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Abstract 

 

Background 

The impact of artificial intelligence combined with advanced techniques is ever-increasing in the biomedical 

field appearing promising, among others, in chronic kidney disease (CKD) diagnosis. However, existing 

models are often single-aetiology specific. Proposed here is a pipeline for the development of single models 

able to distinguish and spatially visualize multiple CKD aetiologies. 

 

Methods 

Acquired were from the Human Urinary Proteome Database the urinary peptide data of 1850 healthy control 

(HC) and CKD (diabetic kidney disease-DKD, IgA nephropathy-IgAN, vasculitis) participants. The uniform 

manifold approximation and projection (UMAP) method was coupled to a support vector machine (SVM) 

algorithm. Binary (DKD, HC) and multiclass (DKD, HC, IgAN, vasculitis) classifications were performed, 

including or skipping the UMAP step. Last, the pipeline was compared to the current state-of-the-art single-

aetiology CKD urinary models. 

 

Findings 

In an independent test set, the developed models (including the UMAP step) achieved 90.35% and 70.13% 

overall predictive accuracies, respectively, for the binary and the multiclass classifications (96.14% and 

85.06%, skipping the UMAP step). Overall, the HC class was distinguished with the highest accuracy. The 

different classes displayed a tendency to form distinct clusters in the 3D-space based on their disease state. 

 

Interpretation 

Urinary peptide data appear to potentially be an effective basis for CKD aetiology differentiation. The 

UMAP step may provide a unique visualization advantage capturing the relevant molecular 

(patho)physiology. Further studies are warranted to validate the pipeline’s clinical potential in the presented 

as well as other CKD aetiologies or even other diseases. 
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Introduction 

The high prevalence and economic burden(1) of chronic kidney disease (CKD) underscore the vital need for 

further attempts on addressing its associated challenges. Failing to identify CKD in its former, asymptomatic 

stages, where therapy is expected to lead to improved outcome, eventually leads to an advanced disease state, 

in which an efficient aetiology-guided treatment is often obstructed by the phenotypic overlap between the 

various aetiologies. In that context, a CKD diagnosis is an essential and delicate issue. That said, a major 

clinical concern relates to the differential diagnosis of different CKD aetiologies, currently being suboptimal 

and in most cases relying on invasive kidney biopsies as the gold standard with, however, associated poten-

tial bleeding complications(2) and concerns about repetitiveness. Along these lines, several endeavors have 

been performed. For example, multiple binary classifiers had been employed for the discrimination of seven 

CKD aetiologies - including diabetic kidney disease (DKD) (mixed with nephrosclerosis), IgA nephropathy 

(IgAN) and vasculitis - using urinary peptidomics in a one-versus-all strategy(3). Even though this kind of 

studies demonstrate the value of machine learning in CKD diagnosis, aetiology-specific classifiers might 

lead to multiple positive hits, potentially resulting in an ambiguous diagnosis. 

A major improvement of this strategy would be differential diagnosis by a single classifier specialized in 

multiple aetiologies. Nevertheless, among the most significant technical hurdles to overcome is the plethora 

of features detected in a relatively low number of observations, a situation well-known in the field as “curse 

of dimensionality”(4). This is exactly the case in CKD diagnosis, given the common elements of CKD aeti-

ologies, the corresponding thousands of molecular determinants (e.g. peptides) detected as well as the often 

relatively low number (tens or hundreds at best) of analyzed samples. 

The uniform manifold approximation and projection (UMAP)(5,6) is a recently developed non-linear dimen-

sionality reduction method for the analysis of high-dimensional data that gains increasing popularity. The 

algorithm relies on two phases of analysis: first, a high-dimensional weighted graph of the data points is gen-

erated and subsequently its low-dimensional version is optimized. The UMAP algorithm provides a non-

linear alternative to principal component analysis (PCA), although it lacks the PCA interpretability(5). Nev-

ertheless, it provides several advantages over similar non-linear methods like t-SNE, such as superior run 

time performance(5,7) and more easily interpretable parameters. Last, UMAP shows a promising variety of 

applications in biological data interpretation, such as analyzing single-cell RNA sequencing and mass 

cytometry data(7). 

