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ABSTRACT
Compared to disorders of similar heritability and contribution of common variants, few

genome-wide significant loci have been implicated in autism spectrum disorder (ASD). This

undermines the use of polygenic risk scores (PRSs) to investigate the common genetic

architecture of ASD. Deconstructing PRS-ASD into its related traits via “developmental

deconstruction” could reveal the underlying genetic liabilities of ASD. Using the data of >24k

individuals with ASD and >28k of their unaffected family members from the SSC, SPARK, and

MSSNG cohorts, we computed the PRSs for ASD and 11 genetically-related traits. We applied

an unsupervised learning approach to the ASD-related PRSs to derive “multi-PRSs” that

captured their variability in orthogonal dimensions. We found that multi-PRSs captured a similar

proportion of genetic risk for ASD in cases versus intrafamilial controls (ORmulti-PRS=1.10,

R2=0.501%), compared to PRS-ASD itself (ORPRS-ASD=1.16, R2=0.619%). While multi-PRS

dimensions conferred risk for ASD, they had “mirroring” effects on developmental phenotypes

among cases with ASD. We posit that this phenomenon may partially account for the paucity of

genome-wide significant loci and the clinical heterogeneity of ASD. This approach can serve as

a proxy for PRS-ASD in cases where non-overlapping and well-powered GWAS summary

statistics are difficult to obtain, or accounting for heterogeneity in a single dimension is

preferable. This approach may also capture the overall liability for a condition (i.e.: genetic

“P-factor”). Altogether, we present a novel approach to studying the role of inherited, additive,

and non-specific genetic risk factors in ASD.

KEYWORDS
Autism spectrum disorder; polygenic risk score; principal component analysis; general
psychopathology factor
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INTRODUCTION
Autism spectrum disorder (ASD) has a high heritability ranging from 0.65 to 0.911–3. Rare de

novo copy-number variants (CNVs) and single-nucleotide variants (SNVs) in highly constrained

genes of large effect sizes have been implicated in ASD, yet they collectively explain <5% of the

overall liability for the disorder4–6. In contrast, it is estimated that >50% of the liability for ASD

resides in common variation4–9. Despite its large contribution to genetic risk, the common variant

genetic architecture of ASD remains elusive.

Genome-wide association studies (GWASs) have been instrumental in identifying common risk

loci in disorders10. Despite the substantial increase in the sample size of ASD GWASs over the

last decade11–16, only five genome-wide significant loci have been implicated in ASD to date17.

The number of risk loci identified in ASD is markedly lower than in other psychopathologies. For

instance, schizophrenia has a similar narrow sense heritability (81%)18 and an estimated

contribution of common genetic variation that is comparable to ASD19. However, >100

genome-wide significant loci have been implicated in schizophrenia. One potential explanation

for this discrepancy is the difference in study sample sizes between the two disorders: the

schizophrenia GWAS includes more cases than the ASD GWAS (i.e.: >36k cases in

schizophrenia versus 18k in ASD). Some projections on the genetic architecture of these

disorders suggest that ~70k cases could suffice to yield 100 genome-wide significant loci in

ASD20. However, this would still represent a steep improvement curve, and recent analyses do

not appear to follow such projections21. This questions whether other factors besides solely

sample sizes could contribute to the lower number of implicated loci in ASD.

We hypothesize that the complex and heterogeneous genetic architecture of ASD may partially

explain the paucity of genome-wide significant hits. The scarcity of ASD GWAS hits may, in turn,

limit the accuracy of polygenic risk scores (PRSs), which rely on summary statistics of variant

associations to generate individual-level genetic susceptibility scores for a trait22.

The phenotypic overlap23,24 and genetic correlation17,25,26 between ASD and diverse

developmental phenotypes have been well-documented. In fact, it has been suggested that

ASD may arise as a result of increased inherited genetic susceptibility for various

developmental phenotypes27. As such, we sought to study the genetic architecture of ASD via

“developmental deconstruction”, i.e.: deconstructing the unitary ASD syndrome liability into its

contributory developmental phenotypes, both ASD-specific and non-specific factors28. Mous and

colleagues previously showed that background susceptibilities for ADHD and for motor
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coordination that are inherited, associated, but non-specific to ASD (referred to as “BASINS”),

may contribute to the additive genetic liability for ASD in the same way that ASD-specific risk

factors could contribute to a diagnosis for ASD27. More recently, Warrier and colleagues showed

that common variants associated with ADHD and educational attainment (i.e.: non-ASD-specific

risk factors) contribute to several core features of ASD29. However, these studies have focused

on univariate associations between the polygenic risk of one trait (ASD) and its core symptoms.

