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Abstract

Preregistration at public research registries is considered a promising solution to
the credibility crisis in science, but empirical evidence of its actual benefit is limited.
Guaranteeing research integrity is especially vital in clinical research, where human
lives are at stake and investigators might suffer from financial pressure. This paper
analyzes the distribution of p-values from pre-approval drug trials reported to Clini-
calTrials.gov, the largest registry for research studies in human volunteers, conditional
on the preregistration status. The z-score density of non-preregistered trials displays a
significant upward discontinuity at the salient 5% threshold for statistical significance,
indicative of p-hacking or selective reporting. The density of preregistered trials ap-
pears smooth at this threshold. With caliper tests, we establish that these differences
between preregistered and non-preregistered trials are robust when conditioning on
sponsor fixed effects and other design features commonly indicative of research in-
tegrity, such as blinding and data monitoring committees. Our results suggest that
preregistration is a credible signal for the integrity of clinical trials, as far as it can be
assessed with the currently available methods to detect p-hacking.
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I Introduction

Recently, there has been a growing interest in enhancing research transparency and
credibility, both in social and life sciences.1 Randomized controlled trials (RCTs), as they
are conducted commonly in clinical research and gain popularity in social sciences, are
still considered the “gold standard” for empirical research. However, even such exper-
iments have attracted skepticism regarding their credibility, as researchers have certain
degrees of freedom about which hypotheses to test and report. This discretion may bias,
intentionally or unintentionally, the set of published results, which may be the basis of
important policy decisions. Preregistration of studies at public research registries such as
ClinicalTrials.gov or the American Economic Association’s (AEA) RCT Registry can be a po-
tential remedy for these concerns about credibility and integrity. Preregistration allows
researchers to commit ex-ante to a study’s design, measured outcomes, and a protocol for
statistical analysis and should shut down any tempting degrees of freedom during the
research process.

Clinical studies with human volunteers, in particular, must comply with the highest
ethical and scientific standards, as human lives may be directly at stake. At the same
time, developing a new drug requires sizeable ex-ante investments,2 which can be typi-
cally recovered only if the trials are successful and authorities like the U.S. Food and Drug
Administration (FDA) grant marketing approval. These financial considerations may lead
to conflicts of interest and lure investigators into exploiting their degrees of freedom to
beautify results or withhold unfavorable findings (Adda, Decker, and Ottaviani, 2020).

This paper analyzes the distribution of p-values from pre-approval drug trials re-
ported to ClinicalTrials.gov, the largest registry for research studies in human volunteers,
to assess if preregistration improves indicators of research credibility. In particular, we
apply methods for detecting p-hacking and selective reporting to the samples of statisti-
cal results from preregistered and non-preregistered trials.3 P-hacking (i.e., intentionally
or unconsciously exploring various ways of analyzing data and selectively reporting the
ones that yield the best results) and selective reporting of results depending on their sta-
tistical significance are two of the main concerns of how researchers can exploit their
degrees of freedom. According to the advocates of preregistration, non-preregistered
research “will almost inevitably end in p-hacking,” and only committing ex-ante to an

1See, for instance, Munafò et al. (2017) and Christensen and Miguel (2018).
2DiMasi, Grabowski, and Hansen (2016) estimate from surveys of pharmaceutical companies an average

out-of-pocket cost of US$1,395 million (2013 dollars) per approved new compound.
3The methods applied in this paper, based on analyzing the distribution of reported p-values, should be

interpreted as joint tests for p-hacking and/or selective reporting but cannot reliably distinguish these two
closely related notions.
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analysis plan through preregistration can prevent this temptation (Simmons, Nelson, and
Simonsohn, 2021). However, there are also some critical voices arguing that the currently
implemented preregistration systems are insufficient, still allow for researchers’ degrees
of freedom, and give a false sense of improved credibility (Pham and Oh, 2021).4

Speaking to this debate, we find robust empirical evidence that the distribution of
results from preregistered trials (defined as registered at ClinicalTrials.gov before the start
of the trial) is significantly more credible than that from non-preregistered trials, as far as
it can be assessed with the currently available methods for the detection of p-hacking.5

First, we apply density discontinuity tests (Cattaneo, Jansson, and Ma, 2020) to the
densities of z-scores from preregistered and non-preregistered trials. For z-scores from
primary outcomes of non-preregistered trials, we detect a substantial and statistically sig-
nificant upward discontinuity at the prominent 5% threshold for statistical significance.
Such a discontinuity is commonly interpreted as indicative of p-hacking to clear this
salient significance hurdle or for selective non-reporting of results that did not achieve
statistical significance. In contrast, the density of z-scores from primary outcomes of pre-
registered trials is smooth at this threshold.

The densities of z-scores related to lower-stake secondary outcomes, which are not
consulted directly to evaluate a study’s success and are therefore less likely to be tar-
geted by p-hacking, are smooth at the 5% threshold both for preregistered and non-
preregistered trials.

Density discontinuity tests allow only for an unconditional analysis of the impact of
preregistration on patterns indicative of p-hacking. However, we find that a trial’s pre-
registration status is substantially correlated with other design features which are com-
monly seen as signs of research integrity and credibility, such as blinding, the presence of
an independent data monitoring committee, or the principal investigator (PI) not being
on the sponsor’s payroll. Moreover, preregistration and complete and honest reporting

4Another commonly raised concern about preregistration, which is beyond the scope of the analysis in
this paper, is that tying researchers’ hands too much may be detrimental to knowledge creation in some
cases. Mandating strict adherence to pre-specified plans and discounting non-preregistered findings too
much may discourage researchers from exploring potentially interesting observations and new theories of
which they did not think ex-ante, or from conducting certain experiments altogether. See Coffman and
Niederle (2015) and Banerjee et al. (2020) for discussions of these issues and potential solutions.

5Similar methods have been used to study p-hacking and publication bias in academic publications in
different disciplines, for instance, in economics (Brodeur et al., 2016; Vivalt, 2019; Brodeur, Cook, and Heyes,
2020), political sciences (Gerber and Malhotra, 2008), life sciences (Holman et al., 2015), and psychology
(Simonsohn, Nelson, and Simmons, 2014). Elliott, Kudrin, and Wüthrich (2022a) and Elliott, Kudrin, and
Wüthrich (2022b) provide an overview and a theoretical examination of different methods to detect p-
hacking.
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of results may both be correlated with unobserved traits of the responsible researchers
or unobservable incentives of sponsors. These issues raise the question of whether the
differences detected by the density discontinuity tests are really driven by preregistration
or instead by one of these other factors and show that a conditional analysis is required.

To address these concerns, we perform caliper tests that compare the share of signif-
icant results in a small discrete window of equal size below and above the significance
threshold for different groups of trials (Gerber and Malhotra, 2008; Brodeur, Cook, and
Heyes, 2020). Caliper tests can be embedded in a regression framework and therefore
allow for the assessment of the effect of preregistration conditional on other covariates
and fixed effects. Controlling for features like data monitoring committees, blinding, and
independent PIs barely affects the magnitude and statistical significance of the estimated
impact of preregistration. Moreover, none of these other features appears to have an effect
on patterns indicative of p-hacking which is statistically significant or as large in magni-
tude as the impact of preregistration. Lastly, we estimate models with high-dimensional
sponsor fixed effects to control for unobserved researcher traits or sponsor incentives.
Even in these specifications, the differences between preregistered and non-preregistered
trials are robust.

In summary, we do not find evidence of p-hacking in preregistered trials. In contrast,
the density of z-scores from primary outcomes of non-preregistered trials exhibits pat-
terns indicative of p-hacking or selective reporting. The difference between preregistered
and non-preregistered trials regarding these indicators appears robust to conditioning
on trials’ other design characteristics and sponsor fixed effects capturing unobserved re-
searcher traits and sponsor incentives. We conclude that preregistration under the cur-
rent regime of regulations is indeed a reliable signal for research integrity and credibility
as far as it can be evaluated with the currently available tools for detecting p-hacking
and selective reporting. While we cannot provide bullet-proof evidence from exogenous
or quasi-exogenous variation in the trials’ preregistration status, our results with high-
dimensional sponsor fixed effects may be indicative of preregistration having a causal
impact on the integrity and credibility of reported results.

This paper complements a series of other studies about the effects of preregistration in
different contexts. So far, only a limited impact of preregistration on measures of research
integrity could be documented empirically. Brodeur et al. (2022) find that preregistration
does not affect patterns indicative of p-hacking or selective reporting for randomized con-
trolled trials published in leading economics journals. However, studies with a complete
pre-analysis plan appear significantly less p-hacked. Abrams, Libgober, and List (2023)
present evidence that the uptake and quality of registrations in the AEA Registry and
ClinicalTrials.gov are relatively poor and find that preregistration at the AEA registry does
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not impact indications of p-hacking in a randomly selected sample of economics RCTs.
Moreover, they explore policies that could increase registry effectiveness in a theoretical
model.6 Fang, Gordon, and Humphreys (2015) find no evidence that preregistration re-
quirements for publication in medical journals had any impact on publication bias. Oost-
rom (2022) shows that preregistration on ClinicalTrials.gov mitigates sponsorship bias for
trials on antidepressants and antipsychotics.

The remainder of this paper is organized as follows. Section II introduces the con-
text of the ClinicalTrials.gov registry, discusses the composition of our sample of p-values,
and elaborates on preregistration and reporting requirements. Section III presents results
from density discontinuity tests for z-scores from preregistered and non-preregistered tri-
als. Section III presents results from caliper tests, which allow to condition on other trial
characteristics and fixed effects. Finally, Section V concludes. Supplementary results and
robustness checks are gathered in an Online Appendix.

II Background and Data

The ClinicalTrials.gov Registry. ClinicalTrials.gov, maintained by the National Library
of Medicine (NLM) at the National Institutes of Health (NIH) in collaboration with the FDA,
is the largest online registry of clinical research studies in human volunteers. The registry
was established in 2000 to increase transparency in clinical research (Zarin and Tse, 2008).
In 2010, the Clinical Trials Transformation Initiative, a partnership of the FDA and Duke Uni-
versity, launched the Database for Aggregate Analysis of ClinicalTrials.gov (AACT), allowing
for free bulk download of all the data contained in the ClinicalTrials.gov registry (Tasneem
et al., 2012). The daily updated database contains information on all aspects of registered
trials, including timing, interventions, sponsors, outcome measures, and results.