This ability of machine learning algorithms to handle high-dimensional data combined with the resolving 

power of techniques that are able to identify plenty of molecular features during sample analysis could be 

highly relevant in CKD diagnosis. Along these lines, the analysis of urinary peptides and proteins based on 

capillary electrophoresis coupled to mass spectrometry (CE-MS) has been extensively applied for the identi-

fication and assessment of biomarkers in a number of diseases(8–11), relying on a completely non-invasive 

approach.  The robustness of CE-MS has been highlighted in several studies(12–15). Applying urinary 

peptidomics combined with the support vector machine (SVM) algorithm demonstrated superior perfor-

mance in comparison to the state-of-the-art(16). Several specific SVM-based peptide panels have been estab-

lished in the field of chronic kidney disease (CKD), such as the IgAN237(17) or the CKD273(18) panels, the 

latter being recognized with a letter of support from the U.S. Food and Drug Administration (FDA)(19) and 
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implemented in a clinical trial for early detection of diabetic kidney disease(20). 

Building on available 1850 urine peptidomics datasets obtained from the Human Urinary Proteome Data-

base(10), our aim was to establish a pipeline for the non-invasive differential diagnosis of CKD aetiologies 

in a novel approach, harnessing the dimensionality reduction and visualization capabilities of UMAP in a 

proof-of-concept study. 

 

Methods 
 

Anonymized peptidomics data of 1850 urine samples corresponding to healthy controls (HC) and CKD par-

ticipants of various aetiologies were acquired from the Human Urinary Proteome Database(10). The CKD 

aetiology selection criterion was based on a minimum of 70 samples. The HC samples were derived from 

participants without either signs of CKD or significant loss of kidney function (eGFR ≥ 60 mL/min/1.73m2) 

(n = 504). The CKD samples were derived from participants diagnosed with one of the following CKD aeti-

ologies: IgAN (n = 737), DKD (n = 534), and vasculitis (n = 75). The study design is depicted in Figure 1. 

All datasets were from previously published studies and fully anonymized. The studies respected the regula-

tions for protecting participants in medical research and the Declaration of Helsinki (2013). This study was 

approved by the ethics committee of the Friedrich-Alexander Universität Erlangen-Nürnberg, Germany (eth-

ic approval code 264_20 B for the nephrological biobank and ethic approval code 221_20 B for the urinary 

proteomics analysis). 

 

The methods used in this study are described in detail in the appendix. In brief, initially a urinary 

peptidomics protocol involving CE-MS, peptide sequencing and data evaluation was performed (appendix 

p. 1). UMAP(5,6) was applied to embed the data into a lower dimension (3D), as also described in several 

sources(21,22) and, for the multiclass classification only, oversampling(23) was used to account for the class 

imbalance (appendix p. 2). The entire peptidomics dataset was randomly split in train and test sets based on 

sample groups in a 75:25 ratio for classification purposes (appendix pp. 2-3). The train set features with the 

disease labels, were fed to a SVM classifier to generate a model able to distinguish participants based on 

their disease state. To this end, models were trained within a three-times repeated, four-fold cross validation 

(CV), in which Bayesian optimization(24) was used as an iterative search method in the context of 

hyperparameter tuning. The machine learning pipeline was based on R statistical software (appendix p. 3). 

 

Role of the funding source 

The funding source had no role in study design, data collection, data analysis, data interpretation, or writing 

of the report. All authors had access to the dataset used in this study and had final responsibility for the deci-

sion to submit manuscript for publication. 