Previous studies did not account for the fact that many genetic variants are represented – at

different degrees of association or weighting – in more than one of these PRSs. These studies

also did not account for the effect of these genetic liabilities on developmental phenotypes

outside of the core symptoms of ASD. Accounting for the effect of multiple ASD-related PRSs

on ASD risk and related developmental phenotypes in a single model is a knowledge gap that

remains unexplored.

We posit that modelling ASD and its associated features as a function of multiple ASD-related

PRSs via developmental deconstruction could: 1–serve as a proxy for PRS-ASD, and;

2–highlight the heterogeneity underlying the common genetic architecture of ASD.

To do this, we analyzed a sample of 28,307 cases with ASD and 50,953 of their unaffected

relatives across three ASD cohorts. First, we computed the PRSs for ASD and 11 of its

genetically correlated traits, as reported in the Grove et al. ASD GWAS17. Then, we applied an

unsupervised learning algorithm (principal component analysis, PCA) to construct PRSs that

captured the variation of the 11 ASD-related traits across orthogonal principal components

(PCs) that we refer to as “multi-PRS” dimensions.

This study provides support for the use of multi-PRS dimensions (constructed from ASD-related

traits) to capture the additive, inherited, and non-specific genetic liability for ASD. First, we

showed that the multi-PRS dimensions can capture a similar proportion of the inherited genetic

liability of ASD risk compared to PRS-ASD itself (0.501% versus 0.619%). Second, we modelled

the effect of PRS-ASD and multi-PRS liability on 46 developmental phenotypes among cases

with ASD. Our results reveal that the multi-PRS dimensions can capture unique phenotypic

differences among the cases with ASD that PRS-ASD cannot. Interestingly, while multi-PRS

dimensions increased the risk for ASD, they had “mirroring” effects on core ASD symptoms,

developmental features, and the risk for co-occurring disorders. These findings provide support

for the clinical and genetic heterogeneity of ASD, which in turn, may partially explain the paucity

of reproducible ASD GWAS hits.
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MATERIALS AND METHODS
Cohorts

In total, the genetic data of 28,307 individuals with a diagnosis of ASD and 50,953 of their

unaffected siblings and parents were included in this study using the available data across three

family-based ASD cohorts: the Simons Simplex Collection (SSC)30, Simons Foundation

Powering Autism Research for Knowledge (SPARK)31, and MSSNG32 (Table S1). We excluded

546 parents and siblings with a diagnosis of ASD from the study.

Genetic data quality control

We performed quality control of the genetic data for each platform (SNP genotyping: Illumina

1Mv1, 1Mv3, Omni2.5 for SSC; Illumina Infinium Global Screening Array-24 for SPARK, and

Whole-Genome Sequencing (WGS): Complete Genomics and Illumina HiSeq (2000 and X Ten)

for MSSNG) separately. Standard quality control filtering criteria were applied to the genetic

data33. We excluded individuals with genotyping rate <95%, excessive heterozygosity (± 3

standard deviations from the mean), sample missingness >0.02, mismatched in reported and

genetic sex, and families with Mendelian errors >5%. We removed SNPs with a call rate <98%,

a minor allele frequency (MAF) <1%, deviated from Hardy-Weinberg Equilibrium (P <1×10-6),

and >10% Mendel error rate.

We used the mds parameter from the KING software34 to infer the population substructure of the

samples in the study. To avoid confounders due to ancestry, we restricted our analyses to only

individuals with a >90% probability of inferred-European ancestry. Imputation of SNP genotypes

was performed using the 1000 Genomes Project, phase 3 (1KGP3) reference panel35 through

the Sanger Imputation Server (https://www.sanger.ac.uk/tool/sanger-imputation-service/). The

VCFs of the imputed SNP and WGS genotypes were subsequently merged using the merge

command from the “bcftools” program36, such that only the loci that were present across all

technologies were retained36. The merged imputed files were then converted to PLINK files, and

were subsequently filtered to remove SNPs with a poor imputation quality (≥0.3); more than 2

alleles (multiallelic variants); MAF <5%; call rate <98%, and deviated from Hardy-Weinberg

Equilibrium (P < 5×10-7). Finally, we computed the top 10 ancestry principal components (PCs)

for the final European samples using the “mds” parameter from the KING software34.
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Following sample and variant-level quality control, 24,549 individuals with ASD and 28,898

unaffected family members were retained in the study. A summary and description of the final

samples included in the study are detailed in Table S2.