The results in the database pertain to a wide range of different diseases, interventions,
study designs, and statistical procedures. As we aim to analyze the largest possible por-
tion of the overall data, we concentrate on p-values, the only measure reported uniformly
and comparably for many trials, independent of their characteristics and the statistical
method used for the analysis.

Sample. This paper is based on the AACT snapshot from February 18, 2023. Fig-
ure 1 visualizes the construction of our sample. We focus on completed or terminated
pre-approval (phase II, phase III, combined phase II/III) interventional (as opposed to

6Other recent contributions in economic theory attempt to formalize the impact of preregistration, mod-
eling it as a commitment device in persuasion games between researchers and evaluators (Felgenhauer,
2021; Kasy and Spiess, 2022; Williams, 2022).
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Figure 1: Sample Composition

observational) studies on drugs (as opposed to medical devices and others) that report at
least one exact p-value for a statistical test on a primary outcome of the trial aiming to
establish the superiority of the treatment (as opposed to non-inferiority or equivalence).7

The resulting sample contains 10,120 p-values from tests performed on primary outcomes
of 4,810 trials and 54,337 p-values from tests performed on secondary outcomes.8 Further
summary statistics are discussed in Online Appendix A.

p-z Transformation. We transform reported p-values to z-scores by supposing that
these p-values originate from a two-sided Z-test of the null hypothesis that the drug has

7Moreover, we exclude 31 trials that report an implausibly high number of over 30 primary outcome
measures, and we follow Adda, Decker, and Ottaviani (2020) to exclude 25 trials of the sponsor Colgate
Palmolive, which reported p-values precisely equal to 0.05 for 137 out of its 150 results. We attributed this to
a reporting mistake; clearly, these were intended to be reported as significant results with a p-value lower
than or equal to 0.05. Leaving Colgate Palmolive’s results in the sample would lead to a substantial spike at
z = 1.96, which could be wrongly interpreted as evidence for p-hacking.

832.4% of p-values from primary outcomes, which meet the other criteria to be included in our sample,
are not reported precisely but only relative to some threshold; for example, p < 0.001 or p > 0.1. 89.9%
of these cases are highly significant results which are commonly reported as p < 0.001 (corresponding to
z > 3.29) and p < 0.0001 (corresponding to z > 3.89). As barely any p-values are reported with equality
below these thresholds, we lack information about the shape of the very left tail of the p-distribution (and
the right tail of the z-distribution). For other parts of the distribution, including the region around the 5%
significance threshold we focus on, such relative reporting is very infrequent. Therefore, we are confident
in considering only exactly reported p-values for our tests to detect irregularities in the distribution at the
5% significance threshold.
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the same effect as the comparison.9 Under the null hypothesis, these z-scores are Gaus-
sian, so we have the one-to-one correspondence

z = −Φ−1
( p

2

)
, (1)

where z is the absolute value of the test statistic, and Φ−1 is the inverse of the standard
normal cumulative distribution function. While the density of p-values is highly convex
around the 5% significance threshold, the density of corresponding z-scores is closer to
linear in this range, making it easier to identify a discontinuity at the threshold. More-
over, the density of z-scores is more convenient for graphical analysis; to make potential
irregularities at the significance threshold visible, we do not need to zoom in to a small
window, but we can plot the entire distribution.

Registration and Reporting Requirements. Section 801 of the FDA Amendments Act
(FDAAA), initially passed in 2007 and in effect since April 2017, describes a set of criteria
under which the responsible party (i.e., the trial’s sponsor or principal investigator) is
prescribed to10

• register a trial at ClinicalTrials.gov no later than 21 days after the start date,11 and

• submit results of a trial at ClinicalTrials.gov no later than twelve months after the
primary completion date.12

Preregistration. The information that the initial registration needs to contain, accord-
ing to the FDAAA, includes descriptive information about the trial (e.g., title, design,
primary outcome measures, timeline), recruitment information (e.g., eligibility criteria),
and location and contact information (e.g., name of the sponsor, facility information). A
complete pre-analysis plan, as nowadays seen often for RCTs in economics, is neither re-
quired nor commonly found on ClinicalTrials.gov. The registration can be updated and
modified at any time, and investigators do so frequently by gradually adding more de-
tails about the study protocol and progress. The main page of the registry shows the
information of the latest submission. The entire history of modifications is stored and

9Note that most p-values do not actually originate from a two-sided Z-test but from various other statis-
tical procedures.

10These criteria generally include that the study is interventional, concerns an FDA-regulated product, is
not a phase I or feasibility study, and trial or manufacturing sites are located in the United States. See Zarin
et al. (2016) and https://clinicaltrials.gov/ct2/manage-recs/fdaaa (accessed on April 5, 2023) for further
details.

11The start date of a trial refers to the date on which the first participant was enrolled in the clinical study.
12The primary completion date of a trial refers to the date the last participant in a clinical study was exam-

ined or received an intervention to collect final data regarding one of the primary outcome measures.

7

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.23290326doi: medRxiv preprint 

https://clinicaltrials.gov/ct2/manage-recs/fdaaa
https://doi.org/10.1101/2023.05.22.23290326


Figure 2: Timeline of Registration and Reporting

accessible with a few clicks, but the information of earlier submissions (and, in particular,
the initial submission) is not displayed very prominently. This design reflects that the
primary intention of the registry has not been to provide a platform for preregistration
of trials but a platform that collects information from all trials, including those that were
“not successful” and would not lead to publications in academic journals, and makes
them easily accessible.

Strictly speaking, there is no legal preregistration requirement before the start of a trial,
but the first registration has to occur within three weeks after the trial has started. In-
dependent of the FDA regulation, already since 2005, the International Committee of Med-
ical Journal Editors (ICMJE) has required preregistration “at or before the onset of patient
enrollment” at a public trials registry such as ClinicalTrials.gov (or one of the smaller reg-
istries of other countries) as a condition to be considered for publication in many of the
major medical journals (De Angelis et al., 2004).

For our analysis, we follow the ICMJE and define a trial as preregistered if the first
registration at ClinicalTrials.gov was submitted at or before the trial’s start date. We define
a trial as non-preregistered if the first submission to the registry was after the start date.
Figure 2 visualizes the timeline of the registration and reporting process. Note that the
initial submission of a study may occur even after the completion of the trial.

Figure 3 shows how the number of trials in the registry and the share of preregistered
trials have evolved over time by the start year of the trials. The bars in the background
display the number of trials in the registry, which fall in the different groups defined in
Figure 1 and share the same color coding. The registry gained importance with the first
introduction of the FDAAA in 2007. Since then, 3,000 to 4,000 trials per year were sub-
mitted until 2019. In 2020 and 2021, this number increased to almost 5,000. The numbers
for 2022 and 2023 are lower as many trials that started or are about to start in these years
may not have been registered yet. The share of preregistered trials (according to our defi-
nition discussed in the previous paragraph), depicted by the green line, has continuously
increased up to a plateau of about 80%. The strong uptick to almost 1 in the last two years
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Figure 3: Time Trends

Notes: The bars in the background (right y-axis) show the number of trials in the registry by start year.
The color coding corresponds to the groups defined in Figure 1. The gray bars refer to ongoing trials that
(except completion) meet all the other criteria to be included in our sample. The green line (left y-axis)
shows the share of preregistered trials (defined as first submitted to the registry at or before the start date)
among all trials (blue ellipse in Figure 1 plus the ongoing trials) by start year.

is mainly mechanical, as many of the non-preregistered trials started in these years may
not have been reported to the registry yet.

The preregistration status of trials is correlated with other important characteristics
and design features. Table 1 assesses the balancedness of such other trial characteristics
between preregistered and non-preregistered trials in our main sample.13 The first set of
characteristics we consider are design features that, like preregistration, are commonly re-
garded as good practice and a sign of integrity and credibility. These include the presence
of an independent data-monitoring committee, blinding of subjects, caregivers, investi-
gators, and outcome assessors, and the principal investigator not being an employee of

13While Table 1 only considers the trials that report at least one exact p-value (the main sample of our
analysis, red ellipse in Figure 1), Appendix Table A3 provides a similar comparison for all applicable trials
in the registry (blue ellipse in Figure 1). The correlation patterns are very similar.
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Table 1: Comparing Characteristics of Non-Preregistered and Preregistered Trials in Main
Sample

(1) (2) (3)
non-preregistered preregistered difference (2)–(1)

data monitoring committee 0.464 0.575 0.111***
(0.499) (0.494) (0.018)

subject masked 0.711 0.768 0.057***
(0.453) (0.422) (0.014)

caregiver masked 0.420 0.444 0.024
(0.494) (0.497) (0.017)

investigator masked 0.697 0.751 0.053***
(0.460) (0.433) (0.015)

outcomes assessor masked 0.398 0.431 0.033**
(0.490) (0.495) (0.016)

mask folds 2.226 2.394 0.168***
(1.576) (1.505) (0.051)

PI no employee of sponsor 0.878 0.914 0.036***
(0.327) (0.281) (0.010)

enrollment 632.6 549 -83.6
(1,764.7) (1,573.6) (54.0)

placebo-controlled 0.634 0.714 0.079***
(0.482) (0.452) (0.015)

industry-sponsored 0.684 0.763 0.079***
(0.465) (0.425) (0.014)

phase III 0.551 0.508 -0.044***
(0.498) (0.500) (0.017)

# exact p-values from primary outcomes 2.108 2.103 -0.005
(2.194) (2.288) (0.075)

# exact p-values from secondary outcomes 9.483 11.904 2.421
(37.684) (54.005) (1.677)

Observations 1,206 3,604 4,810

Notes: The first two columns show the means (and, in parentheses, standard deviations) of the variables
indicated in the respective row for non-preregistered and preregistered trials in our main sample (red ellipse
in Figure 1). Column 3 shows the differences between the first two columns with standard errors in paren-
theses; significance levels indicated by the stars: * p<0.1, ** p<0.05, *** p<0.01. The variable “mask folds”
adds up the four dummy variables in the four rows above.

10

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.23290326doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290326


the study’s sponsor. All of these binary variables are coded with value one if the design is
”superior” in terms of integrity.14 Except for the masking of the caregiver, preregistered
trials are significantly more likely to feature these other superior design elements, with
differences ranging between 3 and 11 percentage points. Moreover, preregistered trials
are significantly more likely to involve a placebo control and to be industry-sponsored, as
well as less likely to be in phase III (instead of phase II or phase II/III combined). There do
not seem to be substantial differences in the number of enrolled subjects and the number
of reported outcomes.

Table 1 shows the importance of controlling for other design features when assessing
the impact of preregistration on the distribution of reported p-values, as we set out to do
with the caliper tests in Section IV.

