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Abstract 1 

Understanding the complex causal relationships among major clinical outcomes and the 2 

causal interplay among multiple organs remains a significant challenge. By using imaging 3 

phenotypes, we can characterize the functional and structural architecture of major 4 

human organs. Mendelian randomization (MR) provides a valuable framework for 5 

inferring causality by leveraging genetic variants as instrumental variables. In this study, 6 

we conducted a systematic multi-organ MR analysis involving 402 imaging traits and 372 7 

clinical outcomes. Our analysis revealed 184 genetic causal links for 58 diseases and 56 8 

imaging traits across various organs, tissues, and systems, including the brain, heart, liver, 9 

kidney, lung, pancreas, spleen, adipose tissue, and skeletal system. We identified intra-10 

organ causal connections, such as the bidirectional genetic links between Alzheimer's 11 

disease and brain function, as well as inter-organ causal effects, such as the impact of 12 

heart diseases on brain health. Metabolic disorders, such as diabetes, exhibited causal 13 

effects across multiple organs. These findings shed light on the genetic causal links 14 

spanning multiple organs, providing insights into the intricate relationships between 15 

organ functions and clinical outcomes. 16 

 17 

Keywords: Abdominal MRI; Brain MRI; Cardiovascular MRI; Clinical outcomes; FinnGen; 18 

GWAS; Mendelian randomization; Skeleton DXA; UK Biobank.   19 
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Medical imaging techniques such as magnetic resonance imaging (MRI) provide important 1 

information about the structure and function of many human organs, such as the brain, 2 

heart, liver, and kidney. Their derived imaging traits have found widespread use in both 3 

clinical research and practical applications. For example, structural and functional imaging 4 

traits extracted from brain MRIs have consistently revealed abnormalities associated with 5 

Alzheimer's disease, particularly within the hippocampal region1. Cardiovascular MRI 6 

(CMR) provides quantitative data regarding ventricular function, cardiovascular structure, 7 

and myocardial perfusion, all of which are intricately linked to cardiovascular diseases2. 8 

Furthermore, skeletal dual-energy X-ray absorptiometry (DXA) aids in identifying novel 9 

genetic variants that influence the human skeletal structure, thereby revealing significant 10 

evolutionary trends in human anatomical changes leading to pathogenesis3. Several large-11 

scale organ imaging datasets (on the scale of over 10,000 participants) have recently been 12 

made publicly available, revealing details about human organ structure and function4-8. A 13 

large number of complex traits and clinical outcomes have been found to associate with 14 

organ imaging traits in these population-based studies9,10.  15 

 16 

Despite these advances, inherent limitations in observational data pose challenges in 17 

definitively establishing causal relationships between imaging traits and clinical outcomes, 18 

as well as in gaining a comprehensive understanding of the causal interplay across various 19 

organs11. Mendelian randomization (MR) uses genetic variants as instrumental variables 20 

to infer causality from observational data12,13. Operating under certain assumptions 21 

regarding genetic, exposure, and outcome variables, MR is an epidemiological tool to 22 

uncover causal relationships between exposure and outcome variables, while controlling 23 

for confounding factors. Both family and population-based studies have demonstrated 24 

that numerous imaging traits and complex diseases are profoundly influenced by genetics. 25 

Hundreds of associated genetic loci have been pinpointed in large-scale genome-wide 26 

association studies (GWAS)3,8,14-28. Using these GWAS summary-level data (summary 27 

statistics), MR methods can unveil causal relationships between imaging measurements 28 

and clinical outcomes. Numerous recent MR studies have explored the genetic causality 29 

of imaging traits11,29-34. However, a common limitation of these MR studies is their focus 30 

on a single organ (or imaging modality) and/or a single disease, or diseases in a specific 31 

domain, such as brain imaging and psychiatric disorders29. It is crucial to note, however, 32 
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 5 

that many diseases act as the causes and/or consequences of functional and structural 1 

changes in various organs of the human body35,36. Cross-organ analysis can elucidate the 2 

complexity of human physiology and holds great potential to improve our understanding 3 

of a multitude of diseases, ultimately enhancing our strategies for their diagnosis, 4 

treatment and prevention. Consequently, it is essential to conduct MR analysis from a 5 

multi-organ perspective to comprehend the clinical implications of imaging traits amidst 6 

the complex interrelationships of organ systems. 7 

 8 

In this paper, we carried out a systematic two-sample MR analysis to explore the causal 9 

relationships between multi-organ imaging and clinical endpoints. We consolidated 10 

GWAS summary statistics from 402 multi-organ imaging traits (with an average sample 11 

size n » 35,000) from the UK Biobank (UKB)37 study along with 372 clinical outcomes (304 12 
with more than 10,000 cases and 68 more with at least 5000 cases) sourced from the 13 

FinnGen project27 (Tables S1-S2). Our focus was on three major brain MRI modalities: 1) 14 

101 regional brain volumes21 from structural MRI (sMRI); 2) 110 diffusion tensor imaging 15 

(DTI) parameters23 from diffusion MRI (dMRI); and 3) 90 functional activity (amplitude38) 16 

and connectivity traits from functional MRI (fMRI)25. Furthermore, we incorporated 82 17 

CMR traits extracted from short-axis, long-axis, and aortic cine cardiac MRI39,40. We also 18 

considered 11 abdominal MRI traits, measuring volume, fat, or iron content in seven 19 

organs and tissues8, and eight DXA imaging traits that gauged the lengths of all long bones 20 

and the width of the hip and shoulder3. We applied 8 MR methods41-49 to investigate 21 

bidirectional genetic causal links. The study design is presented in Figure 1A, while Figure 22 

1B offers a high-level summary of our key findings. Additional details on these multi-organ 23 

imaging traits are provided in the Methods section.  24 

 25 

RESULTS 26 

Genetic causality between brain imaging and multi-organ diseases 27 

We explored the causal relationship between brain imaging traits and multi-organ 28 

diseases. At a false discovery rate (FDR) 5% level (P < 1.31´10-4, adjusting for multiple 29 

testing for both directions), MR identified 33 significant genetic causal effects of 6 30 

diseases (within 4 major categories) on 6 brain imaging traits. These categories included 31 

diseases of the nervous system, diseases of the circulatory system, diseases marked as 32 
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 6 

autoimmune origin, and diseases of the digestive system. Among these 33 significant 1 

findings, 14 were associated with hypertension (9 with hypertension and 5 with essential 2 

hypertension), 12 with Alzheimer’s disease and dementia, 5 with autoimmune diseases, 3 

