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Abstract 

Background: Fetal Alcohol Syndrome (FAS) can result in substantial cognitive dysfunction. Many 

of the cognitive functions affected are subserved by few functional brain networks. Functional 

connectivity (FC) in these networks can be assessed with resting state functional MRI (rs-fMRI). 

Alterations of FC have been reported in children and adolescents prenatally exposed to alcohol. 

However, previous reports varied substantially regarding which exact cognitive networks were 

affected, their interactions, and the directionalities of FC alterations. Despite persisting deficits, no 

previous studies have examined FC in older individuals. Purpose of this rs-fMRI study was to assess 

FC within and between cognition-related networks in young adults with FAS.  

Methods: Cross-sectional study in patients with FAS (n = 39, age: 20.9 ± 3.4 years) and controls 

without prenatal alcohol exposure (n = 44, age: 22.2 ± 3.4 years). FC was calculated as correlation 

between cortical regions in ten cognition-related sub-networks. Subsequent modelling of overall FC 

was based on two-tailed t-tests comparing FC between FAS and controls. Results were subjected to 

a hierarchical statistical testing approach, first determining whether there is any alteration of FC in 

FAS (compared with controls) in the full cognitive connectome, subsequently resolving these 

findings to the level of either FC within each network or between networks, and finally to individual 

connections. The overall and network-level tests are based on the Higher Criticism (HC) approach 

for the detection of rare and week effects in high dimensional data. In an additional exploratory time-

resolved FC analysis, potential group differences of dynamic FC states were assessed.  

Results: Comparing FAS subjects with controls, we observed altered FC of cognition-related brain 

regions globally, within 7 out of 10 networks, and between networks employing the HC statistic. This 

was most obvious in the dorsal attention A sub-network, followed by the salience / ventral attention 

A subnetwork. Findings also spanned subcomponents of the fronto-parietal control and default mode 

networks. None of the single FC alterations within these networks yielded statistical significance in 
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the final high-resolution analysis. The exploratory time-resolved FC analysis did not show significant 

group differences in the temporal behavior of FC states. 

Conclusions: FC in cognition-related brain networks was altered in adults with FAS. Effects were 

widely distributed across these networks, potentially reflecting the diversity of cognitive deficits in 

these individuals. Findings were pronounced in attention-related networks in line with attentional 

deficits previously reported. An additional exploratory time-resolved FC analysis did not reveal 

altered dynamic FC patterns.  

 

Keywords: fetal alcohol syndrome; prenatal alcohol; executive functions; higher criticism; 

connectivity; resting state fMRI 
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Introduction  

Prenatal alcohol exposure (PAE) can negatively affect a wide range of cognitive functions throughout 

life. These functions include general intelligence, attention, executive functions (including inhibitory 

control), learning and memory, language, mathematical abilities, social cognition1,2 as well as impulse 

control1,3,4. Deficits associated with PAE frequently persist into adulthood5,6. While the term fetal 

alcohol spectrum disorders (FASD) generally encompasses a broad range of possible conditions 

related to PAE, only the full picture of characteristic physical (including growth retardation and facial 

abnormalities), psychological, and cognitive features is termed Fetal Alcohol Syndrome (FAS)2,7,8.  

Brain activity in individual regions underlying specific cognitive functions can be assessed by 

functional neuroimaging with a wide range of targeted tests9. However, a frequent neuroscientific 

observation is that many higher cognitive functions, such as those negatively affected in FAS, are 

subserved by activity in few common sets of brain regions, i.e. functional brain networks. These 

include task-positive networks with overlapping definitions such as the central executive network, 

cognitive control network or multiple demands network as well as networks closely interacting with 

them, such as the salience network and default mode network10-12. Spontaneous activity and 

functional connectivity within and between these networks can be examined by resting state 

functional magnetic resonance imaging (rs-fMRI)13,14. Static functional connectivity (FC) analysis 

methods identify correlated activity over a full rs-fMRI data acquisition period14. They have recently 

been supplemented by approaches for assessing dynamic or time-varying FC. Such dynamic FC 

analyses promise a deeper understanding of dynamic interactions of brain regions within and across 

these functional networks15-17 in health and disease. Dynamic FC measures have been associated with 

differences in individual attentional performance18,19 and impulsivity20,21. For example, altered FC 

dynamics have been observed in subjects with attention deficit hyperactivity disorder (ADHD)22-24. 

Few studies have directly investigated resting-state FC within and between brain networks related to 

higher cognitive functions in individuals with FAS or prenatal alcohol exposure: Focusing on within-
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network connectivity, Fan et al. observed reduced FC in a subset of regions within the default mode, 

salience, ventral attention, dorsal attention, and right fronto-parietal executive control networks in 

children with FASD compared with non-exposed controls. These networks reflect cognitive functions 

typically affected in children with FASD. Networks not directly related to cognition were, however, 

not affected25. In another study with children and adolescents with FASD, Little et al. mainly 

described reductions of FC between core regions of the salience and fronto-parietal control networks 

and regions from other cognition-related networks rather than within networks26. In contrast, Ware et 

al. found lower within-network but higher between-network FC in attention-related networks in 

children with FASD27. All three studies report relatively high overall similarity of FC in cognition-

related networks between exposed individuals and controls, while FC group differences had relatively 

small effect sizes, contrasting with the distinct clinical deficits in these individuals25-27. Further rs-

fMRI and methodologically related FC studies in individuals with PAE report evidence of altered 

overall functional brain organization based on global graph-theoretical measures28-31 as well as FC 

alterations of the default mode network32 and within networks less directly related to cognitive 

control33,34. No previous study has, however, explored dynamic FC in FASD. Beyond that, amid 

studies describing persisting cognitive deficits into adulthood5,6, FC has not been previously 

examined in adults prenatally exposed to alcohol.  