 

Results 
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Urinary peptidomics data of 1850 individuals were extracted from the Human Urinary Proteome Data-

base(10). This set included 504 HC participants as well as 534 patients with DKD, 737 with IgAN, and 75 

with vasculitis for which the available clinical information is presented in Table 1. A machine learning pipe-

line was implemented to discriminate DKD and HC (binary classification) as well as DKD, HC, IgAN, and 

vasculitis (multiclass classification) with the main goal to maximize the separation of the participants based 

on their CKD aetiology diagnosis (class). The binary differentiation was used as an initial evaluation to ex-

plore the UMAP capabilities before moving on to the more complex challenge of multiple CKD aetiologies 

differentiation. In this first step, DKD was selected, because it is the most common CKD aetiology; in addi-

tion, in our dataset the DKD and HC classes were balanced in terms of sample sizes. The study design is il-

lustrated in Figure 1. 

 

Binary classification: differentiation of DKD and HC classes 

Initially, UMAP was applied as a standard unsupervised dimensionality reduction method to the peptidomics 

data of 534 DKD and 504 HC participants in an attempt to visualize their potential separation in the 3D-

space (Figure 2A). Although the majority of the participants of the same class diagnosis appeared to be clus-

tered together, a substantial overlap of the clusters did not allow for a clear separation. That observation indi-

cated, on one hand, the utility of UMAP in embedding high-dimensional urinary peptidomics data in a low-

dimensional space, and on the other that a supervised UMAP approach may be more relevant for class sepa-

ration. Thereby, the UMAP algorithm was applied with the diagnosis label (supervised UMAP), which led to 

a major class separation improvement (Figure 2B). In a next step, the default supervised UMAP 

hyperparameters (specifically k-neighbors and minimum distance), were also tuned along the SVM 

hyperparameters during a three times-repeated four-fold CV procedure using the train set and the model with 

the combination of hyperparameter values with the best performance was, finally, selected. The selected 

model achieved 89.89% average accuracy across all the folds during the train set CV, while in the independ-

ent test set, an overall 90.35% predictive accuracy was achieved, the latter being excluded from the training 

procedures, and thus representing an unbiased source of the model’s efficiency. The UMAP embeddings of 

the train and test sets are illustrated in Figure 2C-D. The per-class accuracies of the model for both the train 

set CV and the independent test set are illustrated in Figure 2E. 

 

Multiclass classification: differentiation of multiple CKD aetiologies and HC classes 

Subsequently, the same pipeline was utilized to differentiate all four classes: DKD, HC, IgAN, and vasculitis. 

Again, UMAP (default parameters) was applied to the data, which highlighted a tendency of cluster for-

mation, although without a clear separation (Figure 3A). This was to a substantial degree improved in the 

respective supervised UMAP embeddings (Figure 3B-D). To adjust for the numeric imbalance of these clas-

ses, an oversampling approach was implemented during the training procedures. The overall performance of 

the selected model across all the CV folds of the train set (average of 74.18%) as well as the predictions in 

the independent test set (70.13%), were recorded. In detail, predictions in the independent test set displayed 

accuracies of 56.39%, 66.30%, and 78.95% for DKD, IgAN, and vasculitis classes, respectively, achieving 

the highest accuracy (88.89%) in differentiating the HC class from CKD aetiologies. (Figure 3E). 
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Comparison with SVM-only classifier 

In an attempt to illustrate the added value of UMAP as an important dimensionality reduction step in urinary 

peptidomics as well as the proposed pipeline as a whole, additional comparisons were performed. Initially, a 

SVM model was built and trained as described above, but skipping the UMAP step. In the binary classifica-

tion, the selected model displayed an overall accuracy of ≥ 95.56% in both the train set CV (average across 

all folds) and the independent test set (Figure 4A). In the multiclass classification, the model achieved dur-

ing the train set CV an overall average accuracy of 87.51%, while the overall prediction accuracy in the in-

dependent test was 85.06% and the per-class accuracies were 86.47%, 82.61%, and 63.16% for DKD, IgAN, 

and vasculitis, respectively (Figure 4B). Of note, in the latter classification, the HC class was distinguished 

with 90.48% accuracy. 