1 with allergic asthma, and 1 with atrial fibrillation (Table S3).  4 

 5 

Our results revealed that neurodegenerative conditions, including dementia and 6 

Alzheimer's disease, could potentially impair functional activity across various networks. 7 

Specifically, dementia and Alzheimer’s disease were consistently found to compromise 8 

the integrity of the default mode (b < -0.09, P < 2.19´10-5, >6/8 MR methods significant), 9 

dorsal-attention (b < -0.05, P < 2.24´10-5, >5/8 MR methods significant), and 10 

frontoparietal networks (b < -0.03, P < 4.53´10-5, >5/8 MR methods significant) (Fig. 2A). 11 

In addition to degenerative neurological diseases, we consistently observed causal effects 12 

of hypertension on regional brain volume, fMRI traits, and DTI parameters. For example, 13 

hypertension had negative causal effects on grey matter volume (b < -0.03, P < 1.30´10-14 
10, 5/8 MR methods significant).Similarly, a potential negative effect of hypertension was 15 
observed on the fractional anisotropy (FA) of the body of the corpus callosum tract (BCC, 16 

b < -0.07, P < 1.12´10-6, 6/8 MR methods significant) and the genu of the corpus callosum 17 

(GCC, b < -0.01, P < 2.29´10-5, 6/8 MR methods significant). Conversely, positive effects 18 
were found on other DTI parameters, such as axial diffusivity (AD), mean diffusivity (MD) 19 

and radial diffusivity (RD) of superior corona radiata (SCR), RD of BCC, as well as RD of 20 

GCC (b > 0.01, P < 4.30´10-5, 6/8 MR methods significant). It makes sense as lower MD 21 
and higher FA values typically indicating better white matter health50. In addition, we 22 

observed that hypertension was causally related to decreased functional connectivity of 23 

the orbito-affective network (b > -0.05, P < 1.16´10-5, 6/8 MR methods significant) (Fig. 24 
2B). Autoimmune diseases were mostly found to affect DTI parameters, such as the AD 25 

and MD of SCR (b < -0.04, P < 9.43´10-5, >5/8 MR methods significant) (Fig. 2C). 26 

 27 

Brain and other organ-related diseases may also be affected by structural or functional 28 

changes in the brain. To investigate this, we used brain imaging traits as exposure 29 

variables and clinical endpoints as the outcome variables. At an FDR 5% level (P < 1.31´10-30 
4), we identified 12 significant relationships between 5 brain imaging traits and 3 types of 31 

clinical endpoints (Table S3). Most of the significant imaging-disease pairs were related 32 
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 7 

to DTI parameters and the majority of the significant findings pertained to brain diseases 1 

(11/12). For example, we found that the RD of BCC and GCC was causally related to 2 

dementia (𝛽 < -0.31, P < 1.47´10-5, >5/8 MR methods significant), and the FA of SCR was 3 

associated with an increased risk of Alzheimer’s disease (𝛽 > 0.33, P < 6.24´10-5, 7/8 MR 4 
methods significant) (Fig. 2D).  5 

 6 

Causal genetic relationships between CMR traits and clinical outcomes 7 

We assessed the potential causal effects from clinical endpoints to CMR measures of 8 

heart structure and function. We identified 137 significant results at an FDR 5% level (P < 9 

6.95´10-4), including 44 unique CMR traits of the ascending aorta (AAo), descending aorta 10 
(Dao), left atrium (LA), right ventricle (RV), and left ventricle (LV). These significant causal 11 

effects were identified in 20 unique clinical endpoints of 5 categories: diseases of the 12 

circulatory system (10/20), endocrine, nutritional and metabolic diseases (6/20), mental 13 

and behavioral disorders (2/20), diseases of eye and adnexa (1/20), as well as neoplasms 14 

(ICD2 & ICD-O-3, 1/20). Among the 137 significant findings, 117 were associated with 15 

heart-related diseases (114 diseases of the circulatory system and 3 cardiac arrhythmias), 16 

15 with endocrine, nutritional and metabolic diseases, and 3 with mental and behavioral 17 

disorders (Table S4).  18 

 19 

Causal effects of hypertension were widely observed on many LV traits, such as global 20 

and regional51 myocardial-wall thickness (segments 1-16, b > 0.07, P < 6.44´10-5, 7/8 MR 21 

methods significant) and radial strain traits (segments 7-9 and 12-15, b > 0.06, P < 22 

8.14´10-5, 7/8 MR methods significant). In addition to LV traits, hypertension also 23 

affected multiple other CMR traits. For example, it had negative causal impacts on Aao 24 

and Dao distensibility52-54 (b < -0.10, P < 2.11´10-5, 7/8 MR methods significant), as well 25 
as positive effects on AAo and Dao minimum/maximum areas (AAomax and AAomin areas, 26 

b > 0.10, P < 3.32´10-6, 7/8 MR methods significant). The causal effects were also 27 
observed in several LA traits, such as negative effects on the left atrium ejection fraction 28 

(b < -0.07, P < 4.45´10-4, 7/8 MR methods significant) as well as positive effects on left 29 

atrium minimum/maximum volumes (LAmin and LAmax volumes, b > 0.06, P < 4.72´10-4, 30 
6/8 MR methods significant). Similar to hypertension, we found that cardiovascular 31 

diseases and hypertensive diseases had causal effects on various LV traits, such as 32 
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 8 

regional myocardial-wall thickness, left ventricular myocardial mass, and regional radial 1 

strain. We further identified heart-related disorders that contributed to alterations in 2 

heart structure and function. Conditions such as atrial fibrillation and flutter, heart failure, 3 

and cardiac arrhythmias were primarily linked to LA traits, including negative effects on 4 

the left atrium ejection fraction (b < -0.07, P < 1.35´10-5, 7/8 MR methods significant) and 5 

positive effects on LAmin and LAmax volumes (b > 0.07, P < 1.08´10-6, 7/8 MR methods 6 
significant) (Fig. 3A).  7 