The main goal of this study was therefore to examine functional connectivity in cognition-related 

functional brain networks in young adults with FAS and to assess whether these patterns are 

comparable to alterations previously observed in affected children and adolescents. 

The following hypotheses should be tested:  

- Static FC in the connectome of all brain regions constituting cognition-related brain networks 

is altered in young adults with FAS compared with a control group without prenatal alcohol 

exposure (omnibus test, bi-directional effects possible). 
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- Static FC within individual cognition-related brain networks is altered in FAS subjects 

compared with controls without prenatal alcohol exposure (bi-directional effects possible).  

- Static FC between cognition-related brain networks is altered in FAS subjects compared with 

controls without prenatal alcohol exposure (bi-directional effects possible). 

In an additional exploratory analysis, we addressed dynamic interactions between cognition-related 

brain regions in FAS subjects compared with non-exposed controls. This dynamic FC analysis17 

focused on transitions between putative FC states. Rationale of this analysis is, that less stable FC 

states in FAS might underlie impaired impulse control (similar to reports in ADHD22-24).  

Materials and Methods 

This study was approved by the ethics committee of the University of Münster and the Westphalian 

Chamber of Physicians in Münster. All study procedures were carried out after obtaining written 

informed consent and in accordance with the Declaration of Helsinki. Samples overlapped with 

previously published task-based fMRI studies on inhibitory control35,36. The study was carried out in 

a research setting outside routine clinical care. 

Subjects 
Young adult subjects (n = 50) with FAS were initially recruited based on standardized inclusion 

(including diagnosis of FAS made by a specialist based on the Majewski criteria37, 18 to 32 years of 

age) and exclusion (contraindications for MRI, severe psychiatric, neurological or medical 

conditions, pregnancy, and severe sensory impairments) criteria. Psychiatric comorbidity or 

medication in general were not defined as primary exclusion criteria for the FAS group since they are 

common in individuals with a history of prenatal alcohol exposure38. After data acquisition further 

subjects were excluded after review of potentially biasing medication, structural brain lesions, and 

MRI data quality control. Two subjects were excluded from the analyses due to use of potentially 

psychoactive anti-allergic medication unrelated to FAS. In four subjects, no fMRI data were acquired 
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because of claustrophobia. One subject was excluded because of a callosal hypoplasia leading to 

structural image misregistration. Data from further 4 patients were excluded because of excessive 

head motion (see section “pre-processing” for criteria). All results are based on the remaining 39 FAS 

subjects. Current intake of the following potentially psychoactive medication was reported in the FAS 

group: methylphenidate or derivatives (n = 8), antipsychotics (n =5), and antidepressants (n = 1). 

The control group consisted of subjects without a history of prenatal alcohol exposure. Initially, n = 

52 subjects were recruited. Apart from general exclusion of subjects with psychoactive medication in 

the control group, inclusion and exclusion criteria (both for initial inclusion and after data acquisition) 

were identical in both groups. Two subjects were excluded due to use of psychoactive medication. 

One subject was excluded because of a large frontal venous anomaly39. One fMRI dataset was 

excluded because of a technical failure. Data from 4 subjects were excluded because of excessive 

head motion. We observed a statistically significant age difference between the groups with a small 

effect size (Table 1). We refrained from excluding further control subjects in order not to compromise 

statistical power considering that only small age effects on FC are expected in this particular age 

range40. Finally, 44 controls were included in further analyses. Demographical data of the final sample 

are reported in Table 1.  

Statistical tests on clinical and demographical data were carried out in SPSS (version 27.0, IBM, 

Armonk, NY, USA). 
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Table 1 - Demographical and clinical characteristics of participants with FAS and controls 

a)  Total Female Male pa 

Sex FAS 39 17 (43.6 %) 22 (56.4 %) .319 

CON 44 24 (54.5 %) 20 (45.5 %) 

 

b) Group Mean ± SD Median Range pb 

Age (years) FAS 20.9 ± 3.4 20 18 - 32 .013* 
CON 22.2 ± 3.4 21 18 - 32 

EHI 
Handedness 
index 

FAS 71.6 ± 37.9 83.3 -58.3 - 100 .887 
CON 69.8 ± 40.3 83.3 -58.3 - 100 

TMT 
reaction 
time (sec) 

FAS 97.2 ± 36.7 86.3 54.3 - 220.0 < .001* 
CON 54.0 ± 8.7 54.1 35.5 - 74.8 

IQ (mean ± 
SD)c 

FASd 82.0 ± 16.7 80.5 58 - 116 < .001* 
CON 117.7 ± 15.0 116.5 88 - 150 

a Chi-squared test (sex distribution between groups), b Mann-Whitney-U-test, c based on TMT 
reaction times, d only calculated for n = 36 within valid range, * significant difference. FAS: fetal 
alcohol syndrome, CON: controls, SD: standard deviation, NA: not applicable, EHI: Edinburgh 
Handedness Inventory, TMT: trail-making task, IQ: intelligence quotient estimated from TMT 
performance 

 

Neuropsychological pre-assessment 

Subjects completed questionnaire-based pre-tests for handedness (Edinburgh Handedness Inventory, 

EHI)41, processing speed (trail-making task, TMT)42, and screening for severe mental comorbidity 

(DIA-X Stamm-Screening questionnaire, SSQ)43. A general intelligence estimate was calculated 

based on TMT results42,44. Quantitative test results are presented in Table 1.   