Reporting of Results. Trial results that are supposed to be reported to ClinicalTri-
als.gov according to the FDAAA include the participant flow, demographic and baseline
characteristics of different treatment groups, adverse event information, and outcomes
and statistical analyses for each primary and secondary outcome measure. The latter may
contain the p-values we focus on for our analysis. These result data are usually submitted
after the primary completion of the trial (see Figure 2).

Compliance with the FDAAA regulations is still poor, especially regarding reporting
results to the registry.15 Of the group of trials we look at, only 43.5% reported any results
to the registry at all, and 9.5% reported at least one exact p-value to be included in our
sample (see Figure 1).16 The time trend of reporting rates can be read in Figure 3.

A natural limitation of our study is that we can only analyze the distribution of p-
values for those trials that actually do report results to the registry. To assess the repre-
sentativeness of our sample, Table 2 compares the characteristics and design of trials that

14For simplicity, we will refer to data monitoring committees, blinding, and independent PIs as “supe-
rior” design features throughout the paper because, if feasible to implement, these features are commonly
considered superior regarding research integrity. However, we acknowledge that certain constraints may
preclude implementing some of these features in some cases. Therefore, a trial not having all these features
is not necessarily proof of inferior research integrity.

15The FDAAA specifies fines for non-compliance with reporting requirements of over US$10,000
per day. However, these regulations have not been enforced for a long time (Piller, 2020).
The first notice of non-compliance was issued only in April 2021. As of April 2023, only
four such notices were issued, none of which has led to an actual civil money penalty so
far (see https://www.fda.gov/science-research/fdas-role-clinicaltrialsgov-information/clinicaltrialsgov-
notices-noncompliance-and-civil-money-penalty-actions, accessed on April 8, 2023).

16See, for instance, Anderson et al. (2015), Zarin et al. (2017), and DeVito, Bacon, and Goldacre (2020)
for studies in the medical literature that evaluate compliance with registration and result reporting require-
ments to ClinicalTrials.gov. Adda, Decker, and Ottaviani (2020, Online Supplement) and Abrams, Libgober,
and List (2023, Appendix G) provide more detailed reviews of this literature.

11

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.23290326doi: medRxiv preprint 

https://www.fda.gov/science-research/fdas-role-clinicaltrialsgov-information/clinicaltrialsgov-notices-noncompliance-and-civil-money-penalty-actions
https://www.fda.gov/science-research/fdas-role-clinicaltrialsgov-information/clinicaltrialsgov-notices-noncompliance-and-civil-money-penalty-actions
https://doi.org/10.1101/2023.05.22.23290326


Table 2: Comparing Characteristics of Trials that Report P-Values, Trials that Report
Results, and Trials that Do not Report Results

(1) (2) (3) (4) (5) (6)
exact p-values results provided, no results difference difference difference

provided but no exact p-values provided (1)–(2) (1)–(3) (2)–(3)

preregistered 0.749 0.669 0.435 0.080*** 0.314*** 0.234***
(0.433) (0.471) (0.496) (0.008) (0.008) (0.005)

data monitoring committee 0.549 0.495 0.469 0.053*** 0.079*** 0.026***
(0.498) (0.500) (0.499) (0.009) (0.008) (0.005)

subject masked 0.754 0.421 0.388 0.333*** 0.366*** 0.034***
(0.431) (0.494) (0.487) (0.008) (0.007) (0.005)

caregiver masked 0.438 0.238 0.229 0.199*** 0.208*** 0.009**
(0.496) (0.426) (0.420) (0.007) (0.007) (0.004)

investigator masked 0.737 0.405 0.363 0.332*** 0.374*** 0.043***
(0.440) (0.491) (0.481) (0.008) (0.007) (0.005)

outcome assessor masked 0.423 0.237 0.224 0.187*** 0.199*** 0.013***
(0.494) (0.425) (0.417) (0.007) (0.007) (0.004)

mask folds 2.352 1.301 1.203 1.051*** 1.149*** 0.098***
(1.524) (1.604) (1.583) (0.026) (0.025) (0.015)

PI no employee of sponsor 0.905 0.781 0.124***
(0.294) (0.414) (0.006)

enrollment 569.9 242.1 245.0 327.9*** 324.9*** -2.9
(1,623.9) (999.2) (978.0) (19.0) (17.2) (9.6)

placebo-controlled 0.694 0.350 0.289 0.344*** 0.404*** 0.060***
(0.461) (0.477) (0.453) (0.008) (0.007) (0.004)

industry-sponsored 0.743 0.572 0.466 0.172*** 0.278*** 0.106***
(0.437) (0.495) (0.499) (0.008) (0.008) (0.005)

phase III 0.519 0.368 0.389 0.151*** 0.130*** -0.021***
(0.500) (0.482) (0.488) (0.008) (0.008) (0.005)

Observations 4,810 17,255 28,665 22,065 33,475 45,920

Notes: The first three columns show the means (and, in parentheses, standard deviations) of the vari-
ables indicated in the respective row for the trials in the different samples. Column 1 refers to the
main sample of trials that report exact p-values (red ellipse in Figure 1). Column 2 refers to trials
that provide results but no exact p-values (orange ellipse but not red ellipse in Figure 1). Column 3
refers to applicable trials that do not report results (blue ellipse but not orange ellipse in Figure 1).
Columns 4-6 show pairwise differences of the first three columns with standard errors in parentheses;
significance levels indicated by the stars: * p<0.1, ** p<0.05, *** p<0.01. The variable “mask folds”
adds up the four dummy variables in the four rows above. Information about the PI’s employment is
unavailable for trials that do not report results.

12

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.23290326doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290326


report at least one exact p-value (column 1, our main sample, red ellipse in Figure 1), tri-
als that report some results but no exact p-values (column 2, orange but not red ellipse in
Figure 1), and trials that do not report any results (column 3, blue but not orange ellipse
in Figure 1).

The trials in our main sample are 8 percentage points more likely to be preregistered
than trials that report results but no exact p-value and 31 percentage points more likely
to be preregistered than trials that do not report any results. Regarding the other supe-
rior design characteristics (data monitoring committee, blinding, independent PI), trials
in our sample appear substantially better than trials that report results but no exact p-
values. However, the differences between the trials that report results but no exact p-
values and those trials that do not report any results appear less pronounced. Moreover,
trials in our sample enroll, on average, more than twice the number of participants and
are substantially more likely to involve a placebo control, be industry-sponsored, and be
in phase III.

In summary, it seems that our sample of p-values stems from the group of larger-
scale trials that do best regarding research integrity and transparency standards. As such,
we would expect any concerns of p-hacking we detect for this sample to be even more
pronounced for the other groups of trials, for which we do not have the chance to perform
such an analysis.

III Density Discontinuity Tests

Method. In the absence of selective reporting or manipulation of results, the density
of z-scores f (z) is continuous under a wide range of assumptions (Andrews and Kasy,
2019). Therefore, an intuitive and powerful way to test for manipulation to clear a cer-
tain significance threshold c is to test for a discontinuity in the density of z-scores at this
threshold (Adda, Decker, and Ottaviani, 2020; Elliott, Kudrin, and Wüthrich, 2022a), for-
mally

H0 : lim
z↗c

f (z) = lim
z↘c

f (z) vs. H1 : lim
z↗c

f (z) 6= lim
z↘c

f (z). (2)

We implement the testing procedure proposed by Cattaneo, Jansson, and Ma (2020), an
advancement of the McCrary (2008) test. This procedure builds on local polynomial den-
sity estimators with bias correction at the boundary c. The main advantages of this ap-
proach over other methods to detect p-hacking are that it avoids pre-binning of the sam-
ple and features an entirely data-driven bandwidth selection, allowing for possibly differ-
ent bandwidths to the left and right of the testing threshold. Moreover, it does not restrict
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Figure 4: Density Discontinuity Tests at z = 1.96 (Primary Outcomes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of z-scores
from tests on primary outcomes of non-preregistered (panel A) and preregistered trials (panel B). The
shaded blue areas are 95% confidence bands for the density estimates, and the vertical red lines at 1.96
correspond to the threshold for statistical significance at the 0.05 level. The local polynomial density esti-
mators proposed by Cattaneo, Jansson, and Ma (2020) are used. We allow for a discontinuity at 1.96 and
present the log-difference measure ∆1.96 as defined in equation 3 and the p-values of the discontinuity test
(equation 2). Note that potential discrepancies between ∆1.96 and the differences that can be read off the
plotted densities are due to the bias correction in the testing procedure.

the sample of z-scores to a window around the testing threshold ex-ante but potentially
exploits information of the entire distribution.

As an interpretable measure for the size of a discontinuity, we introduce

∆c = log
(

lim
z↘c

f̂ (z)
)
− log

(
lim
z↗c

f̂ (z)
)

, (3)

the log-difference in the limits of the bias-corrected density estimate f̂ (z) from the right
and the left of c.

Our main analysis focuses on the most prominent threshold for statistical significance
at the 95% confidence level, corresponding to a p-value smaller than 0.05 or a z-score large
than 1.96.

Tests for Primary Outcomes. Figure 4 shows histograms and density estimates with
a discontinuity test at z = 1.96 (the threshold for statistical significance at the 5% level)
for the distribution of z-scores from tests on primary trial outcomes. Primary outcomes
are the endpoints that are most relevant to answer the specific research question of a
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trial; usually, these are patient-centered measures such as quality of life and survival.
The trials in our main sample report, on average, 2.1 exact p-values for tests related to
primary outcomes. Since a statistically significant impact of the tested interventions on
these primary outcomes is often pivotal for the evaluation of a trial’s success (for instance,
concerning the marketing approval decision of regulatory authorities such as the FDA or
publication in medical journals), we would expect that any potential manipulation of
results or selective reporting would focus on these primary outcomes.

The density discontinuity test for results from non-preregistered trials in panel A finds
a statistically significant discontinuity at z = 1.96, indicative of some degree of p-hacking
to clear the significance threshold or selective reporting of results based on statistical sig-
nificance. The log-difference measure ∆1.96 suggests that the bias-corrected estimated
density is 54% larger on the right of the cutoff than on the left.

Panel B, instead, considers preregistered trials. The estimated density is almost smooth
at the significance threshold, and our test does not detect a statistically significant discon-
tinuity. We conclude that preregistration can be seen as a reliable signal for the credibility
of clinical trials, at least insofar as we do not find any evidence for p-hacking for reported
results from trials preregistered at ClinicalTrials.gov.