Polygenic risk score (PRS) calculation

PRSs were constructed using the GWAS summary statistics of ASD and 11 other traits with a

reported significant genetic correlation with ASD17 (Table 1). To avoid sample overlap, custom

summary statistics for the ASD GWAS summary statistics were generated to exclude the SSC

cohort (obtained through the PGC application for secondary analysis proposal –

https://pgc.unc.edu/for-researchers/data-access-committee/data-access-information/).

We used PRS-CS37 to infer the posterior effect sizes of SNPs using GWAS summary statistics

and the 1KGP3 European linkage disequilibrium (LD) reference panel35. Individual-level

polygenic risk scores were then computed from the PRS-CS output summary statistics using the

PLINK38 “score” and “no-mean-imputation” parameters.

To account for subtle differences in population structure among the samples with inferred

European ancestry, the PRS of each trait was modelled as a function of the top 10 ancestry

principal components (PCs) in a linear regression (lm function within the R stats package):

. Then, the residuals from each regression model𝑃𝑅𝑆
𝑡𝑟𝑎𝑖𝑡

 ~ 𝑃𝐶
1

+ 𝑃𝐶
2

+ 𝑃𝐶
3

+  ...  + 𝑃𝐶
10

were extracted to represent PRS values that accounted for the underlying effects of ancestry

among the samples. Finally, the PRSs for each trait were transformed into z-scores.

Correlation between ASD and related psychopathologies

The genetic correlation (rG) between ASD and its related psychopathologies were computed

using the command-line tool LD SCore (LDSC, v1.0.1)39,40 based on the included GWAS

summary statistics (Table 1). The correlation between the PRSs (Figure 2) was computed using

the cor functions from the “stats” base R package.

Reducing PRSs of ASD-related traits into representative principal components

PCA is a dimensionality reduction technique used to compress multidimensional data into

representative principal components (PCs) while retaining the most amount of information. We

employed this technique to reduce the PRSs of the 11 ASD-correlated traits (Table 1) into

variables that captured the variability of all the traits into single dimensions (PCs). We refer to

these “reduced” PC variables – representing an individual’s genetic propensity for all 11
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ASD-related traits – as “multi-PRS” dimensions. We used this approach to model the effect of all

ASD-related traits in a single regression. Given that the PCs from the PCA are orthogonal, we

can include all multi-PRS variables as predictors without violating the regression assumption of

the absence of multicollinearity.

To do this, we used the PCA function to perform the PCA, and the get_pca function to extract

the output from the “factoextra” R package41. The results from this analysis are detailed in

Figure 3. As a sensitivity analysis, we also ran the PCA within six different subgroups (cases

with ASD, intrafamilial controls, and the three separate cohorts) (Figures S4, S5, S6). The

sensitivity analyses confirm that the PC loadings discussed in the main analyses, whereby we

group all samples together, are not driven by any one of these subgroups.

Statistical analyses

Effect of PRS dimensions on ASD risk in cases versus their unaffected family members

The effect of the PRSs on ASD risk in cases with ASD versus their unaffected family members

was modelled using a generalized linear mixed-effects (GLME) model using the glmer function

from the “lme4” R package (see Figure 1 for the analysis workflow). This model accounts for the

effects of relatedness among ASD individuals and their intrafamilial controls by including the

family identifier as a random effect. We ran 13 separate GLME models with ASD diagnosis as

the outcome, with the following predictors:

Model 1 (Naïve model using PRS-ASD as the predictor):
𝐴𝑆𝐷 ~ 𝑃𝑅𝑆

𝐴𝑆𝐷

Models 2–12 (PRSs of ASD-related traits as predictors):
𝐴𝑆𝐷 ~ 𝑃𝑅𝑆

𝐴𝐷𝐻𝐷

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝑀𝐷𝐷

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝑆𝑊𝐵

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝑡𝑖𝑟𝑒𝑑𝑛𝑒𝑠𝑠

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝑆𝐶𝑍

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝑐ℎ𝑟𝑜𝑛𝑜𝑡𝑦𝑝𝑒

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝐼𝑄

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝐸𝐴
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𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝐶𝐴

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝑛𝑒𝑢𝑟𝑜𝑡𝑖𝑐𝑖𝑠𝑚

𝐴𝑆𝐷 ~ 𝑃𝑅𝑆
𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒

Model 13 (multi-PRS dimensions that reflect the reduced PRSs of the 11 ASD-related traits):
𝐴𝑆𝐷 ~ 𝑃𝐶1 + 𝑃𝐶2 + 𝑃𝐶3 + 𝑃𝐶4 +𝑃𝐶5 + 𝑃𝐶6 + 𝑃𝐶7 + 𝑃𝐶8 + 𝑃𝐶9 + 𝑃𝐶10 + 𝑃𝐶11

For all the models above, sex was included as a covariate and familial relationship was included

as a random effect variable.