 

Comparison with the state of the art in CKD urinary proteomics 

Subsequently, the comparison with the individual CKD-aetiology models described in Siwy et al. (2017)(3) 

was performed. Considered were the classifiers specific for DKD (mixed with nephrosclerosis), IgAN, and 

vasculitis classes, since these aetiologies were relevant in the current study. Predictions were made only for 

the 373 participants of the independent test set (n = 462) that had not been a part of the train set of the CKD 

differential diagnosis classifiers in Siwy et al. (2017)(3); specifically these corresponded to: 88 DKD, 126 

HC, 153 IgAN, and 6 vasculitis individuals. To differentiate HC from CKD patients, the CKD273(18) classi-

fier was utilized. The models correctly predicted 62.50%, 94.44%, 63.40%, and 33.33% of the DKD, HC, 

IgAN, and vasculitis classes, respectively (Figure 4C). 

 

Discussion 

The invasive kidney biopsy is still the gold standard in the (differential) diagnosis and therapeutic decisions 

in CKD, despite its limitations. Since biopsy is an invasive procedure with potential post-surgery complica-

tions, inadequate sampling, disagreement in the interpretation between pathologists, dependence on appro-

priate organ size, and impracticalities in repetitiveness, the implementation of specific biomarkers appears 

highly relevant. To this end, several efforts have been performed to identify biomarkers that could non-

invasively support the CKD differential diagnosis. Along these lines, the existing literature was explored us-

ing the terms: "chronic kidney disease", "CKD", "kidney disease", "differential diagnosis", "types", 

"aetiolog*", "etiolog*", "classifier*", and "panel". That said, the research of CKD differential diagnosis 

seems to be mainly focused on genetic studies aiming at sequencing, such as CKD-related genetic pan-

els(25–33). These studies at times confirmed the presence of suspected inherited kidney diseases and even 

led to a correction of the traditional diagnosis. Nevertheless, the presented diagnostic performance varied in 

parameters, such as the onset (congenital to adult), CKD stage (early to end) and specific kidney disease 

type. Along these lines, considering that ~10% of adult CKD is attributed to hereditary origin, a meticulous 

record of the patient clinical information (e.g. phenotype, family history) before the genetic test was recom-

mended. Last, potential technique constraints (e.g. variants within promoter regions are undetected by whole 

exome sequencing) may also have to be considered when assessing the correspondent diagnostic yield of 
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genetic tests, although in part these can be addressed, such as in the ongoing whole genome sequencing study 

by Soraru et al. (2022)(34). 

On the other hand, relevant attempts on the proteomics/peptidomics field, often relying on machine learning 

approaches, have been scarcely performed. Glazyrin and colleagues (2020)(35), demonstrated that using 

urine samples, nephrosclerosis was distinguished from the mixed DKD and glomerulonephritis classes, with 

the latter two being subsequently differentiated from each other using plasma samples. Although displayed 

high classification performance, the study was based on only 34 participants, and thus among others, a sepa-

ration in train and test sets was not feasible. This was implemented by Fernando et al. (2019)(36), neverthe-

less, focusing only in differentiating CKD of unknown aetiology from a mixed CKD aetiology class (DKD, 

nephrosclerosis, glomerular diseases). In the largest proteomics/peptidomics study based on our search, Siwy 

et al. (2017)(3) using a cohort of total 1180 participants, developed several single-aetiology models for seven 

CKD aetiologies (plus one control class for which the CKD273(18) was used), embodying the current state-

of-the-art. The classifier performance achieved a 0.77 area under the curve or higher in the independent test 

set. Nevertheless, although a classifier specialized on a single aetiology, could in an appropriate scientific 

design, potentially, demonstrate substantial specialization towards that aetiology, contradictory positive hits 

as produced by multiple single-aetiology classifiers have a rather ambiguous diagnosis contribution. Thus, a 

single classifier for distinguishing multiple aetiologies appears highly clinically relevant. 

In the current work, we demonstrated that supervised UMAP coupled with the SVM algorithm can be uti-

lized as a tool to differentiate multiple CKD aetiologies based solely on urinary peptidomics data. In both the 

binary (DKD, HC) and the multiclass (DKD, HC, IgAN, vasculitis) classifications, there was a tendency of 

distinct cluster formation in the 3D-space appearing to be representative of the diagnosis state. The standard 

deviation (sd) of the selected metric that was recorded during the three-times repeated four-fold CV in both 

classifications was fairly small (Supplementary table 1), indicating that the performance of the pipeline was 

independent of the different fold combinations. The model performance was each time also confirmed in an 

independent (from the training procedures) test set. 