Acquisition of MRI data 
MRI data were acquired at 3 Tesla (Intera with Achieva upgrade, Philips, Best, NL). FMRI data were 

acquired during 9:45 min of wakeful rest using gradient echo planar imaging covering the whole brain 

(234 functional volumes after 5 non-recorded dummy scans to allow for signal equilibration; 

repetition time: 2500 ms, echo time: 35 ms, 36 axial slices, spatial resolution 3.6 x 3.6 x 3.6 mm). 

T1-weighted 3D data were acquired with an inversion-prepared turbo field echo (TFE) sequence 
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(inversion time: 411 ms, repetition time: 7.1 ms, echo time: 3.5 ms, flip angle: 9°, sagittal slices 

measured with 2 mm thickness, reconstructed spatial resolution by zero-filling in k-space 1.0 x 1.0 x 

1.0 mm) 

Analysis of MRI data 

Pre-processing and image quality control 

MRI data were converted to the Brain Imaging Data Structure (BIDS)45 using in-house scripts 

preceding the BiDirect-BIDS-ConverteR46. Facial features were removed from the T1-weighted 

anatomical data47. Main MRI data pre-processing was carried out using fMRIPrep48 (version 20.0.7) 

briefly consisting of motion estimation and correction, co-registration of fMRI and structural MRI 

data, estimation of noise regressors as well as standard space normalisation. Please consult the 

Supplementary Methods for further details. Subsequent actual denoising was carried out using 

fMRIDenoise49 (version 0.2.1), comprising regressing out 24 head motion parameters (3 translations, 

3 rotations, their 6 temporal derivatives, and their 12 quadratic terms)50, 8 physiological noise 

parameters (mean physiological signals from white matter and cerebrospinal fluid, their 2 temporal 

derivatives, and 4 quadratic terms)50 as well as movement spike regression based on frame-wise 

displacement (FD > 0.5 mm) and so-called “DVARS” (> 3) thresholds51, temporally filtering (0.008 

– 0.08 Hz), and, finally, smoothing the resulting standard space image with a Gaussian kernel 

(FWHM = 6 mm). This pre-processing leads to denoised fMRI data in a common standard space as 

input for further analyses.  

The following steps were taken for MRI data quality control (numbers of excluded participants 

reported in the section “subjects”): Structural MRI data were screened by a radiologist for incidental 

findings and major artefacts. fMRIPrep reports were reviewed for registration errors and image 

artefacts. Subject exclusion for excessive head motion (see section “Subjects”) was based on pre-

processing criteria (mean FD > 0.3 mm or maximum FD > 5 mm or more than 20% outlier data 
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points). FD did not differ significantly between FAS and controls. However, there was a trend towards 

higher mean and maximum FD in the FAS group (see Supplementary Table 1). 

Static functional connectivity analysis: general approach  

Functional connectivity analyses were based on a cortical atlas (“Schaefer atlas”) derived from rs-

fMRI data in 1489 subjects. The atlas was obtained from TemplateFlow to match the dimensions of 

the fmriprep outputs52. The atlas version with 400 parcels adopted here is the most extensively 

validated version of this atlas, e.g. regarding stability and correspondence with markers of brain 

function53. The individual parcels in the published atlas have been matched to 17 non-overlapping 

networks from a previously established atlas by Yeo et al.54. 10 cognition-related components out of 

these 17 networks were selected for further analysis: the dorsal attention network (2 sub-networks A 

and B), the salience / ventral attention network (2 sub-networks A and B), the mainly fronto-parietal 

control network (3 sub-networks A-C), and the default-mode network (3 sub-networks A-C). 

Timeseries extraction from the pre-processed fMRI data and calculation of z-transformed Pearson 

correlation coefficients as primary measures of FC were carried out with the Data Processing 

Assistant for Resting-State fMRI (DPARSF, version 5.2)55 based on Matlab 2019b (The MathWorks, 

Natick, MA, USA). As a basis for subsequent modelling, we carried out multiple two-tailed two-

sample t-tests (one test per pair of regions), comparing z-transformed correlation coefficients among 

regions of interest between FAS patients and controls. 

We followed a hierarchical statistical testing approach with three levels of analysis: 1) first, 

determining whether there is any alteration of FC in FAS subjects compared with controls in the full 

connectome of 243 regions constituting these 10 cognition-related networks (i.e. an omnibus test) 

globally and subsequently aiming to resolve these findings, 2) to the level of either FC within each 

network or between-network connectivity, and finally 3) to individual connections.  

Static functional connectivity analysis: global analysis 

The omnibus test on the full connectome is based on the “Higher Criticism” (HC) approach56 in an 
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improved version57 implemented in Matlab 

(https://www.stat.cmu.edu/~jiashun/Research/software/HC/). HC statistics can be applied in order to 

test whether there are any non-zero effects within a large number of individual tests carried out in 

high-dimensional datasets. They are thus suitable to identify the existence of rare and weak effects in 

such data56. HC follows the rationale of p-value histogram analyses: Under a null-hypothesis of only 

zero-effects in multiple parallel tests, an equal distribution of p-values is expected. Under the 

alternative hypothesis of existing non-zero effects, there is an excess of low p-values58. In simplified 

terms, HC statistics test a joint hypothesis of such an excess of low p-values56,58. HC has been 

increasingly popular for detecting effects in high-dimensional data such as in genetic56 and 

economic59 research. It has been argued that HC could be favorable for the detection of rare events 

compared with conventional false-discovery rate (FDR) or family-wise error rate (FWE) correction 

methods56. Considering the similarly high dimensionality of FC datasets, HC has recently been 

applied to rs-fMRI analyses60.  