The goodness-of-fit of each model was evaluated according to its R2 (detailed model

performance metrics in Table S6). We computed the conditional R2 of each model with the

r.squaredGLMM function from the “MuMIn” R package42. The conditional R2 represents the

variance explained by the entire model, including both fixed and random effects. In this study,

we were interested in the proportion of ASD risk that was captured by the PRS predictors in

each model. To do this, we first ran a GLME regression that included only the covariates as

predictors. Then, we subtracted the R2 of the covariate model from the conditional R2 of each

PRS regression model (“r.squared.adj” in Table S6). For ease of interpretability, the adjusted R2

was multiplied by 100% to indicate the percentage of ASD variability that each model captured.

Effect of PRS dimensions on developmental phenotypes in cases with ASD

To assess the effect of PRS-ASD and the multi-PRS dimensions on developmental phenotypes

in cases with ASD, we used either a linear (lm function) or a logistic (glm function) regression

model depending on the continuous or binary phenotypic outcome, respectively. The

phenotypes were included if there were data available for ≥5% of the samples with ASD. Given

the limited data availability, the number of ASD samples with phenotypic data ranged from 1484

(6.04%) to 21,857 (89.03%). Overall, 46 traits (18 continuous and 28 binary) were included in

the analyses (Table S3). The continuous outcomes were standardized (Z-score) by the mean

within each of the three cohorts. These developmental phenotypes were grouped into nine

categories: core ASD features (3); cognitive ability (3); adaptive functioning (3); developmental

features (11); co-occurring disorders (17); language ability (4); family history (2); neurological

disorder (1), and; health outcome (1). In total, we ran 92 regression models: two models for

each developmental phenotype, using either PRS-ASD or all multi-PRS dimensions as the

predictors. All models were adjusted for sex and age. The detailed performance metrics of each

model are detailed in Table S8.
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All P values were adjusted by the Benjamini–Hochberg false-discovery rate (FDR) correction for

multiple comparisons using the p.adjust function from the base R package.

RESULTS
Genetic and PRS correlation between ASD and ASD-related traits

The results from the genetic and PRS correlation between ASD and its related traits are detailed

in Figure 2. We included all 11 traits that had a reported significant genetic correlation with ASD

from the latest ASD GWAS17. Ten traits (ADHD, MDD, depressive symptoms, tiredness,

neuroticism, college attainment, schizophrenia, intelligence, and educational attainment) had a

significant genetic (rG) and PRS correlation with ASD (PFDR < 0.05). Two traits (chronotype and

subjective well-being) had a significant negative genetic (rG) and PRS correlation with ASD. The

genetic and PRS correlations in our study were concordant with those reported in Grove et al.

This is expected, given that PRSs we computed were derived from the GWAS summary

statistics used to compute the rG in the ASD GWAS17. This finding highlights the shared genetic

heterogeneity among all traits included in this study. Indeed, every trait that has a significant

genetic correlation with ASD is also correlated with the PRS of another ASD-related trait. The

high correlation between ASD and the ASD-related traits supports the use of a dimensionality

reduction approach to flatten the variability of the PRSs into orthogonal variables.

PRSs for distinct ASD-related traits can be reduced to representative “multi-PRS” dimensions

Given the correlation between PRS-ASD and its related traits, we assessed whether multi-PRS

dimensions, which encompassed the variability of polygenic risk across 11 ASD-related traits,

could be used as a proxy to capture the genetic risk for ASD. We used PCA to capture the

variability of PRS across all (n=11) ASD-related traits into representative “multi-PRS”

dimensions (principal components, PCs).

The proportion of PRS variability captured by each PC ranged from 24.7% (PC1) to 3.1%

(PC11) (Figure 3). The proportion of polygenic risk for each ASD-related trait that each

multi-PRS dimension captures is detailed in Figure 4a. The correlation between PRS-ASD and

each of the multi-PRS dimensions is detailed in Table S5.

Multi-PRS PC1 mostly captures the polygenic variability of negative symptom outcomes (i.e.:

depressive symptoms, MDD, neuroticism, tiredness), whereas multi-PRS PC2 mostly captures

the polygenic variability of higher cognitive ability (i.e.: college and educational attainment,
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intelligence). The similarities between the PRSs are represented in Figure 4b, whereby the traits

that cluster together have similar contributions to PC1 and PC2.