 8 

We also observed causal effects of other diseases, such as endocrine, nutritional and 9 

metabolic disorders, on heart structure and function. For example, diabetes was observed 10 

to have negative effects on regional longitudinal strain (segment 2, |b|>0.03, P < 1.68´10-11 
4, 5/8 MR methods significant) and positive effects on right ventricular ejection fraction 12 

(b > 0.04, P < 1.73´10-4, 5/8 MR methods significant). Additionally, type 2 diabetes led to 13 

a lower level of AAomax and AAomin areas (b < -0.04, P < 3.53´10-4, 5/8 MR methods 14 

significant) and larger global and regional myocardial-wall thickness (segments 5-6 and 15 

10-12, b > 0.03, P < 5.35´10-4, 5/8 MR methods significant). Pure hypercholesterolemia 16 
and other metabolic disorders were causally linked to an enlarged left atrium stroke 17 

volume (b > 0.05, P < 3.31´10-4, 5/8 MR methods significant). Moreover, hypothyroidism 18 

negatively affected regional radial strain (segment 12, b < -0.05, P < 3.31´10-4, 5/8 MR 19 
methods significant) (Fig. 3B). It is also noteworthy that we found evidence suggestive of 20 

causality for brain disorders on heart phenotypes, such as a potential causal effect of 21 

dementia on right ventricular end-diastolic volume (b > 0.03, P < 2.42´10-4, 5/8 MR 22 
methods significant), as well as mood disorders on regional myocardial-wall thickness 23 

(segments 8 and 12, b < -0.12, P < 4.81´10-4, 5/8 MR methods significant) (Fig. 3C). 24 
 25 

Structural and functional abnormalities within the heart may also increase the risk of 26 

multi-organ diseases, considering the role of the heart in pumping blood to all other 27 

organs55. We examined this direction by treating CMR traits as exposure variables and 28 

clinical endpoints as the outcomes. At an FDR 5% level (P < 6.95´10-4), we identified 20 29 

significant causal pairs, with most related to heart-related diseases and a small portion to 30 

diseases of the nervous system. Some of these examples correspond to well-known 31 

relationships. For example, larger left ventricular ejection fraction was consistently found 32 
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 9 

to reduce the risk of heart failure (b < -0.30, P < 2.38´10-4, 5/8 MR methods significant).  1 
(Fig. 3D). We also found that CMR traits, such as regional myocardial-wall thickness 2 

(segment 5), had causal effects on Alzheimer’s disease (b < -0.60, P < 4.85´10-4, 5/8 MR 3 
methods significant) (Fig. 3E).  4 

 5 

Causal genetic links between abdominal imaging traits and clinical outcomes 6 

We first examined the causal effects of multi-organ diseases on abdominal imaging traits, 7 

including the volume or iron content of organs like the spleen, kidney, liver, lung, and 8 

pancreas8. At an FDR 5% level (P < 1.40´10-3), we identified 62 significant causal 9 
relationships between multi-organ diseases and abdominal imaging traits, after excluding 10 

straightforward associations such as the link between obesity and both adipose tissue 11 

volume and abdominal organ fat content. Notably, liver imaging traits constituted the 12 

majority of these findings (34/62). Brain disorders were the most prevalent among the 13 

significant relationships identified (23/62, mental and behavioral disorders (14) and 14 

diseases of the nervous system (9)), followed by endocrine, nutritional and metabolic 15 

diseases (18/62) (Table S5). These findings aligned with ongoing research on the complex 16 

interplay between the brain and abdominal organs, such as the brain-gut connection56-58, 17 

brain-kidney connection59,60, and brain-liver connection61. Specifically, Alzheimer’s 18 

disease and dementia were linked to a reduction in liver volume and percent of liver fat 19 

(|b|>0.02, P < 1.28´10-4, 6/8 MR methods significant). Sleep apnea was observed to 20 

positively influence the liver volume and the volume of abdominal subcutaneous adipose 21 

tissue (b > 0.19, P < 9.61´10-4, 6/8 MR methods significant). Furthermore, alcohol use 22 

disorder was associated with an increase in percent liver fat (b > 0.13, P < 2.09´10-5, 6/8 23 

MR methods significant). In addition to the brain, we found that diabetes was causally 24 

related to a higher percent of liver fat (b > 0.04, P < 2.75´10-5, 5/8 MR methods significant) 25 

and increased pancreas fat (b > 0.5, P < 9.14´10-5, 5/8 MR methods significant). 26 

Furthermore, we found some autoimmune, rheumatic and infectious diseases were 27 

causally associated with lower levels of liver iron content (b < -0.04, P < 4.47´10-4, >6/8 28 

MR methods significant) and larger spleen volume (b > 0.06, P < 4.47´10-4, 6/8 MR 29 

methods significant) (Figs. 4A-C). 30 

 31 
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 10 

Next, we evaluated the opposite direction with abdominal imaging traits as exposure 1 

variables and multi-organ diseases as outcomes. At an FDR 5% level (P < 1.40´10-3), we 2 

identified 44 significant pairs, with heart-related diseases occupying 15 among them, 3 

followed by endocrine, nutritional metabolic disorders (10/44), disease of the respiratory 4 

system (4/44), blood and blood-forming (4/44), musculoskeletal and connective (4/44), 5 

and digestive system (4/44). The liver imaging traits were again the most frequent (35/44). 6 

For example, a higher percent of liver fat had causal effects on multiple heart-related 7 

diseases, such as angina pectoris, coronary angioplasty, coronary atherosclerosis, 8 

ischemic heart disease (wide definition), myocardial infarction (strict), as well as heart 9 

failure and coronary heart disease (b > 0.13, P < 1.40´10-3, 5/8 MR methods significant). 10 
Further, an enlarged spleen volume was linked to an increased risk of cardiovascular 11 

diseases, such as diseases of arteries, arterioles and capillaries (b > 0.25, P < 1.12´10-3, 12 
5/8 MR methods significant). Beyond cardiovascular impacts, increased liver iron content 13 

significantly elevated the risk of anemias, particularly iron deficiency anemia (b > 0.19, P 14 

