

or less above background. BileDuct-AdenoCA, cholangiocarcinoma; Bladder-TCC, bladder 

transitional cell carcinoma; Breast-DuctalCA, breast ductal carcinoma; Breast-LobularCA, 

breast lobular carcinoma; CNS-Astro, astrocytoma; CNS-GBM-IDHmut, IDH mutated 

glioblastoma; CNS-GBM-IDHwt, IDH wild type glioblastoma; CNS-Menin, meningioma; CNS-

Oligo, oligodendroglioma; ColoRect-AdenoCA, colorectal adenocarcinoma; Connective-

Chondro, chondrosarcoma; Connective-Leiomyo, leiomyosarcoma; Connective-Liposarc, 

liposarcoma; Connective-Myxofibro, myxofibrosarcoma; Connective-Osteosarc, 

osteosarcoma; Connective-SCS spindle cell sarcoma; Connective-SS, synovial sarcoma; Eso-

AdenoCA, esophageal adenocarcinoma; HeadNeck-SCC, squamous cell carcinoma of the 

head and neck; Kidney-CCRCC, clear cell renal cell carcinoma; Kidney-ChRCC, chromophobe 

renal cell carcinoma; Kidney-PRCC, papillary renal cell carcinoma; Liver-HCC, hepatocellular 

carcinoma;Lung-AdenoCA, lung adenocarcinoma; Lung-LargeCell, large-cell lung cancer; 

Lung-SCC, squamous cell carcinoma of the lung; Lung-SmallCell, small cell carcinoma of the 

lung; Mes-Mesothelioma, mesothelioma; Ovary-AdenoCA, ovarian adenocarcinoma; Panc-

AdenoCA, pancreatic adenocarcinoma; Prost-AdenoCA, prostate adenocarcinom; Skin-

Melanoma, melanoma of the skin;  Stomach-AdenoCA, gastric adenocarcinoma; Testis-GCT, 

testicular germ cell tumour; Uterus-AdenoCA, uterine adenocarcinoma. 

 

Figure 2. (A) Circos heatmap of cancer driver genes identified. Heatmap intensity 

proportional to Stouffer P-value. (B) Distribution of driver genes across different types of 

cancer. y-axis, maximal mutational prevalence in a tumour type, x-axis, number of tumour 

types in which the driver gene is identified. (C) Distribution of cancer driver gene function 

associated with each  cancer  type. Y-axis, tumour group, x-axis, percentage of tumour 

specific driver genes. (D) Comparison of driver gene somatic mutation rates between 

tumour histologies. Expected mutation rate of each driver in the cohort based on the 
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number of samples in which the driver gene is mutated for the given tumour histology. 

Binomial P-values are shown. 

 

FIgure 3. Clinical actionability ascribable to each cancer driver gene according to  COSMIC 

and OncoKB by cancer type. Tumours were annotated by the highest scoring gene mutation 

- indication pairing, with “None” indicating no actionable mutations were detected in the 

tumour.  (A) Catalogued by COSMIC: 1, Approved marketed drug with demonstrated 

efficacy at the mutation; 2, Phase 2/3 clinical results meet primary outcome measures; 3 

Drug in ongoing clinical trials. (B) Catalogued by OncoKB: 1, FDA approved drug in the 

cancer type; 2, standard of care in the cancer type; 3, clinical evidence in the cancer type or 

standard of care in a different cancer type; 4, supported by compelling biological evidence. 

 

FIgure 4. Example druggability networks for colorectal cancer. Nodes acting as cancer- 

specific drivers are shaded purple. Edge visual properties are as follows: OncoKB 

interactions, red contiguous arrow; Signor interactions, green contiguous arrow; Signor 

inhibitors, black vertical slash; complex, black zigzag; direct interaction, red solid line; direct 

X-ray interaction, green solid line; direct non-protein data bank interaction, blue solid line; 

reaction, blue contiguous arrow; transcriptional interaction, black sinewave.
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