Static functional connectivity analysis: within-network HC analysis 

Subsequently, we aimed to determine which of the 10 cognition-related networks were affected by 

within-network functional connectivity differences between FAS and control subjects. We therefore 

carried out equivalent HC tests separately for these networks. Each set of tests included the full set 

of correlation coefficients between all regions within each network.  

Static functional connectivity analysis: between-network HC analysis 

For a similar analysis of between-network FC (i.e., to determine whether any between-network FC 

differences were present), we concatenated all parcels for each of the 10 networks separately. This 

resulted in a single mask for each network before time-series data extraction.  The resulting 

correlation coefficients were assessed with an equivalent HC test.  

Static functional connectivity analysis: analysis of individual connections 

In a third level we aimed to identify single between- and within-network connections exhibiting 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 23, 2023. ; https://doi.org/10.1101/2023.05.18.23289319doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.18.23289319
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

12 

statistically significant FC differences between FAS subjects and controls. Therefore, in contrast to 

the previously described HC-based joint-hypothesis tests, we now FDR-adjusted61 the individual 

hypothesis tests of between- and within-network connectivity (q < 0.05), using an FDR 

implementation in Matlab (https://brainder.org/2011/09/05/fdr-corrected-fdr-adjusted-p-values). 

This was carried out separately for either all 45 between network connections or all individual 

connections within each network. 

Exploratory time-resolved functional connectivity analysis 

Beyond the static FC analysis, we carried out an exploratory dynamic FC analysis, using a sliding 

window approach with the DynamicBC toolbox (version 2.2)62. FC between all 243 regions in the 

cognition-related networks was calculated for each individual subject by Pearson linear correlation 

separately in overlapping windows with a length of 18 consecutive functional volumes equivalent to 

45 s, similar to window lengths in previous studies63,64, and with a 60 % overlap. The resulting time-

resolved FC estimates from individual time windows were grouped by similarity (K-means cluster 

analysis, distance measure: correlation) in order to derive presumed FC states in the entire sample. 

Established methods were used to estimate the optimal number of clusters and assess the goodness of 

fit of the clustering solutions: (1) The optimal number of clusters (search range: 2 to 10) was estimated 

using the Calinski-Harabasz65 and Davies–Bouldin66 indices resulting in 2 clusters (see 

Supplementary Fig. 2). (2) Cluster-separability was estimated by a silhouette analysis. Briefly, the 

silhouette analysis assesses, how similar an individual element is to other elements within its own 

cluster compared with elements in other clusters67. The following summary measures describing the 

temporal dynamics of putative FC states were calculated for individual subjects: number of transitions 

(NT) between connectivity states, mean dwell time (MDT) per cluster, and frequency of observing 

each cluster (FRC). Subjects with FAS and controls were compared regarding NT and MDT using t-

tests or Mann-Whitney U tests. 
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Results 

Static functional connectivity analysis: global analysis 
We observed significantly altered FC of cognition-related brain regions in FAS subjects compared 

with non-exposed controls in the global (all parcels of all 10 cognition-related networks) analysis 

over the entire data acquisition period. This finding is based on a joint hypothesis test (HC test 

statistic: 39.02) which aims to detect the existence of alterations within this high dimensional dataset 

but which does not identify which exact connections are altered (Fig. 1). Quantitative results of FC 

group differences in connections between single atlas regions as depicted in Fig. 1C are shared (not 

currently available, to be added as supplementary material or in a repository at the time of publication 

depending on journal policy). 

 

Fig. 1 – Global analysis of static functional connectivity of cognition-related brain networks. A) 
Full atlas-based selection of 243 individual brain regions in cognition-related networks (redundant 
color coding for illustration of atlas resolution only). B) P-value histogram of multiple individual 
two-sided t-tests comparing functional connectivity among all these brain regions between FAS 
patients and control subjects. Under the null-hypothesis of equal functional connectivity in both 
groups, equal numbers of p-values are expected in each histogram bin. The histogram shows an excess 
of low p-values. The existence of at least rare and/or weak effects is also confirmed by a test of the 
joint hypothesis based on higher criticism statistics. This means that regarding a significant number 
of functional connections, FAS patients differ from healthy controls. C) Unthresholded matrix of 
connectivity group differences describing the full connectome of cognition-related brain regions. 
Yellow: mean z-transformed correlation coefficients relatively increased in FAS compared with 
controls. Blue: relatively decreased functional connectivity in FAS.  

Static functional connectivity analysis: within-network HC analysis 
FC was altered within 7 out of 10 of these cognition-related brain networks based on the joint 

hypothesis tests. Based on the HC test statistic and supported by p-value histograms of tests of 
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individual functional connections, this effect was most obvious in the dorsal attention A sub-network 

(HC test statistic: 12.33), followed by the salience / ventral attention A network (HC test statistic: 

9.17). However, findings also spanned sub-networks B and C of the fronto-parietal control (HC test 

statistics: 5.33 and 4.29) and sub-networks A, B, and C of the default mode (HC test statistics: 3.80, 

6.42 and 4.33) networks (Fig. 2).  
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Fig. 2 – Within-network static functional connectivity of cognition-related brain networks. 
Seven (out of ten) sub-networks exhibiting altered functional connectivity in FAS patients compared 
with controls. Left column: Overview of the networks’ overall extent. Middle column: P-value 
histograms (different scaling reflecting different numbers of regions in each network) of multiple 
two-sided t-tests comparing functional connectivity within these sub-networks between FAS patients 
and control subjects. Under the null-hypothesis of equal functional connectivity in both groups, equal 
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numbers of p-values are expected in each histogram bin. The histogram shows an excess of low p-
values, confirmed by a test of the joint hypothesis based on higher criticism statistics. This means 
that FAS patients differ from healthy controls regarding at least rare and/or weak effects. Right 
column: Unthresholded matrices of connectivity group differences describing the full connections of 
cognition- related brain regions within each network. Yellow: mean z-transformed correlation 
coefficients relatively increased in FAS compared with controls. Blue: relatively decreased functional 
connectivity in FAS. The remaining three networks without significant results are presented in 
Supplementary Fig. 1. 