Overall, these findings suggest that despite their high genetic and PRS overlap (Figure 2), there

is a distinct pattern of genetic relatedness between the traits (Figure 4b). Moreover, these

findings show that ASD-related PRSs can be transformed into representative – and orthogonal

– multi-PRS dimensions that capture a substantial proportion of polygenic variability (Figure 3,

Figure 4a). This, in turn, provides support for the potential use of multi-PRS dimensions as a

proxy for PRS-ASD to capture the genetic risk for ASD.

Multi-PRS dimensions capture a similar proportion of ASD risk, compared to PRS-ASD itself

We then modelled the effect of each PRS and the effect of the multi-PRS dimensions (i.e., the

PCs representing the variability across polygenic risk for the 11 ASD-related traits) on ASD risk

in cases with ASD versus their unaffected family members (Figure 5a). An increase in polygenic

risk for ASD, ADHD, MDD, tiredness, neuroticism, depressive symptoms, and schizophrenia

significantly increased the risk for ASD diagnosis in probands compared to their unaffected

family members. Individuals with ASD had a significant decrease in polygenic risk for subjective

well-being and educational attainment in comparison to their unaffected family members. As

expected, PRS-ASD had the highest effect on ASD risk (adjusted P value = 4.45E-52;

OR = 1.16 [1.14, 1.18]).

Four of the multi-PRS dimensions (PC1, PC2, PC4, and PC7) significantly increased the risk for

ASD (PFDR < 0.05) (Figure 5a). PC4 significantly increased the risk of ASD by 1.10 (adjusted P

value = 2.81E-21; 95% CI of OR = [1.07, 1.11]) and captured 8.9% of variability across all PRSs

(Figure 3) – including mostly the polygenic risk for ADHD (64%), MDD (12%), intelligence (7%),

and neuroticism (6%) (Figure 4a). PC1 nominally increased the risk of ASD by 1.05 (adjusted P

value = 2.44E-20; 95% CI of OR = [1.04, 1.07]) and captured 24.7% of the variability across all

the PRSs (Figure 3), which mostly represented the variability of polygenic risk for depressive

symptoms (49%), major depressive disorder (40%), neuroticism (37%), tiredness (36%),

educational attainment (27%), and college attainment (25%) (Figure 4a). PC2 also nominally

increased the risk for ASD by 1.02 (adjusted P value = 3.59E-03; 95% CI of OR = [1.01, 1.04])

and captured 16.8% of the variability across all PRSs (Figure 3), which mostly encompassed the

variation of PRS for college attainment (46%), educational attainment (45%), and intelligence

(23%) (Figure 4a).
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In comparison, PRS-ASD increased the risk of ASD by 1.16 (adjusted P value = 9.60E-58; 95%

CI of OR [1.14, 1.18]). The relative effect size of the significant multi-PRS dimensions,

compared to PRS-ASD, ranged from 0.88 to 0.94 (Figure 5b).

We then compared the performance (R2) of the models according to the proportion of genetic

risk for ASD that they captured (Figure 4C). The univariate regression model with PRS-ASD as

the predictor (naive model) captured the greatest proportion of ASD risk (Conditional R2 =

0.619%). The multivariate regression model, which included all multi-PRS dimensions as

predictors, captured a similar proportion of ASD risk (Conditional R2 = 0.501%) compared to the

naive model. Importantly, given that each multi-PRS dimension is orthogonal, including them all

as predictors would not violate any assumption of independence. In contrast, the univariate

regression models that used each individual ASD-related PRS as separate predictors captured

markedly lower proportions of ASD risk (ranging from 0.002% to 0.37%). The results from the

multivariate regression that included PRS-ASD and all ASD-related PRSs as predictors is

detailed in Table S7.

Multi-PRS dimensions capture developmental variability among cases with ASD

We then assessed the effect of PRS-ASD and all multi-PRS dimensions on various

developmental phenotypes among the samples with ASD (Figure 6).

Overall, PRS-ASD only had a significant effect on 13 phenotypes. In brief, PRS-ASD influenced

one core ASD feature (increased the severity of SCQ); increased non-verbal and full-scale IQ

(cognitive ability); decreased the risk for intellectual disability (adaptive functioning); lowered the

age of five developmental milestones (developmental features); decreased the risk for

separation anxiety (co-occurring disorder) and word delay (language ability); increased the risk

for sibling diagnosis of ASD (family history); and reduced the risk for nonfebrile seizures

(neurological disorder).