< 9.80´10-4, 5/8 MR methods significant). A causal relationship was observed between 15 

higher percent of liver fat and liver diseases (b > 0.13, P < 1.40´10-3, 8/8 MR methods 16 

significant), increased visceral adipose tissue volume and hernia of abdominal wall (b > 17 

0.72, P < 1.40´10-3, 6/8 MR methods significant), as well as spleen volume and 18 

noninfective enteritis and colitis (b > 0.13, P < 9.66´10-4, 5/8 MR methods significant). 19 
Moreover, visceral adipose tissue volume led to an increased risk of asthma and chronic 20 

lower respiratory diseases (b > 0.30, P < 1.10´10-3, 5/8 MR methods significant) (Fig. 4D). 21 
 22 

Causal genetic links between skeleton DXA traits and clinical outcomes 23 

The skeletal system serves as the foundational support for the human body, and as such, 24 

skeletal abnormalities could potentially contribute to the risk of multi-organ diseases. We 25 

identified 8 causal pairs at an FDR 5% level (P < 1.04´10-4), spanning conditions related to 26 

both the circulatory system and the musculoskeletal and connective tissue. Notably, an 27 

extended torso length was linked to an increased risk of several cardiovascular conditions, 28 

such as coronary atherosclerosis and myocardial infarction (|b|>18.72, P < 1.40´10-3, 5/8 29 

MR methods significant). Furthermore, longer torso length was inked to several 30 

musculoskeletal and connective tissue disorders, such as internal derangement of the 31 

knee and meniscus derangement (|b|>21.20, P < 1.49´10-5, 5/8 MR methods significant) 32 
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 11 

(Fig. 5A). We also uncovered potential causal effects of multiple organ diseases on DXA-1 

derived skeleton traits. At an FDR 5% level (P < 1.04´10-4), we found 4 significant results 2 

that mainly on connective tissue disorders. For example, systemic connective tissue 3 

disorders and other systemic involvement of connective tissue were associated with 4 

lower average tibia height (|b|>0.0005, P < 3.61´10-5, 5/8 MR methods significant) (Fig. 5 

5B and Table S6). 6 

 7 

Discussion 8 

Observational studies have identified numerous links between imaging-derived 9 

phenotypes and clinical outcomes. However, these associations are often influenced by 10 

residual confounding, complicating the accurate inference of causal effect sizes62. MR 11 

allows for the inference of causal relationships between exposure and outcome variables. 12 

MR leverages the natural and random assortment of genetic variants during meiosis, 13 

making these variants ideal instrumental variables for discerning causal effects. In the 14 

present study, we evaluated the causal links between 402 multi-organ imaging traits and 15 

clinical outcomes through bidirectional MR. To circumvent the issue of sample overlap63, 16 

which can bias the causal effect and has been overlooked in many current MR-based 17 

studies, we used a two-sample MR design and sourced our imaging and clinical data from 18 

different large-scale cohorts.  19 

 20 

The interconnected nature of our organ systems suggested that diseases often affect 21 

more than one part of the human body35,36,61,64. The brain and heart are particularly 22 

critical, with the brain controlling a variety of functions, including reactions, emotions, 23 

vision, memory, and cognition65,66, while the heart acts pumps oxygen and nutrient-rich 24 

blood to other organs. Dysfunctions in various organs can potentially have detrimental 25 

effects on the brain and heart, and vice versa. Besides connections to the brain and heart, 26 

we also uncovered many other causal relationships across different organs. In this causal 27 

discovery research, we implemented stringent criteria for selecting significant causal pairs 28 

(Methods), with the goal being to ensure that all reported findings are statistically robust 29 

and capable of offering potential biological insights. Consequently, the absence of certain 30 

causal pairs in our study does not imply a lack of causal relationships. Moreover, our 31 

findings should be interpreted carefully in the context of known biology. Whereas some 32 
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causal pairs are highly plausible and predictable based on current knowledge, many are 1 

novel and unexpected. These should stimulate further research to discern potential 2 

mechanistic pathways. A visualization of the interactions across different organ systems 3 

can be found in Figure 1B. We will discuss our findings in more detail below.  4 

 5 

Intra-brain causal connections. 6 

As expected, alterations in brain structure and function were found to be closely linked 7 

with brain disorders, with some of these relationships appearing to be bidirectional. We 8 

consistently identified causal connections between brain imaging traits and a variety of 9 

psychiatric disorders or neurological diseases, such as Alzheimer’s disease, dementia, 10 

mood disorder, and sleep apnea. For example, AD and dementia had an impact on fMRI 11 

traits, which were primarily observed as indicators of AD and dementia. Prior studies have 12 

consistently reported that resting fMRI connectivity patterns are disrupted in patients 13 

with Alzheimer’s disease67,68, particularly in brain regions involved in memory and 14 

cognitive function69,70. DTI abnormalities were found to be a precursor or an early sign of 15 

brain pathology that could lead to brain-related disorders71,72.  16 

 17 

Brain-heart causal connections. 18 

Despite the increasing number of association studies investigating the brain-heart 19 

interaction40,73, causal genetic links within these systems remain largely uncharted. In this 20 

study, we identified causal connections from hypertension to DTI parameters in multiple 21 

white matter tracts, including the SCR, BCC, and GCC. Additionally, hypertension had 22 

causal effects on regional brain volumes and fMRI traits, such as the mean activity within 23 

the orbito-affective network. These results could be attributed to the effects of 24 

hypertension on cerebral small vessel health74,75, leading to microvascular damage, which 25 

can disrupt white matter integrity, alter brain function observable in fMRI, and contribute 26 

to changes in brain structure, such as reduced regional volumes. Furthermore, elevated 27 

blood pressure may cause ischemia and impair the blood-brain barrier, contributing to 28 

neuroinflammation and neurodegeneration, reflected in these imaging traits76-79. Hence, 29 

effective management of hypertension through lifestyle adjustments and medication 30 