Tests for Secondary Outcomes. Besides the primary outcomes, which are the main
endpoints of the studies, most trials also document statistical results for an array of sec-
ondary outcomes. Secondary outcomes are outcomes of lesser importance than primary
outcomes, which are monitored additionally to help interpret the results of primary out-
comes. As such, we would not expect secondary outcomes to be the target of p-hacking.
Of the trials in our main sample, 67% report at least one exact p-value for a statistical test
of a secondary outcome; conditional on reporting exact p-values for secondary outcomes,
the average number of reported results is 16.9.

Figure 5 shows histograms and density estimates for the distribution of z-scores from
secondary outcomes. Both for non-preregistered trials (panel A) and preregistered trials
(panel B), the estimated densities are very smooth around the significance threshold at
z = 1.96, and we do not find any evidence for p-hacking.

Additional Results and Robustness Checks. In Online Appendix B, we show that
the discontinuity for non-preregistered trials in Figure 4 is mainly driven by trials with a
substantial reporting delay (>10% of trial duration) with more opportunity for p-hacking
than only slightly delayed trials. Moreover, we show that density discontinuity tests do
not detect irregularities at other significance thresholds (0.1, 0.01, 0.001) and that other
design characteristics of trials are less correlated to a discontinuity at the significance
threshold than the preregistration status. Also, we establish the robustness of our main
result with respect to transforming p-values to one-sided instead of two-sided test statis-
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Figure 5: Density Discontinuity Tests at z = 1.96 (Secondary Outcomes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of z-scores
from tests on secondary outcomes of non-preregistered (panel A) and preregistered trials (panel B). The
shaded blue areas are 95% confidence bands for the density estimates, and the vertical red lines at 1.96
correspond to the threshold for statistical significance at the 0.05 level. The local polynomial density esti-
mators proposed by Cattaneo, Jansson, and Ma (2020) are used. We allow for a discontinuity at 1.96 and
present the log-difference measure ∆1.96 as defined in equation 3 and the p-values of the discontinuity test
(equation 2). Note that potential discrepancies between ∆1.96 and the differences that can be read off the
plotted densities are due to the bias correction in the testing procedure.

tics and de-rounding p-values. Finally, we apply the battery of alternative tests to detect
p-hacking proposed by Elliott, Kudrin, and Wüthrich (2022a) to our data.

IV Caliper Tests

The Need of a Conditional Analysis. Recall from the discussion around Table 1 in
Section II that the preregistration status of a trial is substantially correlated with other
design features of the trial, which are commonly considered indicative of the integrity and
credibility of research and might restrict the opportunity to p-hack. This begs the question
if preregistration is really the decisive factor for the patterns we documented with the
density discontinuity tests. To isolate the impact of preregistration on the distribution of
reported p-values, these other characteristics need to be controlled for.

More generally, to obtain the causal effect of preregistration on p-hacking and selec-
tive reporting, we would need to compare the reported outcomes of a preregistered trial
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to those of an exactly identical hypothetical counterfactual trial by the same researchers
that is non-preregistered, and vice-versa. Running an experiment to randomly assign tri-
als to preregister or not preregister is not feasible in this context. Moreover, legal registra-
tion requirements are enforced too poorly to provide a natural experiment with plausible
quasi-random variation in the preregistration status. Therefore, the best we can do to get
close to a causal estimate is to control for observable trial characteristics and sponsor fixed
effects as well as possible.

Density discontinuity tests require a discrete sample split to assess the impact of a
particular variable on the discontinuity. They do not allow conditioning of the analysis
on other variables, if not by splitting the sample even further. As the method is also quite
demanding regarding the sample size required for robust results, slicing the sample in
this way would not be practical. Therefore, we rely on caliper tests to assess the impact
of preregistration conditional on other trial characteristics and fixed effects.

Method. The basic idea of the caliper test, first introduced by Gerber and Malhotra
(2008), is to compare the number of z-scores in a narrow, equally-sized window above and
below the significance threshold. If significantly more results fall in the window above
the threshold, this is considered evidence for p-hacking or selective reporting based on
the significance level. As noted by Brodeur, Cook, and Heyes (2020), caliper tests allow
to asses simultaneously the impact of several variables and fixed effects on the share of
significant results within the specified window in a multivariate regression framework.

For a significance threshold c and a bandwidth h, we estimate for the sample of all
z-scores in the window [c− h, c + h] the regression

signi f icantij = α + βpreregisteredj + xxx′jγ + εij, (4)

where signi f icantij is a dummy indicating if z-score i of trial j is above the significance
threshold c, preregisteredj is a dummy indicating if trial j was preregistered, xxxj is a vec-
tor of other characteristics of trial j (possibly including fixed effects), and εij is an error
term. We use a linear probability model such that we can estimate specifications with
high-dimensional sponsor fixed effects. In Online Appendix C, we show that the results
without high-dimensional fixed effects are robust in probit and logit models. As the den-
sity discontinuity tests detected a discontinuity only at the 5% significance threshold, we
focus our analysis on the cutoff c = 1.96.

Choosing the Bandwidth. As discussed above, without manipulation, the density
of z-scores is continuous. Therefore, a discontinuity at the significance threshold can be
assigned to some sort of manipulation with certainty. With the caliper tests, we move
away from investigating a discontinuity in the limit to a discrete window of scores below
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and above the threshold.17 Differences in the number of scores in two discrete bins may
not necessarily be due to manipulation but may arise naturally as the density of z-scores is
not flat but has a nonzero slope at the threshold. Elliott, Kudrin, and Wüthrich (2021) note
that for certain distributions of “true” underlying effects, even upward-sloping portions
of the z-density cannot be ruled out.

Moreover, in the proposed regression framework, we look at differences in caliper
tests between groups of trials. These different groups of trials may not have the same
underlying distributions of “true” effects, and their z-score densities may not have the
same slope around the threshold. These natural differences may influence the estimated
regression coefficients, which may pick up not only differences in a discontinuity at the
threshold but, in part, also differences in the distributions of underlying “true” effects.

Intuitively, both the concerns that the caliper tests pick up the slope of the density
instead of a discontinuity and that the regression coefficients are “contaminated” by dif-
ferences in the underlying distributions of “true” effects become larger as the bandwidth
h increases. However, smaller bandwidths will lead to smaller sample sizes and less sta-
tistical power. Therefore, a wise bandwidth choice is vital for the reliability of the caliper
tests.

Led by the results of the density discontinuity tests and visual inspection of the his-
tograms of the raw data in Figure 4, we set h = 0.2 as bandwidth for our main analysis.
This corresponds roughly to two bins below and two bins above the significance thresh-
old in the histograms. Visually, for non-preregistered trials, mass appears to be missing
specifically in the two bins below the threshold, whereas the two bins above the thresh-
old evidently feature an excess number of scores. Moreover, it might be challenging to
inflate the z-score subtly by a margin of more than 0.2. Further down, we will show the
estimates of the main coefficient of interest for alternative bandwidths.

In summary, the caliper tests have the crucial advantage that they can be embedded
in a regression framework and can provide estimates for the impact of preregistration
conditional on other trial characteristics. On the flip side, the results need to be inter-
preted carefully because the regression may pick up not only manipulation but also other
(innocent) factors. We calibrate the caliper tests such that the baseline results align with
the more precise density discontinuity tests, and we can be confident that the differences
the caliper tests detect indeed indicate a different prevalence of p-hacking or selective
reporting and are not driven by other factors.

Baseline Results. Table 3 shows the results of the caliper test regression 4. Col-
umn 1 considers the baseline case without any further controls. In the group of non-

17Intuitively, density discontinuity tests can be seen as the limit of caliper tests when the bandwidth h
approaches zero.
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Table 3: Caliper Tests for z ∈1.96±0.2 (Primary Outcomes, LPM)

(1) (2) (3) (4) (5) (6) (7)

preregistered -0.0862** -0.0740* -0.0965** -0.0927** -0.0991* -0.116* -0.121*
(0.0350) (0.0396) (0.0377) (0.0426) (0.0508) (0.0614) (0.0704)

data monitoring committee 0.0253 0.000886 -0.0144
(0.0332) (0.0362) (0.0567)

subject masked 0.0104 -0.0200 -0.0757
(0.0868) (0.0873) (0.151)

caregiver masked 0.00782 0.00686 0.00861
(0.0443) (0.0438) (0.0658)

investigator masked -0.0787 -0.0425 0.0724
(0.0835) (0.0774) (0.135)

outcomes assessor masked 0.0416 0.0598 0.0643
(0.0427) (0.0424) (0.0645)

PI not employee of sponsor -0.0169 0.0677 0.149
(0.0599) (0.0741) (0.153)

Non-Prereg. Sig. Rate 0.633 0.633 0.638 0.638 0.610 0.610 0.602
Observations 1,033 1,033 912 912 844 844 727
No. of trials 850 850 747 747 661 661 562
R-squared 0.006 0.065 0.011 0.082 0.178 0.222 0.251
Controls no yes no yes no yes yes
Start Year FE no yes no yes no yes yes
MeSH Condition FE no yes no yes no yes yes
Sponsor FE no no no no yes (150) yes (150) yes (140)
Window 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2

Notes: The table shows results from the linear caliper test regression (equation 4) on z-scores from primary
outcomes in the main sample. “Controls” include dummies for research phases (phase II vs. phase III vs. phase
II/III combined), a dummy for a placebo comparator, the square root of overall enrollment as a proxy for the
power of the tests, and in the specifications without sponsor fixed effects dummies for sponsor groups (non-
industry, small industry, and top 10 industry based on 2019 revenue as defined by Adda, Decker, and Ottaviani
(2020)). “MeSH Condition FE” refers to fixed effects for groups of treated definitions based on MeSH classifi-
cation (see Online Appendix Table A2; categories with too few observations are grouped together as omitted
category). Reduced sample sizes result from excluding trials with missing information on data monitoring
committees in columns 3, 4, and 7 and excluding singleton observations within sponsor nests in columns 5, 6,
and 7. Standard errors in parentheses are clustered at the trial level. Significance levels indicated by the stars: *
p<0.1, ** p<0.05, *** p<0.01.
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preregistered trials, 63.3% of the scores that fall in the window [1.96± 0.2] are significant.
Confirming the results of the density discontinuity tests, this share is 8.6 percentage points
lower for preregistered trials, a statistically significant difference at the 5% level.