Static functional connectivity analysis: between-network HC analysis 
A subsequent analysis revealed altered FC between cognition-related brain networks based on an 

equivalent joint hypothesis test (HC test statistic: 4.50). Descriptively, underlying strongest relative 

decreases of FC (ranking of correlation coefficient group differences) in FAS subjects were observed 

between the salience / ventral attention B and fronto-parietal control C sub-networks. The strongest 

relative increases were observed between the dorsal attention B and fronto-parietal control sub-

networks as well as between the default mode C sub-network and other parts of the default mode 

network and fronto-parietal control network (Fig. 3). 
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Fig. 3 – Between-network static functional connectivity of cognition-related brain networks. A) 
10 cognition-related networks. Each color represents an individual sub-network (network-wise 
concatenation of individual regions based on atlas labels). B) P-value histogram of multiple two-sided 
t-tests comparing functional connectivity among these sub-networks between FAS patients and 
control subjects. Under the null-hypothesis of equal functional connectivity in both groups, equal 
numbers of p-values are expected in each histogram bin. The histogram shows an excess of low p-
values confirmed by a test of the joint hypothesis based on higher criticism statistics. This means that 
regarding a significant number of functional connections, FAS patients differ from healthy controls. 
C) Unthresholded matrix of connectivity group differences describing the full connectome of 
cognition- related brain regions. Yellow: mean z-transformed correlation coefficients relatively 
increased in FAS compared with controls. Blue: relatively decreased functional connectivity in FAS. 

Static functional connectivity analysis: analysis of individual 

connections 
None of the individual FC alterations (either from the within- or between-network analysis) were 

statistically significant when correcting the separate tests of individual connections for multiple 

comparisons.  
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Exploratory time-resolved functional connectivity analysis 
In the exploratory dynamic FC analysis, a solution consisting of two FC states was empirically 

derived as the optimal number of clusters across the entire sample. These two clusters representing 

putative FC states were only weakly separable (see silhouette values and further goodness-of-fit 

statistics for the clustering solutions in Supplementary Fig. 2). Both clusters differed mainly regarding 

(1) the relatively connectivity strength of the DMN and (2) the extent that the DMN appeared 

interconnected with other cognition-related brain networks. See Supplementary Fig. 3 for further 

details on the clusters. FAS subjects did not differ significantly regarding the temporal dynamics of 

these FC states NT, MDT, and FRC (Table 2).  

Table 2 – Group comparison results for the optimal clustering solution (2cl) of the time-
resolved functional connectivity analysis. Clusters represent estimates of putative FC states. In 
summary, cluster 1 represents widely distributed FC dominated by the DMN while cluster 2 
exhibits stronger dichotomisation between the DMN and the other cognition-related networks.  

 FAS CON p 

Number of transitionsa 6.59 ± 2.99 7.11 ± 2.24 0.366 

Mean dwell time (cluster 1)b 3.33 (0.00-13.5) 3.29 (1.33-27.00) 0.809 

Mean dwell time (cluster 2)b 3.00 (1.00-28.00) 3.00 (1.00-9.00) 0.982 

Frequency (cluster 1)c 57.14 (0-96) % 54.57 (11-96) % 0.780 

Frequency (cluster 2)c 42.86 (4-100) % 46.43 (4-89) % 0.780 
a mean ± standard deviation and t-test result), b unit: number of (partially overlapping) windows, 
median (range) and Mann-Whitney-U-test result, c median (range) and Mann-Whitney-U-test result.  
FAS: fetal alcohol syndrome, CON: controls 

 

Discussion 

In summary, FC was altered in adults with FAS compared to controls not exposed to alcohol 

prenatally both within a majority of cognition-related networks (including the dorsal attention 

network and, to a lesser degree, the salience / ventral attention networks, the fronto-parietal control 

network, and the default mode network) and between these networks. FC changes were widely 

distributed across networks. These results on the global and network level are based on an HC 
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approach, indicating that at least rare and weak group effects seem to be present within and between 

these networks56. HC-based findings do, however, not necessarily mean that FC is changed in a 

majority of connections within and between these networks. Group effects could not be further 

resolved to connections between individual regions using conventional mass-univariate testing with 

multiple comparison correction. In the additional exploratory time-resolved FC analysis, altered FC 

dynamics in the FAS group could not be observed.  

The wide distribution of findings across cognition-related networks is in line with the similarly wide 

range of cognitive deficits observed in individuals with FAS1. It thus suggests a rather distributed 

neural basis (i.e. unspecific alcohol-related damage) of such deficits rather than strongly localized 

alterations. A similarly wide distribution of FC alterations across networks was observed by Fan et 

al. in children with FASD based on an independent component analysis with dual regression25. Thus, 

this observation of a wide distribution spans different age groups (from childhood to young 

adulthood) and rs-fMRI analysis approaches. Visual interpretation of the connectivity matrices 

reveals different directionalities of findings: Some connections exhibited higher, and some lower FC 

in FAS. This bidirectionality is generally in line with a study in children with FASD by Ware et al.; 

They also report different directionalities of FC alterations27. Consequently, a simple picture of either 

overall increases or decreases of FC in FAS does not exist.  