could help mitigate these adverse effects on the brain, which should be addressed in 31 

future studies.  32 
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 1 

We observed that heart structural measures, such as regional myocardial-wall thickness, 2 

exhibited potential causal effects on Alzheimer’s disease. Based on current knowledge, 3 

this connection does not seem to have clear underlying biologic plausibility, and should 4 

be interpreted cautiously until further knowledge is available regarding the role of cardiac 5 

abnormalities in the pathogenesis of Alzheimer’s disease, which is at present 6 

incompletely understood80,81. Causal connections were also detected from the brain to 7 

the heart. We found that mental or degenerative neurological disorders can affect CMR 8 

traits, such as mood disorder affecting regional myocardial-wall thickness. The reason 9 

behind it may be related to the stress response, which can lead to increased levels of 10 

stress hormones such as cortisol and adrenaline82,83. These hormones can cause an 11 

increase in blood pressure and heart rate, leading to hypertrophy (thickening) of the 12 

myocardial wall over time as the heart works harder to pump blood84,85. Mood disorders 13 

may also cause lifestyle changes (such as changes in dietary and physical activity patterns) 14 

that have deleterious effects on blood pressure and vascular function. Inflammation may 15 

also be involved, since mood disorders have been associated with increased levels of 16 

systemic inflammation, which is a known risk factor for various forms of cardiovascular 17 

disease86,87.  18 

 19 

Bidirectional connections between the brain and abdominal organs. 20 

Brain disorders were found to influence multiple abdominal organs. For example, we 21 

found that degenerative neurological diseases, such as Alzheimer’s disease and dementia 22 

may exert potential causal effects on several abdominal imaging traits, such as liver fat 23 

and volume, visceral/abdominal subcutaneous adipose tissue volume, as well as lung 24 

volume. Patients with Alzheimer’s disease and dementia often require multiple 25 

medications to manage symptoms, including antipsychotics, antidepressants, and 26 

medications aimed at slowing cognitive decline. Some of these medications can have 27 

hepatotoxic effects or interact with other drugs in ways that might impact liver function. 28 

Regular monitoring through liver function tests is important for patients on long-term 29 

medication regimens. Alzheimer’s disease and dementia also might lead to systemic 30 

inflammation88, which has been linked to abnormal intermediary metabolism, a key 31 

regulator of liver fat and function89. The connection between neurological disorders and 32 
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adipose tissue volume might be related to reduced physical activity90 and corticosteroid 1 

medications91. The connection between Alzheimer’s disease and lung phenotypes may be 2 

related to effects of neurological diseases on respiratory muscle weakness92,93. This 3 

weakness could subsequently influence lung volume and functionality. Similar to 4 

Alzheimer’s disease and dementia, sleep apnea could also affect liver and adipose tissue. 5 

Whereas sleep apnea and liver/adipose tissue may have overlying common determinants, 6 

such as obesity, insulin resistance, decreased physical activity, and abnormal dietary 7 

patterns, sleep apnea may also impact various metabolic processes in its own right, which 8 

could contribute to further insulin resistance and fat accumulation in the liver. In addition 9 

to neurological diseases, our study revealed that alcohol use disorder can cause an 10 

increase in liver fat percentage. It is well documented that individuals suffering from 11 

alcohol use disorder are more prone to develop alcoholic fatty liver disease94. 12 

 13 

Conversely, brain imaging traits were causally affected by various diseases of other organs 14 

or systems. For example, we found that asthma influenced regional brain volumes. 15 

Interestingly, prior studies have demonstrated that individuals with asthma may have 16 

diminished cognitive function, including impaired memory and attention, as well as 17 

changes in brain activity patterns during cognitive tasks95,96. Anxiety, stress, and 18 

depression, which are often experienced by individuals with asthma, can also result in 19 

alterations to brain structure. Notably, autoimmune diseases (as defined by FinnGen27) 20 

impacted brain imaging traits, such as DTI parameters of the SCR. Multiple sclerosis, an 21 

autoimmune disease affecting the central nervous system, can cause damage to the 22 

myelin sheath that surrounds axons and can occur in various brain regions97,98, including 23 

the internal capsule. This damage can disrupt neural connections passing through the 24 

anterior limb, leading to symptoms such as weakness, spasticity, and difficulty with 25 

balance and coordination. In rare autoimmune diseases, such as neuromyelitis optica99 26 

and autoimmune encephalitis, inflammation, and damage can occur in the brain. The 27 

resulting neurological symptoms can vary based on the severity and location of the 28 

damage100,101. Additionally, autoimmune diseases causing systemic inflammation, such as 29 

rheumatoid arthritis and lupus, could potentially affect the brain102 and white matter 30 

tracts103,104. Chronic inflammation can lead to changes in the microstructure of white 31 

matter tracts, resulting in alterations in neural connectivity and function105,106. 32 
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 1 

Intra-heart causal connections. 2 

Bidirectional causal relationships were observed between cardiovascular diseases and 3 

CMR traits. Hypertension was found to causally influence several CMR traits across 4 

different heart chambers and aorta regions. Conversely, alterations in CMR traits were 5 

contribute causally to heart diseases. These findings are well-aligned with our current 6 

understanding of the effects of hypertension on the heart. For example, hypertension can 7 

cause changes in the heart's structure and function due to increased afterload, leading to 8 

left ventricular hypertrophy and changes in left atrial size,107,108 which can in turn 9 

contribute to the development of various complications, including atrial fibrillation, heart 10 

failure, and stroke109. Additionally, changes in cardiac structure might influence blood 11 

pressure regulation, since from a hemodynamic standpoint, blood pressure is the direct 12 

result of interactions between the cardiac pump and its coupled vascular load110. 13 

 14 

Causal connections between the heart and abdominal organs. 15 

Heart health was found to be causally linked with various multi-organ imaging traits or 16 

diseases. For example, liver fat was linked to multiple heart-related diseases, such as 17 

coronary atherosclerosis. This may be due to the key role of the liver in intermediary and 18 

lipoprotein metabolism, both of which are known contributors to the pathogenesis of 19 

atherosclerotic vascular disease. Additionally, heart failure was observed to cause an 20 

increase in spleen volume. The latter could be due to venous stasis and venous 21 

hypertension, which is a known consequence of heart failure. Indeed, increased venous 22 

pressure can lead to spleen enlargement, a condition known as splenomegaly111. 23 