The overall model performance in the binary classification was superior to the respective in the multiclass 

one. This was expected, since the binary task was less complex, basically distinguishing CKD of one aetiol-

ogy (DKD) from HC. That said, the HC class was distinguished with the highest success in both the binary 

and multiclass classifications. This can be attributed to the fact that HC participants are pathologically more 

distant from the CKD classes, which was also spatially observed in the UMAP plots (Figure 3 and 4), thus 

justifiably being distinguishable from the rest of the classes. This observation can be interpreted as further 

evidence for the validity of the presented approach. Considering the multiclass classification, the initial class 

imbalance in the train set along the small vasculitis size and the selected metric (accuracy, due to its simplici-

ty), indicated that the application of an oversampling approach could be appropriate for a pathophysiology-

centered model instead of one potentially favoring the majority class. In that particular classification (includ-

ing the UMAP step), during predictions on the independent test set, the selected model had the lowest per-

formance distinguishing DKD, assigning a substantial part of its participants to the former majority class, 

IgAN. Nevertheless, although DKD and IgAN are not that clinically similar, their routine treatment involves 

several common aspects, especially the anti-hypertension treatment involving angiotensin-converting-
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enzyme inhibitors and angiotensin II receptor blockers, as well as the recently implemented, SGLT-2 inhibi-

tors. 

As a dimensionality reduction method, UMAP is able to remove, at least to a degree, the noise of a dataset 

and thus increase the model performance. Considering the SVM-alone pipeline, this was not observed here, 

which we speculate may be linked to the noise reduction already achieved via applying the 30% peptide fre-

quency threshold considering only the sequenced peptides as part of the routine analysis in the peptidomics 

field. In that way, from tens of thousands of peptides consistently being detected in urine, only 1183 and 

1206 were considered for further analysis in the binary and multiclass classifications, respectively. In that 

context, using UMAP to further reduce the feature space (and thus, the correspondent dataset information) to 

only 3 spatial coordinate features resulted, not entirely unexpectedly, in a model of poorer predictive perfor-

mance on the independent test set (~70% accuracy) (as well as in terms of train set CV mean and sd) in com-

parison to the SVM-alone approach (~85% accuracy); but still appeared to be able to retain a substantial part 

of the dataset’s “information”. Consequently, in different scientific designs in which an efficient feature se-

lection/removal method is not available, the inclusion of UMAP in the pipeline could potentially contribute 

to noise removal and thus, to higher model performance. That said, the dimensionality reduction along with 

its spatial, single-sample, visualization properties constitute UMAP a substantial step in such pipelines. Of 

note, in the binary classification, UMAP demonstrated on the independent test set a predictive performance 

(~90%) close to the respective of the SVM-alone approach (~96%). 

Considering that proteomic/peptidomic studies are scarce in CKD differential diagnosis, the presented pipe-

line was compared to the DKD (mixed with nephrosclerosis), IgAN, and vasculitis classifiers of the afore-

mentioned study(3), using the CKD273 for the HC group(18). As expected from the anticipated difference in 

molecular pathology, the HC class was the most highly distinguishable. The presented pipeline (including the 

UMAP step) demonstrated, in comparison to these single-aetiology classifiers, fairly comparable perfor-

mance, outperforming the vasculitis class, although the latter may as well be attributed to luck, since only six 

vasculitis patients were tested in this single-aetiology classifier. Other differences in performance can also 

be, among others, attributed to the train sets not being identical, different pipelines (e.g. selecting features 

based on differential expression(3) instead of 30% frequency threshold, alternative hyperparameter optimiza-

tion etc.) as well as the initial number of features (sequenced peptides) during model development, as per 

availability in each case. 