In column 2, we start to control for other trial characteristics; these are dummies for
sponsor groups (large industry, small industry, non-industry), phases (phase II, phase III,
phase II/III combined), and the trial involving a placebo control, as well as the square
root of the number of enrolled participants as a proxy for the power of the statistical tests.
Moreover, we include fixed effects for the start years of the trial to control flexibly for
any time-trend, and fixed effects for the treated conditions based on Medical Subject Head-
ings (MeSH) classification. The resulting estimate of the difference between preregistered
and non-preregistered trials and its precision differ only marginally from the baseline in
column 1.

Other Design Features. Columns 3 and 4 repeat the specifications of the first two
columns but control additionally for the other superior design characteristics that are, as
shown in Table 1, positively correlated with a trial’s preregistration status. The estimated
coefficients for preregistration are even slightly larger in magnitude than without these
additional controls, and they are still statistically significant at the 5% level. Moreover,
none of the estimated coefficients for any of these other characteristics is as large in mag-
nitude as the coefficient of preregistration.

We conclude that the differences we established with the density discontinuity tests
are indeed driven by the trial’s preregistration status and not any of these other correlated
features. Moreover, of all the design characteristics commonly considered indicative of
good scientific practice, preregistration appears to be the strongest signal for the credibil-
ity and integrity of reported results, as far as it can be measured with the tools at hand to
detect p-hacking and selective reporting.

Sponsor Fixed Effects. The main concern preventing a causal interpretation of the es-
timates of the caliper test is that there might be some unobserved trait of the researchers
conducting the trials (we could call it integrity) that leads them to select both into pre-
registering their studies and into reporting their results completely and honestly. This
selection may not be picked up by any of the observable controls we have included in the
regression so far.

Attempting to control for such an unobserved trait of researchers, we consider speci-
fications with sponsor fixed effects in columns 5 to 7 of Table 3. Comparing only prereg-
istered and non-preregistered trials by the same sponsor, this unobserved researcher trait
may cancel out as trials by the same sponsor are likely to be conducted by similar teams
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of researchers.18 Moreover, sponsor fixed effects may also account for any deliberate tam-
pering with reported results triggered by the sponsoring party’s financial considerations.

Columns 5 and 6 repeat the first two columns’ specifications but additionally include
the high-dimensional sponsor fixed effects. Column 7 controls additionally for the other
design characteristics. Including all these additional controls increases the estimated dif-
ference between preregistered and non-preregistered trials to more than 12 percentage
points. Standard errors increase slightly, as can be expected in such a more demanding
specification with many fixed effects, but the coefficients are still statistically significant
at the 10% level.

In summary, even after controlling for observables as well as possible with the avail-
able data, including sponsor fixed effects that should take care of unobserved finan-
cial considerations of sponsors and traits of responsible researchers, we find substantial
and statistically significant differences between preregistered and non-preregistered tri-
als which are indicative of preregistration being able to prevent p-hacking and selective
reporting.

Secondary Outcomes. Online Appendix C presents results from caliper tests on sec-
ondary outcomes, which confirm the results from the density discontinuity tests and do
not detect any evidence of p-hacking related to these lower stake outcomes.

Alternative Bandwidths. Table 4 shows the estimated coefficients for preregistered
in regression equation 4 for alternative bandwidths ranging between 0.05 and 0.6. The
seven columns refer to the same specifications as those in Table 3. Bandwidths lower
than 0.2 deliver estimates of similar magnitude as our main specification. For the lowest
bandwidths, the precision decreases, and standard errors increase naturally as the sam-
ple sizes become very small. For bandwidths larger than 0.2, the estimated effect sizes
get gradually attenuated. As discussed above, the larger the bandwidth, the more likely
the discontinuity estimates may be “contaminated” by differences in the underlying dis-
tributions of “true” effects.

V Conclusion

This paper addressed whether current regulations for preregistration of pre-approval
drug trials with human volunteers are sufficient to guarantee the integrity and credibility
of reported results. We analyzed the distribution or results reported to the ClinicalTri-
als.gov registry from preregistered and non-preregistered trials with different tools for

18Unfortunately, ClinicalTrials.gov only contains limited information about the actual researchers involved
in conducting a study. Therefore, an analysis with researcher fixed effects is not feasible.
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Table 4: Caliper Tests with Alternative Bandwidths (Primary Outcomes, LPM)

(1) (2) (3) (4) (5) (6) (7)

z ∈ 1.96± 0.05 -0.0874 -0.0681 -0.120* -0.126 -0.0603 -0.101 -0.162
[N = 254] (0.0633) (0.0849) (0.0687) (0.0955) (0.112) (0.153) (0.251)
z ∈ 1.96± 0.10 -0.0680 -0.0558 -0.0826* -0.0871 -0.00184 0.0688 0.0452
[N = 512] (0.0464) (0.0517) (0.0495) (0.0566) (0.0766) (0.0887) (0.114)
z ∈ 1.96± 0.15 -0.0895** -0.0793* -0.115*** -0.117** -0.103* -0.0976 -0.136*
[N = 786] (0.0391) (0.0440) (0.0418) (0.0463) (0.0573) (0.0706) (0.0804)
z ∈ 1.96± 0.20 -0.0862** -0.0740* -0.0965** -0.0927** -0.0991* -0.116* -0.121*
[N = 1,033] (0.0350) (0.0396) (0.0377) (0.0426) (0.0508) (0.0614) (0.0704)
z ∈ 1.96± 0.25 -0.0677** -0.0505 -0.0754** -0.0658* -0.0592 -0.0523 -0.0538
[N = 1,327] (0.0316) (0.0349) (0.0332) (0.0365) (0.0442) (0.0523) (0.0572)
z ∈ 1.96± 0.30 -0.0455 -0.0331 -0.0554* -0.0500 -0.0348 -0.0168 -0.0191
[N = 1,585] (0.0287) (0.0323) (0.0304) (0.0341) (0.0402) (0.0476) (0.0518)
z ∈ 1.96± 0.35 -0.0458* -0.0424 -0.0511* -0.0550* -0.0250 -0.0224 -0.0146
[N = 1,826] (0.0274) (0.0310) (0.0294) (0.0326) (0.0373) (0.0445) (0.0480)
z ∈ 1.96± 0.40 -0.0417 -0.0250 -0.0471* -0.0318 -0.0226 -0.00454 0.00475
[N = 2,102] (0.0256) (0.0290) (0.0272) (0.0305) (0.0344) (0.0411) (0.0436)
z ∈ 1.96± 0.50 -0.0463** -0.0415 -0.0510** -0.0504* -0.0312 -0.0169 -0.0199
[N = 2,645] (0.0235) (0.0267) (0.0249) (0.0278) (0.0305) (0.0363) (0.0384)
z ∈ 1.96± 0.60 -0.0413* -0.0525** -0.0372 -0.0527* -0.0233 -0.0230 -0.0232
[N = 3,135] (0.0229) (0.0257) (0.0242) (0.0269) (0.0287) (0.0334) (0.0350)

Controls no yes no yes no yes yes
Start Year FE no yes no yes no yes yes
Mesh Condition FE no yes no yes no yes yes
Other Design Features no no yes yes no no yes
Sponsor FE no no no no yes yes yes

Notes: The table shows the coefficient for preregistered in linear caliper test regressions (equation 4) on
z-scores from primary outcomes in the main sample with different bandwidths in the respective rows.
The columns refer to otherwise identical specifications to those in Table 3. Standard errors in parentheses
are clustered at the trial level. Significance levels indicated by the stars: * p<0.1, ** p<0.05, *** p<0.01.
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detecting p-hacking and selective reporting.

We do not find evidence of p-hacking in preregistered trials. In contrast, the density
of z-scores from primary outcomes of non-preregistered trials exhibits patterns indica-
tive of p-hacking or selective reporting. The difference between preregistered and non-
preregistered trials regarding these indicators appears robust to conditioning on trials’
other design characteristics and sponsor fixed effects capturing unobserved researcher
traits and sponsor incentives.

Preregistration at ClinicalTrials.gov under the current regime of regulations is indeed
a reliable signal for research integrity and credibility as far as it can be evaluated with
the currently available tools for detecting p-hacking and selective reporting. While we
cannot provide bullet-proof evidence from exogenous or quasi-exogenous variation in
the trials’ preregistration status, our results with high-dimensional sponsor fixed effects
suggest that preregistration may indeed have an impact on the integrity and credibility
of reported results.

As such, our results indicate that broadening preregistration requirements and stricter
enforcement may further improve research credibility and integrity in the reporting of sta-
tistical evidence. However, other potential drawbacks of strict preregistration mandates,
like that they lead to uninteresting and mechanical research or prevent researchers from
exploring interesting ideas,19 should be considered by policymakers as well. A compre-
hensive empirical evaluation of preregistration weighing all the potential advantages and
disadvantages is still an open question for future research.

19See, for instance, Ofosu and Posner (2020) and Banerjee et al. (2020) for discussions of these issues and
potential solutions to them.
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Online Appendix

A Summary Statistics

Table A1: Summary Statistics for Main Sample

mean sd min median max

duration [months] 32.05 25.73 0 25 261
# exact p-values from primary outcomes 2.10 2.26 1 1 30
# exact p-values from secondary outcomes 11.30 50.42 0 2 2,632
enrollment 569.93 1,623.86 4 225 27,395
placebo-controlled 0.694 0.461

preregistered 0.749 0.433

phase II 0.443 0.497
phase III 0.519 0.500
phase II/III combined 0.038 0.192

non-industry sponsor 0.257 0.437
top 10 industry sponsor 0.233 0.423
small industry sponsor 0.510 0.500

data monitoring committee 0.549 0.498
subject masked 0.754 0.431
caregiver masked 0.438 0.496
investigator masked 0.737 0.440
outcomes assessor masked 0.423 0.494
mask folds 2.35 1.52 0 2 4
PI not employee of sponsor 0.905 0.294

Notes: The table shows summary statistics (mean, standard deviation, minimum, median, and maximum)
of all relevant variables for trials in our main sample (red ellipse in Figure 1 in the main text). The top 10
vs. small industry sponsor classification is based on the ranking by 2019 revenue as determined by Adda,
Decker, and Ottaviani (2020). The variable “mask folds” adds up the four dummy variables for masking
different agents in the four rows above.
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Table A2: Trials by MeSH Category for Treated Condition