Conversely, we found larger spleen volume to exhibit a causal effect on heart failure, a 24 

causal connection that is more difficult to interpret based on current knowledge, and 25 

which should stimulate further research. The pancreas also had causal effects on the 26 

cardiovascular system. For example, excess pancreas fat was associated with a higher risk 27 

of developing deep vein thrombosis of the lower extremities and pulmonary embolism. 28 

Pancreatic steatosis, a condition where fat accumulates in the pancreas, is linked with 29 

several metabolic abnormalities, including insulin resistance and inflammation, which can 30 

contribute to the development of cardiovascular diseases112,113.  31 

 32 
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Causal connections between metabolic disorders and multiple organs. 1 

Diabetes was found to have an adverse impact on heart structural variations in AAo, RV, 2 

and LV. Multiple pathways may account for these causal associations, such as diabetic 3 

cardiomyopathy114, microvascular dysfunction115,116, and metabolic disturbances117. 4 

Diabetes can also affect the fat accumulation in the liver and pancreas. The liver plays a 5 

crucial role in managing glucose and fat metabolism. In the face of insulin resistance, the 6 

liver can accumulate fat, leading to non-alcoholic fatty liver disease. Insulin resistance 7 

prompts the liver to increase glucose production, contributing to high blood sugar levels, 8 

while also interfering with the liver's ability to process fat, leading to fat accumulation. 9 

Fat accumulation is not limited to the liver; it can also occur in the pancreas. The pancreas 10 

is sensitive to the metabolic changes induced by insulin resistance and obesity. Excess fat 11 

within the pancreas may affect its function, particularly the insulin-producing beta cells. 12 

Studies suggest that fat accumulation in the pancreas can impair insulin secretion118,119, 13 

exacerbating the cycle of insulin resistance and beta-cell dysfunction seen in type 2 14 

diabetes. Additionally, the excess fat (especially in the form of triglycerides) within the 15 

pancreas can lead to beta-cell dysfunction120. This dysfunction further impairs the body's 16 

ability to produce and regulate insulin effectively, worsening glucose control121-123. 17 

 18 

Skeleton DXA traits. 19 

We found genetic causal connections between DXA-derived skeleton traits and multiple 20 

organ diseases. MR typically reflects long-term effects rather than immediate impacts, 21 

making it a highly suitable method to measure causal effects related to the skeletal 22 

system. This is because skeletal traits are less prone to rapid modifications over short 23 

periods. Skeletal traits were shown to be potentially causally affected by musculoskeletal 24 

and connective disorders, which might have multiple pathways, such as altered bone 25 

density124, abnormal bone growth and formation, as well as inflammatory conditions. 26 

Conversely, skeletal disorders could contribute to numerous organ diseases, with heart 27 

conditions being the most prevalent in our analysis. However, the precise underlying 28 

mechanisms of these potentially causal connection require further study.  29 

 30 

Limitations and conclusions. 31 
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Our study has several limitations. First, our GWAS summary statistics were sourced from 1 

publicly available databases. Thus, we could not evaluate the impact of unobserved 2 

confounders, such as population stratification, on our results. Second, a common 3 

limitation that most existing MR methods share is that they require several model 4 

assumptions. This may result in model misspecifications and issues related to data 5 

heterogeneity when integrating data from different data resources125. We have 6 

systematically applied quality control measures and performed sensitivity analyses in our 7 

study. Future research implementing more advanced MR methods may relax some of 8 

these model assumptions126,127. Furthermore, MR studies are designed to examine the 9 

effects of lifetime exposure factors on outcomes, not interventions within a specified 10 

period. As a result, our findings may be interpreted differently than the rigorous results 11 

obtained from randomized controlled trials. Moreover, our findings have varying degrees 12 

of biologic plausibility based on current knowledge. They should therefore be interpreted 13 

accordingly, and reinterpreted as new mechanistic knowledge becomes available.  14 

 15 

In conclusion, we used two-sample bidirectional MR analyses to comprehensively explore 16 

the multi-organ causal connections between 372 clinical outcomes and 402 image-17 

derived phenotypes of various organ systems. Our results revealed robust genetic 18 

evidence supporting causal connections within and across multiple organs. These findings 19 

will be useful in understanding complex pathogenic mechanisms and will contribute to 20 

further mechanistic research and ultimately, to the early prediction and prevention of 21 

multi-organ diseases from a whole-body perspective. 22 

 23 

METHODS 24 

Methods are available in the Methods section. 25 

Note: One supplementary table zip file are available. 26 
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 4 

METHODS 5 

Multi-organ imaging traits.  6 

The imaging data were sourced from the UK Biobank (UKB) study, which enrolled 7 

approximately 500,000 individuals aged between 40 and 69 from 2006 to 2010 8 

(https://www.ukbiobank.ac.uk/). These multi-organ imaging data were collected from 9 

the ongoing UKB imaging study project (https://www.ukbiobank.ac.uk/explore-your-10 

participation/contribute-further/imaging-study), which aims to collect brain, heart, and 11 

abdomen scans from 100,000 participants. Ethical approval for the UKB study was 12 

secured from the North West Multicentre Research Ethics Committee (approval number: 13 

11/NW/0382).  14 

 15 

Studies of brain and heart diseases usually rely on magnetic resonance imaging (MRI) 16 

scans, which are well-established clinical endophenotypes. Cardiovascular magnetic 17 

resonance imaging (CMR) is a set of MRI techniques that are designed to assess 18 

ventricular function, cardiovascular morphology, myocardial perfusion, and other cardiac 19 

functional and structural features128,129. They have been frequently used to reveal heart-20 

related issues clinically. The CMR traits used in the paper were originally generated from 21 

the raw short-axis, long-axis, and aortic cine images using the state-of-the-art heart 22 

imaging segmentation and feature representation framework39,130,131. We divided the 23 

generated 82 CMR traits into 6 categories. The first two are aortic sections, namely 24 

ascending aorta (AAo) and descending aorta (DAo), which serve as the main ‘pipe’ in 25 

supplying blood to the entire body. The other four are the global measures of 4 cardiac 26 

chambers, including the left ventricle (LV), right ventricle (RV), left atrium (LA), and right 27 

atrium (RA), which altogether manage the heartbeat and blood flow. There are also some 28 

other traits, such as regional phenotypes of the left ventricle myocardial-wall thickness 29 

and strain (Table S1). The summary-level GWAS data of these 82 CMR traits were 30 

obtained from Zhao, et al. 40.  31 
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 31 