In comparison, the multi-PRS dimensions had a significant effect on a substantial number of

developmental phenotypes in ASD (Figure 5, Figure S8). Moreover, the multi-PRS dimensions

that conferred significant genetic risk for ASD (Figure 5) had unique effects on core ASD and

developmental features (Figure 6). Interestingly, we found a striking “mirroring” pattern in the

effects of PC1 and PC2 on the risk for core ASD features, developmental features, and risk for

co-occurring disorders. PC1, which mostly captured the PRS variability for negative symptom

outcomes (Figure 4a: depressive symptoms, MDD, neuroticism, and tiredness), significantly
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increased the severity of core ASD features, the age of developmental milestones, and

increased the risk for word delay and familial ASD. In contrast, PC2 – which mostly captured the

PRS variability for high cognitive ability (Figure 4a: college and educational attainment,

intelligence) – significantly reduced the severity of core ASD features, increased cognitive

ability, reduced the age of developmental milestones, and decreased the risk for co-occurring

disorders and word delay.

DISCUSSION
This findings from this study suggest that the paucity of genome-wide significant hits in ASD

may be partially driven by the complex and heterogenous genetic architecture of the disorder.

We applied PCA to 11 ASD-related PRSs to construct PRSs that captured the additive,

inherited, and non-specific genetic risk for ASD in unique and orthogonal dimensions (referred

to as “multi-PRS” dimensions).

First, we found that the multi-PRS dimensions can capture a similar proportion of genetic risk for

ASD (0.501%), compared to PRS-ASD itself (0.619%). This suggests that ASD-related PRSs

may be used as a proxy for PRS-ASD to capture a similar proportion of genetic risk for the

disorder.

Second, we found that the multi-PRS approach can capture unique differences in

developmental phenotypes among cases with ASD that PRS-ASD cannot. While multi-PRS

dimensions significantly increased the risk for ASD, there was a striking “mirroring” effect

between the PC1 and PC2 multi-PRS dimensions on core ASD features, developmental

outcomes, and risk for co-occurring disorders. PC1 – which mostly captures the polygenic

variability for negative symptom outcomes – increased the risk for ASD and increased the

severity of core ASD features, delayed developmental milestones, and risk for co-occurring

disorders Conversely, PC2 – which mostly captures the polygenic variability for higher cognitive

ability – also increased the risk for ASD, yet in contrast, reduced the severity of core ASD

features, was associated with earlier developmental milestones, and reduced the risk for

co-occurring disorders. In other words, our findings highlight the heterogeneity underlying the

genetic risk for ASD. While ASD-related PRSs substantially increase the risk for ASD, they have

“opposing” effects on core and peripheral ASD phenotypes. This, in turn, could partially explain

the low yield of genome-wide significant hits in ASD. We posit that this “mirroring” phenomenon
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may dilute the association signal of risk loci in ASD, and could partially explain the diversity

observed among individuals with the disorder.

The findings from this study may also reflect the role of a general psychopathology factor (or

“P-factor”) on ASD, which captures the variance across psychiatric symptoms in a shared

dimension43–45. Our results indicate that multi-PRS dimensions can capture a significant, albeit

small, proportion of the inherited genetic liability for ASD. Our proposed multi-PRS approach

may represent a genetic “P-factor” that captures the overall liability for a diagnosis of a mental

disorder46,47. Several studies have aimed to identify a genomic P-factor that captures the general

liability for psychopathology. Selzam et al. proposed a “polygenic P-factor” by applying PCA to

PRSs for eight psychopathology traits and investigating the loadings of each trait on the first

PC46. They found that this genomic P-factor explained 20-43% of the SNP effects across the

disorders. Krapohl et al. modelled the effect of multiple PRSs on three developmental outcomes

and found that combining multiple PRSs in a model yields better phenotype prediction than

single-score predictor models48.

These findings also align with the Research Domain Criteria (RDoC), which represents a

framework for re-classifying mental disorders based on dimensional behaviours and

neurobiological measures49. Rather than focusing on binary categories, the RDoC examines the

underlying pathophysiology of basic traits along a continuum50. Indeed, our findings highlight the

benefit of studying the genetic architecture of ASD and its developmental phenotypes via

related PRSs. While both the multi-PRS PC1 and PC2 dimensions significantly increase the risk

for ASD, they have distinct – and opposing – effects on phenotypic characteristics among cases

with ASD. In other words, these findings could not have been elucidated through a solely unitary

approach (i.e.: the effect of PRS-ASD on ASD diagnosis alone).