The observation of more obvious effects in attention- and salience-related systems compared with 

networks underlying other cognitive functions highlights the importance of attentional deficits in 

FASD1,68-72, including adults5,73. However, this interpretation might be somewhat limited by the 

infeasibility of a direct quantitative comparison between networks as well as reverse inference74,75. 

Our rs-fMRI findings are generally in line with previous studies suggesting a particular involvement 

of attentional functions and underlying neural systems in FAS when compared to other cognitive 

deficits: Response and activation patterns in a Go/NoGo task in a sample of young female adults 

overlapping with this study also provide indirect evidence of a particular importance of attentional 

deficits compared with inhibitory control deficits in this age group36. Attention-related networks were 
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also altered in other alcohol-exposed samples studied with fMRI: Attention networks were among 

those altered in studies by Fan et.al25 and Ware et al27. In the latter study, FC alterations were 

associated with differences in attentional performance measures. The authors consequently conclude 

that the patterns observed (lower within-network, higher between-network FC) provide support for 

reduced attention network specialization and inefficiency27. Reduced FC between key regions of the 

salience network with other cognition-related networks were among the key findings by Little et al.26. 

A resting-state magnetoencephalography study provided initial evidence that spectral changes in 

subjects with a history of prenatal alcohol exposure might be related to a subset of attention-related 

measures but also to emotional behavior76. Diffusion tensor imaging revealed reduced inter-network 

structural connectivity including the ventral attention and default mode network in children and 

adolescents prenatally exposed to alcohol77.  

To a lesser extent, we also observed altered FC in parts of the fronto-parietal control network. This 

network is considered a flexible hub that interacts with other processing networks in order to 

orchestrate performance in a wide range of cognitive tasks78. Changes in fronto-parietal network FC 

were among those also observed in younger subjects with FASD25,26. There is further evidence of 

altered activity in these networks in children with FASD from task-based fMRI studies on inhibitory 

control79 and working memory80.  

The default mode network (DMN), though classically reported as anti-correlated with task-positive 

cognitive networks81, is considered to be involved in cognitive functions including task-switching 

and integration of information82,83. There is evidence of regional differentiation within the DMN, with 

subdivisions subserving different cognitive functions84. Fan et al observed altered FC in the anterior 

part of the DMN, discussed as subserving social perception, judgment, and self-referential processing 

in individuals with FASD; however, they found no changes within the posterior DMN25. 

Correspondingly, we predominantly observed FC alterations affecting the “DMN B” sub-network of 

the DMN, which also mainly includes anterior subregions of the DMN. Beyond that, there is further 

evidence of less regionally specific DMN dysfunction in FASD from a seed-based FC analysis32.  
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The main static FC analysis applied in this study follows a hierarchical statistical approach, partially 

based on HC statistics. This approach addresses the general limitations of functional neuroimaging 

analyses in relatively infrequent disorders such as FAS (estimated global prevalence of FAS: 14.6 per 

10 000 people85): Conventional high-dimensional FC analysis methods, such as frequently-used 

mass-univariate statistical testing, carry the risk to report only a “tip of the iceberg” of true underlying 

alterations due to lower than optimal statistical power. There is an increased risk of both published 

findings being false-positive86,87 or false-negative findings86. Further in-depth discussions on this 

issue have been published87-89. Consequently, statistical thresholding of mass-univariate analyses 

(mainly for multiple comparison correction) might in part explain ambiguous FC results in previous 

studies in children with FASD25-27. There are increasing efforts to report subthreshold effects in fMRI 

studies in order to facilitate better interpretation of underlying patterns90-92. An example is the 

additional presentation of unthresholded activation or connectivity maps91,93. Our hierarchical 

approach with HC-based joint hypothesis tests56,57 at the network level might help avoid these 

shortcomings without sacrificing information from individual connections. Compared with 

conventional mass-univariate fMRI analyses, it avoids selectively reporting and interpreting few 

selected results that would pass a multiple-comparison threshold but might not well represent the true 

underlying effect in a medium-power setting. Please see the “methods” section for a more detailed 

description of the approach and underlying rationale, as well as the “limitations” section for further 

methodical aspects. 

Our findings discussed so far are based on conventional static FC analyses. Clinical features typically 

observed in individuals prenatally exposed to alcohol include impulsivity or hyperactivity (including 

overlap/comorbidity with attention deficit hyperactivity disorder)1,3,4. These clinical features might 

suggest a potential dynamic or temporally-changing nature of underlying neural disease mechanisms. 

This assumption is supported by dynamic FC alterations previously reported in ADHD22-24. Contrary 

to this assumption, we did not observe alterations of features representing non-stationarity in the 

exploratory time-resolved analysis of dynamical aspects of FC. In particular, compared to controls 
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FAS subjects did neither change more or less frequently between two putative FC states, nor did they 

remain in the different FC states for shorter or longer periods of times. Thus, we did not find evidence 

of altered dynamic interactions of brain regions of different networks. There is at least some evidence 

in children, that hyperactivity might be less severe in PAE compared with ADHD94. Though those 

findings cannot be directly translated to adult FAS subjects, relatively lower hyperactivity might be 

the reason for the lack of dynamic FC alterations observed in our study. These findings are also 

generally in line with a previous rs-fMRI study reporting no alteration in regional temporal variance 

in children with low levels of PAE, although this study differs substantially from our dynamic FC 

analysis regarding disease severity, age and analysis method95. 