Brain MRI provides detailed information about brain structure and function132, such as 1 

abnormal growth, healthy aging, white matter diseases, structural issues, and functional 2 

abnormalities. In this paper, the summary-level GWAS data were collected from recent 3 

multi-modal image genetic studies, including regional brain volumes from structural 4 

MRI21,133 (sMRI), diffusion tensor imaging (DTI) parameters from diffusion MRI23,134 (dMRI), 5 

and functional activity (that is, amplitude38) and functional connectivity phenotypes from 6 

resting functional MRI25 (resting fMRI). In sMRI, we used ANTs135 to generate regional 7 

brain volumes for cortical and subcortical regions and global brain volume measures. In 8 

dMRI, we used the ENIGMA-DTI pipelines136,137 to generate tract-averaged parameters 9 

for fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, and mode of 10 

anisotropy in major white matter tracts and across the whole brain. For resting fMRI, we 11 

extracted phenotypes from brain parcellation-based analysis. We used the Glasser360 12 

atlas138, which divided the cerebral cortex into 360 regions in 12 functional networks139. 13 

We considered 90 network-level resting fMRI phenotypes that evaluated interactions and 14 

spontaneous neural activity at rest.  15 

 16 

The 11 imaging traits from abdominal MRI were derived by Liu., et al8 using deep learning 17 

methods in terms of volume, fat, and iron in several organs and tissues, such as the liver, 18 

spleen, kidney, lung, pancreas, and adipose tissue. Skeleton DXA traits, including all long 19 

bone lengths as well as hip and shoulder width, were derived by Kun, et al. 3 using deep 20 

learning methods on whole-body DXA images. All eight skeleton traits have been 21 

controlled for height. 22 

 23 

FinnGen clinical endpoints.  24 

We used 372 clinical endpoints (304 with more than 10,000 cases and 68 more with at 25 

least 5000 cases) collected by the FinnGen project, which were selected from the R9 26 

release (https://www.finngen.fi/en/access_results). Our initial criterion for selecting 27 

diseases was to include those with more than 10,000 cases. For certain significant 28 

diseases, such as Alzheimer’s disease and neoplasm, we further relaxed the case number 29 

cutoff to 5,000. The 372 clinical endpoints covered diseases from various categories, 30 

namely, mental and behavioral disorders, diseases of the nervous system, diseases of the 31 

eye and adnexa, diseases of the genitourinary system, diseases of the circulatory systems, 32 
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endocrine, nutritional and metabolic disorders, diseases marked as autoimmune origin, 1 

diseases of the respiratory system, diseases of the digestive system, diseases of blood and 2 

blood-forming, diseases of the musculoskeletal system and connective tissue, as well as 3 

some other endpoints. The definitions can be found at https://risteys.finregistry.fi/. The 4 

FinnGen data used in our study was obtained from separate cohorts than those supplying 5 

imaging traits, which were derived from the UKB study, thus ensuring there was no 6 

sample overlap. Detailed information of these 372 clinical variables can be found in Table 7 

S2. 8 

 9 

Mendelian randomization analysis.  10 

We examined the genetic causal relationships between the 402 imaging traits (101 brain 11 

regional volume traits, 110 brain DTI parameters, 90 network-level fMRI phenotypes, 82 12 

CMR traits, 11 abdominal traits, and 8 skeleton DXA traits) and 372 clinical endpoints. 13 

Prior to conducting the Mendelian randomization (MR) analysis, we conducted standard 14 

preprocessing and quality control procedures. First, we selected genetic variants based 15 

on a significance threshold of 5×10-8 in the exposure GWAS data. To ensure the 16 

independence of the genetic variants used in MR, we implemented LD clumping with a 17 

window size of 10,000 and an r2 threshold of 0.01, using the 1000 Genomes European 18 

ancestry data as a reference panel. We used the TwoSampleMR package 19 

(https://mrcieu.github.io/TwoSampleMR/) for harmonization, which enabled us to 20 

accurately align alleles between the selected variants in the exposure and the reported 21 

effect on the outcome. 22 

 23 

We assessed the performance of 8 MR methods, which included Inverse variance 24 

weighted (fixed effect), Inverse variance weighted (multiplicative random effect), MR-25 

Egger, Simple Median, Weighted Median, Weighted Mode, DIVW, GRAPPLE, and MR-26 

RAPS41,42,44-49,140, where MR Egger was used as the pleiotropy test and will not be included 27 

in the figures. To ensure the reliability of our results, we implemented several quality 28 

control procedures. We excluded causal estimates that relied on fewer than 6 genetic 29 

variants, as a larger number of genetic variants increases the statistical power of MR 30 

analysis47,48. We retained causal pairs that were significant in at least two out of the eight 31 

methods. We also screened for pleiotropy by using the MR-Egger intercept, the most used 32 
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method for testing the pleiotropy assumption. If a causal estimate failed the MR-Egger 1 

intercept test, we required that it have significant results in at least one of the robust MR 2 

methods, such as Weighted Median, Weighted Model, MR-RAPS, or GRAPPLE. 3 

Additionally, we require all the selected causal pairs to be significant in more than half of 4 

the methods. 5 

 6 

Code availability  7 

We made use of publicly available software and tools. Our analysis code will be made 8 

freely available at Zenodo. 9 

 10 

Data availability 11 

We used summary-level GWAS data in this study, which can be obtained from the 12 

FinnGen project (https://www.finngen.fi/en/access_results), BIG-KP (https://bigkp.org/),  13 