We propose three major use cases for this novel multi-PRS approach. First, constructing a PRS

from related traits can serve as a proxy for polygenic risk in studies where the GWAS summary

statistics overlap with the individual-level genetic data. Second, this approach can be used to

generate a PRS for traits that lack sufficient GWAS statistical power. Finally, the multi-PRS

dimensions may account for pleiotropy and heterogeneity in orthogonal dimensions. This

overcomes the need for conventional multivariate regression models that include all

ASD-related PRSs as predictors and are thus subject to overfitting and multicollinearity.
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This study has some limitations. First, while this intrafamilial study allows for the comparison of

polygenic risk among affected and unaffected family members with ASD, we expect

undiagnosed parents and siblings of probands with ASD to have higher rates of ASD traits as

compared to the general population51. To account for this, we did not include in the analysis

those parents and siblings that also had a diagnosis of ASD. However, further comparisons of

phenotypes between individuals with ASD and their relatives were not possible due to limited

phenotypic data available for relatives. Second, this study aggregates PRSs across numerous

genotyping and sequencing technologies. To ensure that the PRSs across modalities were

comparable, we only included loci present across all technologies before constructing the PRSs.

We also compared PRSs (Figure S1, S2, S3) and applied PCA across various sensitivity

analysis groups (Figure S4, S5, S6) and we found that the correlation structure and the main

dimensions of variance of polygenic risk were robust across technologies and cohorts.

Using a developmental deconstruction approach, this study contributes to the proposed role of

inherited, additive, and non-ASD-specific genetic risk factors on ASD and its related

phenotypes. Our proposed multi-PRS approach highlights the pleiotropy52 between ASD and its

related traits, which increase the risk for ASD and uniquely influence developmental phenotypes

among cases with ASD. While the use of PRS for clinical risk assessment at the individual level

remains ill-advised53, this paper highlights the heterogeneous common genetic architecture of

ASD that may hinder GWAS loci discovery.

STATEMENTS AND DECLARATIONS
Funding

ZS has received funding from Canadian Institutes of Health Research Frederick Banting &

Charles Best Canada Graduate Scholarship (FRN 181433) andis supported by the

Transforming Autism Care Consortium, a thematic network supported by the Fonds de

Recherche Québec-Santé. JPR has received funding from Canadian Institutes of Health

Research Frederick Banting & Charles Best Canada Graduate Scholarship (FRN 159279). VRB

is supported by a Quebec Research Funds - Health (FRQS) residency training scholarship. BC

received a grant from the Fondation Bettencourt Schueller (CCA-INSERM Bettencourt).

Competing Interests

The authors of this study declare they have no competing interests to disclose.

Ethics approval

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.23.23290405doi: medRxiv preprint 

https://www.zotero.org/google-docs/?kBSgwV
https://www.zotero.org/google-docs/?TpclQV
https://www.zotero.org/google-docs/?lorsob
https://doi.org/10.1101/2023.05.23.23290405
http://creativecommons.org/licenses/by-nc-nd/4.0/


This study was performed in line with the principles of the Declaration of Helsinki.

15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 28, 2023. ; https://doi.org/10.1101/2023.05.23.23290405doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.23.23290405
http://creativecommons.org/licenses/by-nc-nd/4.0/


TABLES AND FIGURES

Trait GWAS N

Observed
scale
heritability
(h2)

SNP
correlation
(rG) with
ASD

P value for
rG

ASD* Grove et al.
(2019)17 46,350 0.180 - -

Intelligence Sniekers et al.
(2017)54 78,308 0.189 0.219 1.80E-06

College attainment Davies et al.
(2016)55 111,114 0.156 0.254 6.00E-11

Educational
attainment

Okbay et al.
(2016)56 405,072 0.124 0.193 3.75E-09

Self-reported
tiredness

Deary et al.
(2018)57 108,976 0.065 0.370 2.51E-11

Neuroticism Okbay et al.
(2016)58 170,911 0.090 0.291 1.48E-06

ADHD Demontis et al.
(2019)59 20,183 0.637 0.435 6.49E-21

Depressive
symptoms

Okbay et al.
(2016)58 180,866 0.041 0.364 5.73E-10

Major depressive
disorder (MDD)

Wray et al.
(2018)60

173,005
(excluding
23andMe) 0.074 0.441 1.65E-26

Schizophrenia Ripke et al.
(2014)61 36,989 0.905 0.225 1.49E-07

Subjective
well-being (SWB)