MeSH code Category # trials # trials
main sample overall

C01 bacterial infections and mycoses 49 912
C02 virus diseases 65 1,093
C03 parasitic diseases 10 219
C04 neoplasms 504 8,406
C05 musculoskeletal diseases 192 1,412
C06 digestive system diseases 386 4,163
C07 stomatognathic diseases 9 241
C08/C09 respiratory tract diseases/otorhinolaryngologic diseases 697 5,544
C10 nervous system diseases 492 4,137
C11 eye diseases 83 872
C12/C13 urologic and male genital diseases/ 130 1,572

female genital diseases and pregnancy complications
C14 cardiovascular diseases 458 5,070
C15 hemic and lymphatic diseases 26 511
C16 congenital, hereditary, and neonatal diseases and abnormalities 0 23
C17 skin and connective tissue diseases 136 1,145
C18 nutritional and metabolic diseases 416 4,194
C19 endocrine system diseases 93 1,475
C20 immune system diseases 121 937
C23 pathological conditions, signs and symptoms 110 1,005
C24 occupational diseases 1 2
C25 chemically-induced disorders 0 15
C26 wounds and injuries 8 180
F03 mental disorders 636 4,488
- not classified 188 3,114

Total 4,810 50,730

Notes: The table shows how many trials in the main sample and the sample of all applicable trials regard
the treatment of a condition associated with the MeSH categories indicated in the rows. Trials are assigned
to those categories following the procedure detailed in Adda, Decker, and Ottaviani (2020).
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Table A3: Comparing Characteristics of all Non-Preregistered and Preregistered Tri-
als

(1) (2) (3)
non-preregistered preregistered difference (2)–(1)

data monitoring committee 0.481 0.559 0.078***
(0.500) (0.496) (0.004)

subject masked 0.335 0.453 0.118***
(0.472) (0.498) (0.004)

caregiver masked 0.190 0.280 0.090***
(0.392) (0.449) (0.003)

investigator masked 0.310 0.428 0.117***
(0.463) (0.495) (0.004)

outcomes assessor masked 0.189 0.275 0.086***
(0.391) (0.447) (0.003)

mask folds 1.024 1.435 0.412***
(1.502) (1.652) (0.012)

PI no employee of sponsor 0.746 0.834 0.088***
(0.435) (0.372) (0.006)

enrollment 273.6 308.6 34.9
(1,695.8) (5,260.4) (32.4)

placebo-controlled 0.247 0.368 0.121***
(0.431) (0.482) (0.003)

industry-sponsored 0.405 0.464 0.059***
(0.491) (0.499) (0.004)

phase III 0.386 0.356 -0.030***
(0.487) (0.479) (0.004)

provide any result 0.239 0.319 0.081***
(0.426) (0.466) (0.003)

provide exact p-value 0.042 0.076 0.034***
(0.200) (0.265) (0.002)

Observations 28,981 47,446 77,368

Notes: The first two columns show the means (and, in parentheses, standard deviations) of the vari-
ables indicated in the respective row for all applicable non-preregistered and preregistered trials in the
registry (blue ellipse in Figure 1 in the main text plus ongoing trials that meet all the other criteria).
Column 3 shows the differences between the first two columns with standard errors in parentheses;
significance levels indicated by the stars: * p<0.1, ** p<0.05, *** p<0.01. The variable “mask folds”
adds up the four dummy variables in the four rows above. “Provide any result” refers to inclusion in
the orange ellipse, and “provide exact p-value” refers to inclusion in the main sample, the red ellipse
in Figure 1 in the main text.
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B Additional Results and Robustness Checks for Density
Discontinuity Tests

This section presents additional results from density discontinuity tests and robust-
ness checks of the main results presented in the main text.

Extent of Registration Delay. Our main analysis uses a binary variable to indicate
if a study has been preregistered (registration date to the registry before or equal to the
start date of the trial) or non-preregistered (registration date to the registry after the start
date of the trial). Figure B1 looks at the distribution of registration delays defined as
registration date minus start date. This means preregistered trials have a registration
delay ≤ 0, and non-preregistered trials have a positive registration delay.

Panel A shows a histogram of the registration delay in days of all trials in our sample.
Most trials register in the weeks just preceding the start date, with the mode of the distri-
bution at -7 days. Most non-preregistered trials are only delayed by a few weeks, while
the distribution has a long tail of delays of several hundred days, which in the graph is
truncated at 500 days corresponding only to the 94th percentile of the distribution.

Panel B zooms into the window of delays between 1 and 50 days. There is no bunching
of registrations before the 21-day threshold to comply with the FDA registration require-
ments.

Panel C shows the registration delay relative to the trial duration defined as primary
completion date minus start date (i.e., a relative delay >1 means that the trial was only
registered after completion). The distribution is very similar to the distribution of abso-
lute delays in panel A.

The distribution of registration delays begs the question if trials that register only with
a slight delay appear less p-hacked than trials with a more substantial delay. If a trial is
registered with a delay of a few days only, this might be due to oversight rather than in-
tention. The investigators most likely do not have information yet based on which they
could modify the trial protocol or outcome measures to inflate statistical significance.
More substantial delays may be more likely to be intentional, and investigators may al-
ready have more information from interim analyses based on which they could modify
the trial protocol or outcome measures to achieve a higher level of statistical significance
before the first registration. The larger the registration delay, the more opportunity there
is for p-hacking that cannot be caught by comparing initial registration with the final
reports.

In Figure B2, we repeat the density discontinuity tests for primary outcomes at z =

1.96, splitting the sample of non-preregistered trials by their relative registration delay.
The cutoff of 10% relative registration delay (0.1 in the distribution plotted in panel C
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of Figure B1), splits the sample non-preregistered trials roughly in half, maximizing the
power for the demanding discontinuity test in both groups.

It is striking that the discontinuity appears to be driven almost entirely by the trials
with a registration delay of more than 10% of the trial duration (panel B). Especially the
spike in the bin right above 1.96, which may be seen as evidence for inflation of results
to push them just over the threshold, is extremely pronounced for the strongly delayed
trials and completely absent for the slightly delayed trials (panel A).

Even though with the halved sample size the density discontinuity test is underpow-
ered to detect a statistically significant break for either of the two groups, we see the pat-
tern that the discontinuity grows with the opportunity to p-hack as indicative evidence
that the discontinuity is indeed driven by some sort of manipulation.

Other Significance Thresholds. While 5% is the most prominent and salient threshold
for the evaluation of statistical significance, some studies could also p-hack to clear a
different threshold. Other commonly used thresholds to claim statistical significance or
assign ’stars’ in result tables include 10%, 1%, and 0.1%.

Figure B3 shows density discontinuity tests for the distribution of z-scores from tests
on primary outcomes at the threshold z = 1.64, corresponding to statistical significance
at the 10% level. Neither the test detects a significant discontinuity for non-preregistered
trials (panel A) nor for preregistered trials (panel B).

Figure B4 shows density discontinuity tests for the distribution of z-scores from tests
on primary outcomes at the threshold z = 2.58, corresponding to statistical significance at
the 1% level. The density from non-preregistered trials (panel A) displays a substantial
downward jump at this threshold, even though not statistically significant. This pattern is
mainly driven by the large mass of trials with z-scores just above 1.96, pushing the density
estimate upwards to the left of the z = 2.58 threshold. The density from preregistered
trials (panel B) appears smooth at this threshold.

Figure B5 shows density discontinuity tests for the distribution of z-scores from tests
on primary outcomes at the threshold z = 3.29, corresponding to statistical significance at
the 0.1% level. Both the density from non-preregistered trials (panel A) and the density
from preregistered trials (panel) B exhibit a statistically significant downward jump at
this threshold. We attribute this pattern to the fact that we only consider exactly reported
p-values, and most p-values smaller than 0.001 (corresponding to z-scores to the right of
the tested threshold) are not reported exactly but only as p < 0.001 and p < 0.0001. These
p-values are not included in the sample for Figure B5, and the density estimate is based
on only a small part of the actual mass of z-scores to the right of the threshold (see the
discussion in footnote 8 of the main text). Therefore, the downward discontinuity is not
surprising.
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In summary, density discontinuity tests do not detect evidence for p-hacking or selec-
tive reporting at any of the considered alternative significance thresholds, neither for non-
preregistered nor preregistered trials. However, the tests at the 0.1% threshold should be
interpreted with a grain of salt, as we only have very little information about the shape of
the very right tail of the z-densities.

Other Trial Characteristics. As discussed in the main text, there are design elements of
trials other than preregistration, which are usually considered signs of research integrity,
such as blinding or the presence of a data monitoring committee. These elements are
correlated with the trials’ preregistration status (see Table 1 in the main text). The density
discontinuity tests do not allow for an evaluation conditional on other covariates but force
us to do discrete sample splits if we want to assess the impact of a specific variable on the
discontinuity.

Table B1 shows the log-difference measure ∆1.96 and, in parentheses, p-values of dis-
continuity tests at z = 1.96 of z-scores pertaining to primary outcomes for binary sample
splits based on these other design elements. All variables are coded so that ’yes’ corre-
sponds to the superior designs.

Neither of these other design elements appears to have an impact on the discontinuity
indicative of p-hacking which is as stark as the impact of the lack of preregistration. If
anything, the trials with superior design features tend to exhibit larger jumps. As noted
by Adda, Decker, and Ottaviani (2020), trials with superior design features are often those
with a higher prior of success ex-ante and, therefore, more significant results ex-post.
The density discontinuity tests might pick up partially this difference in the underlying
distribution of true effects.

To control for the impact of all of these features simultaneously, we apply caliper tests
(Section IV of the main text).

Robustness Check: Transformation to One-Sided Test Statistics. To rule out that
the discontinuity we find for z-scores from non-preregistered trials at the 5% signifi-
cance threshold is not driven by the particular transformation we apply to the reported
p-values, we consider an alternative transformation by supposing that the p-values do
not originate from a two-sided but a one-sided Z test. This alternative transformation
corresponds to the one-to-one mapping

zone9sided = −Φ−1 (p) , (B1)

where −Φ−1 is the inverse of the standard normal cumulative distribution function.

For a one-sided Z test, the 5% significance threshold is at zone9sided = 1.64. Figure B6
shows density discontinuity tests for the transformed one-sided test statistics from pri-
mary outcomes of non-preregistered trials (panel A) and preregistered trials (panel B) at
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this threshold. The discontinuity estimates are similar in size and statistical significance
level to those from the transformation to z-scores from a two-sided test (Figure 4 in the
main text).