Heart-KP (https://heartkp.org/), and project-specific resources are detailed in Liu., et al 8 14 

and Kun, et al. 3.  15 

 16 

Figure legends 17 

Fig. 1 Overview of study design and findings. 18 

(A). An overview of our multi-organ imaging genetic study, investigating 372 clinical 19 

outcomes. We used diverse imaging traits including multi-modal brain, cardiac, 20 

abdominal, and skeletal DXA imaging to explore their relationships with the clinical 21 

endpoints. Our study encompasses a comprehensive range of brain imaging modalities, 22 

such as structural MRI, diffusion MRI, and resting-state fMRI. The cardiac imaging data 23 

comprise short-axis, long-axis, and aortic cine images. Volume, iron content, and percent 24 

fat were measured across 6 different abdominal organs and tissues, yielding in 11 image-25 

derived abdominal phenotypes. Additionally, we included 8 skeleton imaging traits 26 

encompassing long bone lengths as well as hip and shoulder width. (B). A high-level 27 

summary of our bidirectional findings. The left panel displayed all the imaging traits that 28 

have been used in the study. The grey arrow demonstrates the main findings, such as the 29 

intra-brain, intra-heart, brain-heart, and brain-abdominal-organs causal connections. The 30 

right panel depicts the intricate web of causal interactions among various organs as 31 
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uncovered in our study. The width of an arrow corresponds to the volume of findings 1 

associated with it. 2 

 3 

Fig. 2 Selected genetic causal effects of clinical outcomes on brain imaging traits. 4 

We illustrated selected significant (P < 1.31´10-4) putative causal genetic links from 5 

clinical endpoints (Exposure) to brain imaging traits (Outcome), with adjustment for 6 

multiple testing using the FDR procedure. (A). The causal effect of degenerative 7 

neurological diseases on brain imaging traits. (B). The causal effect of hypertension on 8 

brain imaging traits. (C). The causal effect of other diseases on brain imaging traits. (D). 9 

The causal effect of brain imaging traits on degenerative neurological diseases. The term 10 

'IDP Category' is used to signify the category of imaging traits, while '#IVs' stands for the 11 

number of genetic variants utilized as instrumental variables. Various MR methods and 12 

their associated regression coefficients are marked with different colors for easy 13 

identification. See Table S1 for data resources on clinical endpoints and Table S2 for data 14 

resources on imaging traits.  15 

 16 

Fig. 3 Selected genetic causal effects between heart imaging traits and clinical endpoints. 17 

(A). Selected significant (P < 6.95´10-4) causal genetic links from heart-related diseases 18 
(Exposure) to heart imaging traits (Outcome) with adjustment for multiple testing using 19 

the FDR procedure. (B). Selected significant (P < 6.95´10-4) causal genetic links from 20 

metabolic disorders (Exposure) to heart imaging traits (Outcome) with adjustment for 21 

multiple testing using the FDR procedure. (C). Selected significant (P < 6.95´10-4) causal 22 
genetic links from brain disorders (Exposure) to heart imaging traits (Outcome) with 23 

adjustment for multiple testing using the FDR procedure. (D). Selected significant (P < 24 

6.95´10-4) causal genetic links from heart imaging traits (Exposure) to heart-related 25 
diseases (Outcome) with adjustment for multiple testing using the FDR procedure. (E). 26 

Selected significant (P < 6.95´10-4) causal genetic links from heart imaging traits 27 
(Exposure) to Alzheimer’s disease (Outcome) with adjustment for multiple testing using 28 

the FDR procedure. The term 'IDP Category' is used to signify the category of imaging 29 

traits, while '#IVs' stands for the number of genetic variants utilized as instrumental 30 

variables. Various MR methods and their associated regression coefficients are marked 31 
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with different colors for easy identification. (F). A high-level summary of our findings. See 1 

Table S1 for data resources of clinical endpoints and Table S2 for data resources on 2 

imaging traits. 3 

 4 

Fig. 4 Selected genetic causal effects between abdominal imaging traits and clinical 5 

endpoints. 6 

(A) Selected significant (P < 1.40´10-3) causal genetic links from clinical endpoints 7 
(Exposure) to liver imaging traits (Outcome) with adjustment for multiple testing using 8 

the FDR procedure. (B). Selected significant (P < 1.40´10-4) causal genetic links from 9 
clinical endpoints (Exposure) to pancreas imaging traits (Outcome) with adjustment for 10 

multiple testing using the FDR procedure. (C). Selected significant (P < 1.40´10-3) causal 11 

genetic links from clinical endpoints (Exposure) to spleen imaging traits (Outcome) with 12 

adjustment for multiple testing using the FDR procedure. (D). Selected significant (P < 13 

1.40´10-4) causal genetic links from liver imaging traits (Exposure) to pancreas clinical 14 

endpoints (Outcome) with adjustment for multiple testing using the FDR procedure. The 15 

term 'IDP Category' is used to signify the category of imaging traits, while '#IVs' stands for 16 

the number of genetic variants utilized as instrumental variables. Various MR methods 17 

and their associated regression coefficients are marked with different colors for easy 18 

identification. (E). A high-level summary of our bidirectional findings. See Table S1 for 19 

data resources on clinical endpoints and Table S2 for data resources on imaging traits. 20 

 21 

Fig. 5 Selected genetic causal effects between skeleton imaging traits and clinical 22 

endpoints. 23 

We illustrated selected significant (P < 1.04´10-4) causal genetic links from (A) skeleton 24 
imaging traits (Exposure) to clinical endpoints (Outcome) with adjustment for multiple 25 

testing using the FDR procedure and (B) clinical endpoints (Exposure) to skeleton imaging 26 

traits (Outcome). The term 'IDP Category' is used to signify the category of imaging traits, 27 

while '#IVs' stands for the number of genetic variants utilized as instrumental variables. 28 

Various MR methods and their associated regression coefficients are marked with 29 

different colors for easy identification. The skeleton diagram on the right shows the region 30 
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of the corresponding IDP. See Table S1 for data resources on clinical endpoints and Table 1 

S2 for data resources on imaging traits. 2 

  3 
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Figure 3 
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Figure 4 
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Figure 5 
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