Potential limitations 
Findings of this first FC analysis in adults with PAE are restricted to young adults (ages 18-32 years) 

with FAS. They do not necessarily translate to other age groups. Results of this HC analyses aiming 

at detecting rare and weak effects might, in part, be influenced by subliminal demographic effects, 

despite the relatively homogeneous sample in a narrow age range. Furthermore, findings do also not 

necessarily translate to other gradations across the FASD spectrum. Despite greater psychopathology, 

attention deficits, and impulsiveness compared with controls, a recent study did not find network-

based FC alterations in a population of adolescents with a wide range of PAE, i.e. less severely 

exposed individuals96.  

Although precautions were taken to minimize head motion and even though measures did not differ 

significantly between groups, it cannot be fully excluded that parts of the results are movement-

related. We have adopted state-of-the-art motion-correction methods during data preprocessing (see 

the ‘Methods’ section) to further avoid a potential movement bias.  

Statistical power of the final step of the hierarchical analysis approach (resolving FC alterations to 

single connections between pairs of regions) is potentially limited by the high dimensionality of the 

underlying atlas. This atlas resolution was chosen because it is extensively validated and aims to 
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approach neurobiological estimates of the number of truly distinct cortical regions53. FC analyses 

based on atlases with higher dimensionality similar to this have been shown to better reflect the 

brain’s functional architecture compared with traditional atlases based on surface anatomy97. The HC-

based approach was chosen here instead of e.g. region-of-interest concatenation (averaging) to allow 

global and network-wise inference while maintaining the advantages of the high resolution atlas. 

Findings are limited to the cortex and do not include subcortical gray matter nuclei within these 

networks98,99. The functional network labels provided by the Schaefer atlas53 are a prerequisite for 

this approach. Additionally, it has to be noted that there is an ongoing debate about functional network 

nomenclature, so that the networks described here may deviate from studies using other brain 

atlases100.  

Though widely used in other research areas with high dimensional data56,59, the HC statistic has only 

recently been introduced to fMRI60,92. The HC statistic primarily assumes statistically independent 

features, since correlations among features can lead to unbalanced p-value histograms, however 

without expecting peaks in the first histogram bin (low p-values). It has thus been argued that the 

influence of correlations among features is negligible when the underlying histograms show typical 

behavior58. In addition to the HC statistic, we therefore visually interpreted the underlying p-value 

histograms as a plausibility control and observed well-behaved p-value histograms in the global and 

within-network analysis and to a slightly lesser degree in the between-network analysis. The HC-

based global hypothesis test is not part of the statistical framework resulting in p-values for 

determining statistical significance. Thus, no exact p-values can be provided. However, p-values for 

typical HC values have been approximated, e.g. p = 0.05 for an HC threshold of 4.83 and p = 0.01 

for an HC threshold of 10.0 101. Even when using these approximated p-values, thus departing from 

the notion of the original HC statistic, a majority of results would be statistically significant at the p 

< 0.05 level or stricter p-values. 

Dynamic or time-resolved FC analysis is a promising, already widely used, yet still evolving rs-fMRI 

analysis method15-17. Thus, there is currently a relatively high methodological variability in this 
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field15,17. Here, we adopted a widely used sliding-window approach17 and refrained from extensively 

exploring analysis settings in order to avoid false positive findings102. Hence, there is a risk to miss 

group differences of FC dynamics which might have been uncovered with other, less well-established 

dynamic FC analysis approaches which might address limitations of the sliding window 

approach15,17,103. Similar to methodological heterogeneity there is still no consensus of connectivity 

states to be expected in a normal population. However, a relatively small number of FC states partially 

reflecting changing interactions of parts of the DMN, similar to those observed here (Supplementary 

Fig. 3) has been repeatedly reported17,104. Silhouette values (Supplementary Fig. 2) indicate that 

clusters observed in our analysis may not be well separated. Thus, these two clusters capture dynamic 

FC changes as a model but might not represent truly discrete FC states in a neurobiological sense. 

Cluster frequencies suggest a high inter-subject variability. Despite these general limitations of this 

evolving methodology, we believe that our exploratory approach can be a starting point for further 

investigations on dynamic FC in FAS and other disorders with impaired brain development.  

Conclusions 

We observed altered FC in cognition-related brain networks in young adults with FAS. Using a HC-

based statistical approach, this study provides evidence of the existence of at least rare and weak 

effects (i.e, FC differences between subjects with FAS and controls) widely distributed across a 

majority of these networks, potentially underlying the diversity of cognitive deficits in these 

individuals. Findings were pronounced in attention-related sub-networks, which is in line with 

substantial attentional deficits previously reported. An exploratory time-resolved analysis, however, 

did not identify altered FC dynamics and could thus not explain reduced impulse control and attention 

deficits which have been frequently reported in FAS. 

Data availability 

On request to the authors, further intermediate data on a level independent from the individual 

subjects can be shared. Due to German data protection regulations and to safeguard subject 
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confidentiality, data on the level of individual subjects cannot be made available (no participant 

consent for sharing these primary data).  
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Supplementary material 

Supplementary methods 

MRI data preprocessing 

The following fMRIPrep “boilerplate” (indented text) describes the preprocessing steps in detail. The text has 

intentionally been left completely unchanged according to the fMRIPrep recommendations for optimal 

reproducibility. Please note that fMRIPrep generated multiple preprocessing outputs which could be used in 

different denoising and analysis strategies. Not all of these parallel outputs have been used for further 

processing in this study. Details about which outputs were used for actual denoising and further functional 

connectivity modelling are presented in the main text. 