Robustness Check: De-Rounding P-Values. A potential concern in the literature that
analyzes the distribution of z-scores is that rounding of parameter estimates, standard
errors, test statistics, or p-values could influence the estimation of densities and discon-
tinuity tests, as rounding might lead to the accumulation of mass at specific values. For
instance, papers that construct z-scores directly from parameter estimates and standard
errors in published articles are concerned about rounding leading to many z-scores of ex-
actly 2, right above the significance threshold of 1.96, which might actually be below 1.96
if reported more precisely (Brodeur et al., 2016; Kranz and Pütz, 2022). To test for the ro-
bustness of estimates with respect to such rounding issues, de-rounding procedures have
been proposed.

As we do not construct our z-score from parameter estimates and standard errors but
’backward’ from p-values, misclassifying a p-value as statistically significant based on
rounding appears less concerning. Rounding a p-value greater than 0.05 to 0.05 or less
and reporting it explicitly as a statistically significant p-value of less or equal to 0.05 can be
seen as a form of p-hacking in itself. Therefore, such a practice would not undermine the
validity of our tests for manipulation, but it should be picked up as evidence for manipu-
lation. Moreover, note that our sample of z-scores constructed from p-values contains no
z-score of exactly 2.

However, rounding of p-values could still affect our density estimation to some extent.
To test for the robustness of our results in this regard, we apply a de-rounding procedure
similar to the one proposed by Brodeur et al. (2016) directly to the reported p-values
(instead of de-rounding parameter estimates and standard errors as in their original ap-
plication). To construct a sample of de-rounded p-values, we replace each p-value with a
random draw from a uniform distribution over the interval that would be rounded to the
reported value, as long as this replacement would not turn a significant result (p < 0.05)
into an insignificant result (p > 0.05). We make this latter restriction because, as discussed
above, rounding an insignificant p-value to a significant one could by itself be seen as a
form of p-hacking, and, therefore, should be picked up by a test for manipulation. For
example, a p-value reported as 0.06 will be replaced by a random draw from the interval
[0.55,0.65), and a p-value reported as 0.032 will be replaced by a random draw from the
interval [0.0315,0.0325). We then transform these de-rounded p-values into correspond-
ing z-scores according to equation 1 in the main text.

Figure B7 repeats the density discontinuity tests at z = 1.96 for primary outcomes
with the z-scores obtained from the de-rounded p-values. The size and precision of the
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estimated discontinuity for non-preregistered trials (panel A) are attenuated only slightly
compared to the results in Figure 4 in the main text.

Alternative Tests to Detect p-Hacking Proposed by Elliott, Kudrin, and Wüthrich
(2022).

Table B2 shows p-values for the battery of tests to detect p-hacking proposed by Elliott,
Kudrin, and Wüthrich (2022). These tests are based on several properties that the distri-
bution of p-values should exhibit under general conditions in the absence of p-hacking,
such as continuity, non-increasingness, and K-monotonicity.

• ’Fisher’ refers to a Fisher’s test of the null hypothesis that the density of p-values is
non-increasing (Simonsohn, Nelson, and Simmons, 2014).

• ’Binomial’ refers to a Binomial test of the non-increasingness of the density of p-
values on the interval [0.04,0.05], which compares the number of p-values in the
two subintervals [0.04,0.045] and (0.045,0.05].

• ’CS1’ refers to a histogram-based test for the non-increasingness of the density of
p-values, which is implemented using the conditional chi-squared test of Cox and
Shi (2023).

• ’CS2B’ refers to a histogram-based test for 2-monotonicity and bounds on the den-
sity of p-values and the first two derivatives, which is implemented using the con-
ditional chi-squared test of Cox and Shi (2023).

• ’Discontinuity’ refers to the density discontinuity test by Cattaneo, Jansson, and Ma
(2020) applied to the density of p-values at the threshold 0.05.

• ’LCM’ refers to a Least Concave Majorant test of the null hypothesis that the cumu-
lative distribution function of p-values is convex.

Note that all these tests operate on the distribution of p-values, unlike the tests pre-
sented in the main text, which are applied to the distribution of z-scores. Moreover,
we follow Elliott, Kudrin, and Wüthrich (2022) and truncate the distribution of p-values
above 0.15 for all tests.

The first two columns show the results for primary outcomes of non-preregistered
and preregistered trials, respectively. The third column shows average results from tests
performed on 100 subsamples of p-values from preregistered trials of size equal to the
number of observations from non-preregistered trials. This downsampling procedure
allows for a comparison of p-values between non-preregistered and preregistered trials
that is not driven by the different sample sizes.

8

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.22.23290326doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.22.23290326


For non-preregistered trials (column 1) and the average subsample of preregistered
trials (column 3), all tests other than ’CS2B’ do not reject the null hypothesis (no indication
of p-hacking) at a 95% confidence level. In the full sample of preregistered trials (column
2), additionally, the ’CS1’ test rejects the null. However, due to the three times as large
sample size, we naturally expect smaller p-values than for the other samples.

For our main analysis, we rely on discontinuity tests of the density of z-scores and
caliper tests. Compared to the tests presented in Table B2, discontinuity tests of the z-
density have the advantage that they do not require truncating the distribution of results
ex-ante but potentially exploit information of the entire distribution in a data-driven man-
ner. Moreover, the estimator, which relies on a locally quadratic and cubic approximation
of the density, can identify discontinuities more reliably in the z-density, which is close to
linear at the significance threshold in the absence of manipulation, than in the p-density,
which is highly convex around the threshold. In consequence, discontinuity tests on the
z-density yield results that are most aligned with an intuitive visual evaluation of the
histograms of the raw data. Caliper tests have the advantage over the tests presented in
Table B2 that they allow to condition on other covariates.
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Figure B1: Registration Delay

Notes: The graphs show histograms for the distribution of registration delays, defined as start date mi-
nus registration date, such that preregistered trials have a negative registration delay and non-preregistered
trials have a positive registration delay. Panels A and B show absolute registration delays in days. Panel
C shows the relative registration delay with respect to the trial duration. The solid vertical red lines in
panels A and C mark the preregistration threshold of zero registration delay. The dashed vertical red line
in panel B marks a registration delay of 21 days, which is the threshold to comply with FDA regulations
(see discussion in Section II of the main text).
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Figure B2: Registration Delay: Density Discontinuity Tests at z = 1.96 (Primary Out-
comes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of z-scores
from tests on primary outcomes of trials registered with a delay of 0-10% of the trial duration (panel A)
and more than 10% (panel B). The shaded blue areas are 95% confidence bands for the density estimates,
and the vertical red lines at 1.96 correspond to the threshold for statistical significance at the 0.05 level. The
local polynomial density estimators proposed by Cattaneo, Jansson, and Ma (2020) are used. We allow for a
discontinuity at 1.96 and present the log-difference measure ∆1.96 as defined in equation 3 in the main text
and the p-values of the discontinuity test (equation 2 in the main text). Note that potential discrepancies
between ∆1.96 and the differences that can be read off the plotted densities are due to the bias correction in
the testing procedure.
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Figure B3: Density Discontinuity Tests at z = 1.64 (Primary Outcomes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of z-scores
from tests on primary outcomes of non-preregistered (panel A) and preregistered trials (panel B). The
shaded blue areas are 95% confidence bands for the density estimates, and the vertical red lines at 1.64
correspond to the threshold for statistical significance at the 0.1 level. The local polynomial density esti-
mators proposed by Cattaneo, Jansson, and Ma (2020) are used. We allow for a discontinuity at 1.64 and
present the log-difference measure ∆1.64 as defined in equation 3 in the main text and the p-values of the
discontinuity test (equation 2 in the main text). Note that potential discrepancies between ∆1.64 and the
differences that can be read off the plotted densities are due to the bias correction in the testing procedure.
The density estimates in panel A rely on local cubic approximation instead of local quadratic approxima-
tion, which is used in all the other estimates, to allow the necessary flexibility to appropriately fit the sharp
hump around z = 2.
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Figure B4: Density Discontinuity Tests at z = 2.58 (Primary Outcomes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of z-scores
from tests on primary outcomes of non-preregistered (panel A) and preregistered trials (panel B). The
shaded blue areas are 95% confidence bands for the density estimates, and the vertical red lines at 2.58
correspond to the threshold for statistical significance at the 0.01 level. The local polynomial density esti-
mators proposed by Cattaneo, Jansson, and Ma (2020) are used. We allow for a discontinuity at 2.58 and
present the log-difference measure ∆2.58 as defined in equation 3 in the main text and the p-values of the
discontinuity test (equation 2 in the main text). Note that potential discrepancies between ∆2.58 and the
differences that can be read off the plotted densities are due to the bias correction in the testing procedure.
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Figure B5: Density Discontinuity Tests at z = 3.29 (Primary Outcomes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of z-scores
from tests on primary outcomes of non-preregistered (panel A) and preregistered trials (panel B). The
shaded blue areas are 95% confidence bands for the density estimates, and the vertical red lines at 3.29
correspond to the threshold for statistical significance at the 0.001 level. The local polynomial density es-
timators proposed by Cattaneo, Jansson, and Ma (2020) are used. We allow for a discontinuity at 3.29 and
present the log-difference measure ∆3.29 as defined in equation 3 in the main text and the p-values of the
discontinuity test (equation 2 in the main text). Note that potential discrepancies between ∆3.29 and the
differences that can be read off the plotted densities are due to the bias correction in the testing procedure.
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Figure B6: Density Discontinuity Tests at zone9sided = 1.64 (Primary Outcomes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of trans-
formed one-sided z-scores from tests on primary outcomes of non-preregistered (panel A) and preregis-
tered trials (panel B). The shaded blue areas are 95% confidence bands for the density estimates, and the
vertical red lines at 1.64 correspond to the threshold for statistical significance at the 0.05 level of a one-sided
test. The local polynomial density estimators proposed by Cattaneo, Jansson, and Ma (2020) are used. We
allow for a discontinuity at 1.64 and present the log-difference measure ∆1.64 as defined in equation 3 in
the main text and the p-values of the discontinuity test (equation 2 in the main text). Note that potential
discrepancies between ∆1.64 and the differences that can be read off the plotted densities are due to the bias
correction in the testing procedure.
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Figure B7: De-Rounding: Density Discontinuity Tests at zde9rounded = 1.96 (Primary Out-
comes)