The presented study has limitations, some of which may be improved in future work. First, class balance was 

not the case for the multiclass classification. Class imbalance is hardly avoidable when working with such 

retrospective datasets, among others due to the inherent difference in disease prevalence. Therefore, as noted, 

an oversampling approach was used in an attempt to enhance the pathophysiology-centered nature of the 

classifier by compensating for inappropriate effects (against the minority classes) as a potential result of the 

class imbalance. Further, the here investigated CKD aetiologies represent only a fraction of the broad CKD 

spectrum, and thus the inclusion of additional aetiologies in a larger study seems well justified. It is also ex-

pected that the inclusion of relevant clinical parameters may increase model performance. However, due to 

incomplete clinical records of some participants, this could not be implemented. Last, only the SVM (radial 

basis kernel) classifier was assessed. As a result, using larger cohorts with aetiologies across the disease 
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spectrum, ideally of equal class size and aetiology-representative, in combination with further/alternate pre-

processing steps, more extensive hyperparameter optimization, classifier and metrics assessment as well as 

also considering clinical parameters, could potentially enable improved model performance. 

Nevertheless, the current study highlighted at the same time several interesting clinical aspects. While omit-

ting the UMAP step led to higher classification performance, a major advantage of UMAP as a dimensionali-

ty reduction method (additionally to the potential noise removal) is the cohort visualization in low-

dimensional space irrespective of the initial number of features (e.g. peptides). This is especially practical for 

high-dimensional omics data, in which thousands of features per sample are detected. To our knowledge, this 

work is the first of its kind to reduce the complex urinary peptidome to such a degree that participants of 

multiple CKD aetiologies are efficiently presented as single data points in space, collectively forming dis-

tinct diagnosis clusters. As such, this visualization tool in an appropriate pipeline could complementarily 

contribute to the context of clinical assessment of CKD. It is even more tempting to speculate that the posi-

tion in UMAP is based on the specific individual molecular determinants, which may potentially be highly 

valuable in determining personalized intervention by predicting drug response, considering also several rele-

vant clinical parameters, such as clinical characteristics, medical history and disease confounders, progres-

sion, microbiome, diet, exercise etc. This hypothesis will be investigated in more detail and would ultimately 

have to be proven in an appropriately-powered randomized clinical trial. Last, the presented pipeline appears 

to be able to generate models capable of distinguishing different CKD aetiologies and thus, might comple-

mentarily aid or even, ideally, rather point at times towards a potential avoidance of the kidney biopsy. 

In conclusion, in this proof-of-concept study, we established a robust and relatively fast pipeline for simulta-

neous classification of multiple CKD aetiologies and visualization of individual samples in the 3D-space 

based on urinary peptides. This could be specifically relevant when invasive procedures are typically avoided 

(in early stage disease, at high risk, for repeat sampling) or not possible at all.  

Given the inherent risks, shortcomings and invasive character of kidney biopsy, determining the CKD aetiol-

ogy in a non-invasive way appears highly relevant. The presented differentiation and visualization approach 

can be used as a supplementary tool in clinical practice, not only for the presented, but likely also for addi-

tional CKD aetiologies. In that way, it could complementarily aid diagnosis or even, ideally, potentially lead 

towards avoidance of the kidney biopsy. Along these lines, it is to be expected that this approach, by the in-

clusion of additional datasets of high-dimensional omics data combined with artificial intelligence, will see 

routine use in modern health care systems. Last, its potential clinical utility, possibly supported by including 

additional clinical parameters, may pave the way for a more robust, non-invasive, disease monitoring or re-

sponse to treatment prediction, thus supporting therapeutic decisions. 
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Table 1. Cohort clinical characteristics. Given is the number of the participants of the entire classes. For 

the clinical characteristics each time a mean (standard deviation) or percentage is displayed, as calculated 

based on the available participant clinical information. M: Male. eGFR: estimated glomerular filtration rate. 

uACR: urinary albumin to creatinine ratio. BMI: body mass index. dBP: diastolic blood pressure. sBP: sys-

tolic blood pressure. 