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.0.7 
(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is 
based on Nipype 1.4.2 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing  

The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.2.0 (Avants et al. 2008, 
RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference was 
then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from 
ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using 
fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces were 
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 
1999), and the brain mask estimated previously was refined with a custom variation of the method to 
reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 
Mindboggle (RRID:SCR_002438, Klein et al. 2017). Volume-based spatial normalization to one 
standard space (MNI152NLin2009cAsym) was performed through nonlinear registration with 
antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the T1w 
template. The following template was selected for spatial normalization: ICBM 152 Nonlinear 
Asymmetrical template version 2009c [Fonov et al. (2009), RRID:SCR_008796; 
TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing  

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. Susceptibility distortion correction (SDC) 
was omitted. The BOLD reference was then co-registered to the T1w reference using bbregister 
(FreeSurfer) which implements boundary-based registration (Greve and Fischl 2009). Co-
registration was configured with six degrees of freedom. Head-motion parameters with respect to the 
BOLD reference (transformation matrices, and six corresponding rotation and translation 
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parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et 
al. 2002). The BOLD time-series (including slice-timing correction when applied) were resampled 
onto their original, native space by applying the transforms to correct for head-motion. These 
resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or 
just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating 
a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume 
and its skull-stripped version were generated using a custom methodology of fMRIPrep. Several 
confounding time-series were calculated based on the preprocessed BOLD: framewise 
displacement (FD), DVARS and three region-wise global signals. FD and DVARS are calculated for 
each functional run, both using their implementations in Nipype (following the definitions by 
Power et al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-
brain masks. Additionally, a set of physiological regressors were extracted to allow for component-
based noise correction (CompCor, Behzadi et al. 2007). Principal components are estimated after 
high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s 
cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 5% variable voxels within a mask covering 
the subcortical regions. This subcortical mask is obtained by heavily eroding the brain mask, which 
ensures it does not include cortical GM regions. For aCompCor, components are calculated within 
the intersection of the aforementioned mask and the union of CSF and WM masks calculated in T1w 
space, after their projection to the native space of each functional run (using the inverse BOLD-to-
T1w transformation). Components are also calculated separately within the WM and CSF masks. 
For each CompCor decomposition, the k components with the largest singular values are retained, 
such that the retained components’ time series are sufficient to explain 50 percent of variance across 
the nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped 
from consideration. The head-motion estimates calculated in the correction step were also placed 
within the corresponding confounds file. The confound time series derived from head motion 
estimates and global signals were expanded with the inclusion of temporal derivatives and quadratic 
terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 
standardised DVARS were annotated as motion outliers. All resamplings can be performed with a 
single interpolation step by composing all the pertinent transformations (i.e. head-motion 
transform matrices, susceptibility distortion correction when available, and co-registrations to 
anatomical and output spaces). Gridded (volumetric) resamplings were performed using 
antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the smoothing 
effects of other kernels (Lanczos 1964). Non-gridded (surface) resamplings were performed using 
mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.6.2 (Abraham et al. 2014, 
RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 
pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention that 
users should copy and paste this text into their manuscripts unchanged. It is released under the 
CC0 license. 
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Supplementary tables 

Supplementary Table 1 – Group comparison of head motion estimates  
Data derived from preprocessing (final sample after exclusion of subjects with excessive head 
motion).  

 FASa CONa pb 

Mean FD (mm) 0.148 (0.07 – 0.27) 0.126 (0.08 – 0.29) 0.081 

Maximum FD (mm) 0.950 (0.22 – 3.25) 0.649 (0.18 – 1.83) 0.061 

Number of motion spikes 1.709 (0.00 – 10.26) 0.855 (0.00 – 16.67) 0.147 

a median (range) bMann-Whitney-U-test result. FAS: fetal alcohol syndrome, CON: controls, FD: 
framewise displacement 
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Supplementary figures 

 

 

Supplementary Figure 1 – Within-network static functional connectivity of cognition-related 
brain networks (networks without significant group differences). Three (out of ten) sub-networks 
not exhibiting altered functional connectivity in FAS patients compared with controls (A – C). Left 
column: Overview of the networks’ overall extent. Middle column: P-value histograms of multiple 
two-sided t-tests comparing functional connectivity within these sub-networks between FAS and 
control subjects (global null hypothesis not rejected based on HC test statistic, Dorsal Attention B: 
1.38, Salience / Ventral Attention: 2.30, Fronto-Parietal Control A: 2.92). Right column: 
Unthresholded matrix of connectivity group differences describing the full connections of cognition- 
related brain regions within each network. Yellow: mean z-transformed correlation coefficients 
relatively increased in FAS compared with controls. Blue: relatively decreased functional connectivity 
in FAS. 
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Supplementary Figure 2 – Goodness-of-fit statistics for different k-means clustering solutions (2 
to 10 clusters) for putative functional connectivity states in the time-resolved analysis. From left 
to right: percent of variance explained (relative to a 10-cluster solution), silhouette values (possible 
range: -1 to 1) with higher values representing good cluster separability, higher Calinski-Harabasz 
values representing higher cluster density and separability, and Davies–Bouldin criterion (lower 
values representing higher clustering quality). 
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Supplementary Figure 3 – Connectivity matrices representing the two putative functional 
connectivity (FC) states in the optimal clustering solution of the time-resolved analysis across the 
entire sample. Original model estimates from the DynamicBC toolbox calculated in the entire sample. 
Matrices ordered according to the ROI order key provided in the Supplementary data. Left: Cluster 1 
shows widely distributed FC dominated by the default mode network (DMN); Right: Cluster 2 
exhibits stronger dichotomisation between the DMN and the other cognition-related networks. LH: left 
hemisphere, RH: right hemisphere 
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