Notes: The graphs show histograms (grey) and density estimates (blue) for the distribution of z-scores,
calculated from p-values de-rounded as detailed in the text, from tests on primary outcomes of non-
preregistered (panel A) and preregistered trials (panel B). The shaded blue areas are 95% confidence bands
for the density estimates, and the vertical red lines at 1.96 correspond to the threshold for statistical signif-
icance at the 0.05 level. The local polynomial density estimators proposed by Cattaneo, Jansson, and Ma
(2020) are used. We allow for a discontinuity at 1.96 and present the log-difference measure ∆1.96 as defined
in equation 3 in the main text and the p-values of the discontinuity test (equation 2 in the main text). Note
that potential discrepancies between ∆1.96 and the differences that can be read off the plotted densities are
due to the bias correction in the testing procedure.
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Table B1: Other Trial Characteristics: ∆1.96 and P-Values of Density Dis-
continuity Tests

Variable no yes

preregistered 0.54 0.18
(0.047) (0.266)

data monitoring committee -0.02 0.24
(0.903) (0.168)

subject masked 0.24 0.24
(0.335) (0.122)

caregiver masked 0.14 0.21
(0.372) (0.252)

investigator masked 0.25 0.28
(0.305) (0.090)

outcomes assessor masked 0.11 0.37
(0.519) (0.076)

above median mask folds 0.15 0.31
(0.362) (0.080)

PI not employee of sponsor 0 0.17
(0.996) (0.158)

Notes: The table shows the log-difference measure ∆1.96 and, in parentheses, p-values
of density discontinuity tests (Cattaneo, Jansson, and Ma, 2020) at the 1.96 threshold
for the distribution of z-scores from tests on primary outcomes when the sample is
split binarily according to different design characteristics of the trials.
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Table B2: Tests for the Detection of p-Hacking Proposed by Elliott, Kudrin, and Wüthrich
(2022)

(1) (2) (3)
non-preregistered preregistered preregistered

(downsampled)

Fisher 1.000 1.000 1.000
Binomial 0.336 0.275 0.399
CS1 0.129 0.000 0.059
CS2B 0.001 0.000 0.023
Discontinuity 0.804 0.054 0.216
LCM 0.536 0.173 0.811

# p-values in [0.04,0.05] 89 226 76.8
# p-values in [0.00,0.15] 1,280 3,657 1,229.2
# p-values 2,542 7,578 2,542

Notes: The table shows p-values for the different tests of p-hacking for the samples of primary outcomes.
’Discontinuity’ refers to a density discontinuity test (Cattaneo, Jansson, and Ma, 2020) of the density of
p-values at the cutoff of 0.05. ’Fisher’ refers to Fisher’s test. ’Binomial’ refers to a binomial test on the
interval [0.04,0.05]. ’CS1’ refers to a conditional chi-squared test (Cox and Shi, 2023) for non-increasingness.
’CS2B’ refers to a conditional chi-squared test (Cox and Shi, 2023) for 2-monotonicity and bounds (Elliott,
Kudrin, and Wüthrich, 2022). ’LCM’ refers to the Least Concave Majorant test. We follow Elliott, Kudrin,
and Wüthrich (2022) and truncate the distribution of p-values above 0.15 for all tests. The third column
shows average results from tests performed on 100 random subsamples of preregistered trials of size equal
to the number of observations from non-preregistered trials.
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C Additional Results and Robustness Checks for Caliper
Tests

This section presents additional results from caliper tests and robustness checks of the
main results presented in the main text.

Secondary Outcomes. Table C1 shows the results of caliper tests for z-scores from
secondary outcomes for the same specifications as presented in Table 3 in the main text
for primary outcomes. As the density discontinuity tests, the caliper tests do not de-
tect major differences between preregistered and non-preregistered trials related to these
lower-stake auxiliary outcomes. If anything, when introducing the control variables, pre-
registered trials tend to have slightly more significant z-scores in the window under con-
sideration than non-preregistered trials. However, the magnitude of the differences is
much smaller than for primary outcomes.

Robustness Check: Alternative Model Specifications. Tables C2 and C3 show the
marginal effects of probit and logit regressions for caliper tests, respectively. The specifi-
cations include the same variables as those presented in the first four columns of Table 3
in the main text; those are the specifications without the high-dimensional sponsor fixed
effects. The estimated coefficients of interest are nearly identical to those resulting from
our main specification of a linear probability model.
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Table C1: Caliper Tests for z ∈1.96±0.2 (Secondary Outcomes, LPM)

(1) (2) (3) (4) (5) (6) (7)

preregistered 0.00679 0.0225 0.0233 0.0395** 0.0213 0.0420* 0.0623**
(0.0159) (0.0185) (0.0172) (0.0197) (0.0198) (0.0233) (0.0250)

data monitoring committee -0.0145 -0.0223 -0.0230
(0.0166) (0.0185) (0.0233)

subject masked -0.104* -0.0748 -0.0542
(0.0611) (0.0686) (0.119)

caregiver masked 0.0210 0.0277 0.0314
(0.0176) (0.0199) (0.0273)

investigator masked 0.0459 0.0727 0.0500
(0.0569) (0.0554) (0.108)

outcomes assessor masked -0.0114 -0.0112 -0.00896
(0.0172) (0.0196) (0.0252)

PI not employee of sponsor 0.00647 0.0330 -0.00417
(0.0505) (0.0573) (0.0910)

Non-Prereg. Sig. Rate 0.481 0.481 0.471 0.471 0.482 0.482 0.469
Observations 5,149 5,149 4,602 4,602 5,004 5,004 4,462
No. of trials 1,458 1,458 1,266 1,266 1,313 1,313 1,126
R-squared 0.000 0.014 0.002 0.018 0.057 0.067 0.074
Controls no yes no yes no yes yes
Start Year FE no yes no yes no yes yes
MeSH Condition FE no yes no yes no yes yes
Sponsor FE no no no no yes (243) yes (243) yes (227)
Window 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2

Notes: The table shows results from the linear caliper test regression (equation 4 in the main text) on z-scores
from secondary outcomes in the main sample. The seven specifications are identical to those in Table 3 in the
main text. “Controls” include dummies for research phases (phase II vs. phase III vs. phase II/III combined),
a dummy for a placebo comparator, the square root of overall enrollment as a proxy for the power of the
tests, and in the specifications without sponsor fixed effects dummies for sponsor groups (non-industry, small
industry, and top 10 industry based on 2019 revenue as defined by Adda, Decker, and Ottaviani (2020)). “MeSH
Condition FE” refers to fixed effects for groups of treated definitions based on MeSH classification (see Table A2;
categories with too few observations are grouped together as omitted category). Reduced sample sizes result
from excluding trials with missing information on data monitoring committees in columns 3, 4, and 7 and
excluding singleton observations within sponsor nests in columns 5, 6, and 7. Standard errors in parentheses
are clustered at the trial level. Significance levels indicated by the stars: * p<0.1, ** p<0.05, *** p<0.01.
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Table C2: Caliper Tests for z ∈1.96±0.2 (Primary Outcomes, Marginal Effects from
Probit Model without Sponsor FE)

(1) (2) (3) (4)

preregistered -0.0869** -0.0737* -0.0979** -0.0918**
(0.0356) (0.0392) (0.0383) (0.0417)

data monitoring committee 0.0254 0.00283
(0.0330) (0.0352)

subject masked 0.0108 -0.0155
(0.0880) (0.0893)

caregiver masked 0.00752 0.00449
(0.0440) (0.0428)

investigator masked -0.0796 -0.0449
(0.0848) (0.0806)

outcomes assessor masked 0.0418 0.0620
(0.0424) (0.0413)

PI not employee of sponsor -0.0185 0.0766
(0.0611) (0.0729)

Non-Prereg. Sig. Rate 0.633 0.620 0.638 0.623
Observations 1,033 1,024 912 903
No. of trials 850 842 747 738
Controls no yes no yes
Start Year FE no yes no yes
MeSH Condition FE no yes no yes
Window 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2

Notes: The table shows marginal effects from estimating the caliper test regression (equation 4 in
the main text) on z-scores from primary outcomes in the main sample with a probit model. The four
columns refer to specifications otherwise identical to the first four columns in Table 3 in the main text.
“Controls” include dummies for research phases (phase II vs. phase III vs. phase II/III combined), a
dummy for a placebo comparator, the square root of overall enrollment as a proxy for the power of
the tests, and dummies for sponsor groups (non-industry, small industry, and top 10 industry based
on 2019 revenue as defined by Adda, Decker, and Ottaviani (2020)). “MeSH Condition FE” refers to
fixed effects for groups of treated definitions based on MeSH classification (see Table A2; categories
with too few observations are grouped together as omitted category). Reduced sample sizes result
from excluding trials with missing information on data monitoring committees in columns 3 and 4.
Standard errors in parentheses are clustered at the trial level. Significance levels indicated by the
stars: * p<0.1, ** p<0.05, *** p<0.01.
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Table C3: Caliper Tests for z ∈1.96±0.2 (Primary Outcomes, Marginal Effects from
Logit Model without Sponsor FE)

(1) (2) (3) (4)

preregistered -0.0872** -0.0757* -0.0978** -0.0942**
(0.0358) (0.0392) (0.0386) (0.0420)

data monitoring committee 0.0253 0.00238
(0.0330) (0.0355)

subject masked 0.0113 -0.0176
(0.0891) (0.0899)

caregiver masked 0.00766 0.00590
(0.0438) (0.0424)

investigator masked -0.0798 -0.0428
(0.0858) (0.0815)

outcomes assessor masked 0.0415 0.0603
(0.0422) (0.0408)

PI not employee of sponsor -0.0175 0.0772
(0.0609) (0.0735)

Non-Prereg. Sig. Rate 0.633 0.620 0.638 0.623
Observations 1,033 1,024 912 903
No. of trials 850 842 747 738
Controls no yes no yes
Start Year FE no yes no yes
MeSH Condition FE no yes no yes
Window 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2

Notes: The table shows marginal effects from estimating the caliper test regression (equation 4 in
the main text) on z-scores from primary outcomes in the main sample with a logit model. The four
columns refer to specifications otherwise identical to the first four columns in Table 3 in the main text.
“Controls” include dummies for research phases (phase II vs. phase III vs. phase II/III combined), a
dummy for a placebo comparator, the square root of overall enrollment as a proxy for the power of
the tests, and dummies for sponsor groups (non-industry, small industry, and top 10 industry based
on 2019 revenue as defined by Adda, Decker, and Ottaviani (2020)). “MeSH Condition FE” refers to
fixed effects for groups of treated definitions based on MeSH classification (see Table A2; categories
with too few observations are grouped together as omitted category). Reduced sample sizes result
from excluding trials with missing information on data monitoring committees in columns 3 and 4.
Standard errors in parentheses are clustered at the trial level. Significance levels indicated by the
stars: * p<0.1, ** p<0.05, *** p<0.01.
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