 

 
DKD (n = 534) HC (n =  504) IgAN (n = 737) Vasculitis (n = 75) 

Age 63.11(12.37) 44.4(18.33) 42.79(14.69) 59.44(14.36) 

eGFR 

(mL/min/1.73m2) 47.93(25.36) 94.11(17.51) 60.26(30.79) 47.62(30.85) 

BMI (kg/m2) 29.88(5.60) 27.19(5.49) 26.35(3.99) 25.17(2.97) 

dBP (mm Hg) 76.96(10.77) 78.93(10.17) 85.86(12.48) 80.92(12.49) 

sBP (mm Hg) 142.96(20.17) 134.54(20.62) 135.95(18.82) 139.88(22.62) 

uACR 888.23(2487.13) 8.55(6.38) 1241.3(1431.66) 806.12(885.92) 

Male (%) 58.47 52.78 66.57 47.54 
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Figure 1. Study design. The urinary peptide datasets of a cohort of 1850 HC and CKD (DKD, IgAN, and 

vasculitis) individuals were implemented into a supervised machine learning pipeline for classification based 

on disease (or lack thereof). The pipeline was performed separately for DKD and HC classes (binary classifi-

cation) as well as all classes (multiclass classification). Initially, a splitting of the dataset into a train (75%) 

and a test (25%) set was performed. Each time, the sequenced peptides present in at least 30% of the partici-

pants of the selected classes, were considered for further analysis and normalized ([x-mean(x)] / standard 

deviation(x)) after missing peptide values were imputed based on the respective minimum values, consider-

ing the train set only. A dimensionality reduction with the UMAP algorithm was performed (or skipped), 

while as an additional step during the training procedures in the multiclass classification only, the over-

sampling algorithm SMOTE(23) was applied. The later produced synthetic participants in all classes until a 

certain ratio of the (initially) majority class (i.e. IgAN) was achieved so as to account for the class imbalance. 

During a three-times repeated four-fold CV, SVM models were trained (in three out of four folds of the train 

set) and their performance was recorded (on the remaining fold) along the lines of an iterative search that 

relied on a Bayesian optimization(24) of the hyperparameters. The model that achieved the highest average 

accuracy across all the CV folds was selected as having the optimal combination of hyperparameter values. 

Subsequently, the selected model was trained in the entire train set and then tested for its predictive accuracy 

in the independent test set. μ: feature mean, σ: feature standard deviation, UMAP: Uniform Manifold Ap-

proximation and Projection, SMOTE: Synthetic Minority Over-sampling Technique. SVM: Support Vector 

Machines. CV: cross-validation in train set. 
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Figure 2. Binary classification results. The whole peptidomics profiles of DKD (red) and HC (gray) partic-

ipants in the 3D-space were used as a basis for the default parameters of the UMAP algorithm in its (A) un-

supervised as well as (B) supervised version. Cluster formation was more evident when the supervised 

UMAP with tuned parameters was performed, as observed when applied on the (C) train set and (D) inde-

pendent test set embeddings. E) Confusion matrices based on the results of the train set cross-validation (CV, 

average across all folds) as well as the predictions in the independent test set. Classification accuracies are 

displayed in percentages. 
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Figure 3. Multiclass classification results. The whole peptidomics profiles of DKD (red), HC (gray), IgAN 

(green), and vasculitis (purple) participants in the 3D-space were used as a basis for the UMAP algorithm 

(default parameters) in its (A) unsupervised as well as (B) supervised version. Cluster formation was more 

evident when the supervised UMAP with tuned parameters was performed, as observed by the (C) train set 

and (D) independent test set embeddings. (E) Confusion matrices based on the results of the train set cross-

validation (CV, average across all folds) as well as the predictions in the independent test set. Classification 

accuracies are displayed in percentages. Of note, an oversampling step was performed during the training 

procedures. 
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Figure 4. Comparison without including UMAP in the pipeline as well as with the current state of the 

art. Confusion matrices of the predictions in (A) binary and (B) multiclass classifications. (C) Predictions 

using the current state-of-the-art single-aetiology classifiers(3,18). 
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