Okbay et al.
(2016)58 298,420 0.025 -0.481 9.86E-16

Chronotype Jones et al.
(2016)62 127,898 0.100 -0.218 1.68E-06

Table 1. PRSs included in this study and their genetic correlation with ASD. ASD-related traits
were included in the study based on previously-reported significant genetic correlations with ASD in
Grove et al. (2019)17. The GWAS summary statistics that were used to compute PRSs were the same
as those used in the Grove et al. ASD GWAS. College attainment represents the attainment of a
college or university degree. Educational attainment represents the years of education. Chronotype
represents the circadian preference for sleep timing. N represents the total samples included in the
GWAS. The SNP correlation (rG) reflects the genetic correlation between ASD and the traits of interest.
The observed heritability (h2) and rG metrics were computed using the LDSC software.
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Figure 1. Analysis flowchart. The genetic data of three family-based ASD cohorts were
included in the study. Following standard genetic and sample-level QC, 24,549 cases with ASD
and 28,898 of their unaffected family members (intrafamilial controls) were included in the study.
Twelve separate polygenic risk scores (PRSs) were constructed using the GWAS summary
statistics of ASD and the 11 traits with a reported significant genetic correlation with ASD. PCA
was applied to the 11 ASD-related traits to create “multi-PRS” dimensions (PCs). The first part of
the study assessed the effect of the PRS dimensions on ASD risk in cases with ASD versus their
unaffected family members. The second part of the study assesses the effect of the PRS
dimensions on various developmental phenotypes among cases with ASD.
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Figure 2. Genetic relationship between ASD and its related traits. The correlation
between PRS-ASD and the PRS of its 11 related traits.
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Figure 3. The proportion of PRS variability captured by each multi-PRS dimension. PCA
was applied to the PRSs of the 11 ASD-related traits. Each resulting principal component (PC)
represents the proportion (%) of PRS variability captured across all traits.
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Figure 4. Reducing the 11 ASD-related PRSs into representative principal components (PCs), herein referred to as
“multi-PRS” dimensions. a) The proportion of PRS variance that is captured in each multi-PRS PC dimension. The percentage of
explained variance that each multi-PRS PC dimension captures is shown below each column. b) A loading plot representing the
influence of each trait on PC1 (Dim.1) and PC2 (Dim.2). The traits that cluster together (similar contributions to PC1/PC2) have
relatively similar PRSs.
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Figure 5. Assessing the effect of different PRS modalities on ASD risk. a) The effect of PRS-ASD, the PRS of ASD-related
traits, and multi-PRS dimensions on ASD risk in cases versus their unaffected family members. The effect of PRS-ASD and PRS
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of ASD-related traits were modelled separately in univariate generalized linear mixed-effects models. Given that the multi-PRS
dimensions were orthogonal, they were included as additive predictors in a single multivariate generalized linear mixed-effects
model. Relatedness was included as a random effect in all models. Seven PRSs significantly increased the risk for ASD, and two
PRSs significantly decreased the risk for ASD. Four of the multi-PRS dimensions significantly increased the risk for ASD. b) The
relative odds ratio (OR) of each PRS and multi-PRS dimension on ASD risk, in comparison to PRS-ASD. The relative effect is
represented as the proportion of OR relative to the effect of PRS-ASD (OR = 1.16). Red and blue points denote a significant
(adjusted P value <0.05) positive or negative effect on ASD risk, respectively. All P values were adjusted for FDR correction for
multiple comparisons. c) The proportion of ASD risk (conditional R2) that each regression model captures. The R2 represents the
percentage of ASD risk that is captured by the PRS dimensions themselves. The multi-PRS model captures a similar proportion of
ASD risk compared to the naive PRS-ASD model itself (0.501% versus 0.619%). The effects due to covariates and familial random
effects were subtracted from this estimate. This suggests that the multi-PRS dimensions can be used as a proxy for PRS-ASD
itself.
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Figure 6. The effect of PRS-ASD and the multi-PRS dimensions on developmental phenotypes in cases with ASD. The results of 92
regressions are shown (46 outcomes with either PRS-ASD or all 11 multi-PRS dimensions as the predictors). While all 11 multi-PRS dimensions
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were included in the model, only those that had a significant effect on ASD risk (Figure 4a) are shown. Red and blue dots represent a significant
positive and negative effect of the PRS predictor variable on the developmental phenotype, respectively. All P values were adjusted for FDR
correction. The brackets denote the number of cases with ASD that were included in the model. The detailed statistical output of each model is
detailed in Table S8. All models were adjusted for age and sex. Three and 13 comparisons were considered for the FDR correction of the
PRS-ASD and multi-PRS models, respectively. SRS: Social Responsiveness Scale, SCQ: Social Communication Questionnaire, RBSR: Repetitive
Behaviour Scale, VIQ: Verbal IQ, NVIQ: Nonverbal IQ, FSIQ: Full-scale IQ, VABS: Vineland Adaptive Behaviour Scale, ADHD: Attention
Deficit/Hyperactivity Disorder, PPVT: Peabody Picture Vocabulary Task.
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