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Abstract

Background and Objectives: Electrocardiographic (ECG) and vectorcardiographic

(VCG) analyses are used to diagnose current cardiovascular disease and for risk

stratification for future adverse cardiovascular events. With increasing use of digital ECGs,

research into novel ECG/VCG parameters has increased, but widespread computer-based

ECG/VCG analysis is limited because there are no currently available, open-source, and

easily customizable software packages designed for automated and reproducible analysis.

Methods and Results: We present BRAVEHEART, an open-source, modular,

customizable, and easy to use software package implemented in the MATLAB programming

language, for scientific analysis of standard 12-lead ECGs acquired in a digital format.

BRAVEHEART accepts a wide variety of digital ECG formats and provides complete and

automatic ECG/VCG processing with signal filtering to remove high- and low-frequency

artifact, non-dominant beat identification and removal, accurate fiducial point annotation,

VCG construction, median beat construction, customizable measurements on median

beats, and output of measurements and results in numeric and graphical formats.

Conclusions: The BRAVEHEART software package provides easily customizable

scientific analysis of ECGs and VCGs. We hope that making BRAVEHART available will

allow other researchers to further the field of EVG/VCG analysis without having to spend

significant time and resources developing their own ECG/VCG analysis software and will

improve the reproducibility of future studies. Source code, compiled executables, and a

detailed user guide can be found at http://github.com/BIVectors/BRAVEHEART. The

source code is distributed under the GNU General Public License version 3.

Keywords: electrocardiogram, vectorcardiogram, software, open-source, annotation
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1. Introduction

The electrocardiogram (ECG) is a critical tool for clinical cardiovascular medicine and

cardiovascular medical research. ECG analysis is used to diagnose existing cardiovascular

disease and for risk stratification of future cardiovascular events, both in clinical practice

and for research purposes. Although historically ECGs have been read by trained

physicians on paper printouts, as medicine becomes more computerized, there has been

increasing use of computerized ECG annotation and interpretation [1]. With increased

availability of digitized ECGs there is also increasing interest in measurements which

require additional signal processing of the standard 12-lead ECG and which cannot be

obtained by visual inspection of the standard 12-ECG alone.

Computerization and digitization of ECGs have also allowed widespread analysis of

vectorcardiograms (VCGs), where the electrical activity of the heart is visualized in 3

dimensions, and associated vectorcardiographic measurements [2]. These measures, which

include the spatial ventricular gradient (SVG) [3], sum absolute QRST integral (SAI

QRST) [4], QRST angle [5], total cosine R to T (TCRT) [6], and quantification of

vectorcardiographic loop morphology [7], have been helpful in diagnosing current

cardiovascular disease and predicting future adverse cardiovascular events across multiple

studies with diverse patient populations.

Although clinically promising, widespread study of these and other VCG measurements

has been limited because they require additional computer processing and specialized

software. Previously described software includes the ECGlib software library and ECGlab

graphical user interface (GUI) [8, 9], the Leiden ECG analysis and decomposition software

(LEADS) software package [10], and other programs [11, 12]. However, these programs are

not publicly available [10, 11, 9], and available open-source software packages [8, 12, 13, 14]

are libraries for specific parts of ECG/VCG processing, such as R peak detection,

dominant beat labeling, or fiducial point annotation, rather than full programs that allow

complete processing of ECG data from file to measurements.

ECG/VCG research therefore usually requires investigators to create custom software

which can be time consuming to develop and test, and which makes reproducible
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measurement difficult because variations in filtering, signal baseline definition, and signal

processing preclude the direct comparison of measurements. Reproducible analysis is also a

special priority as the reproducibility of results is of growing concern in scientific research

[15]. We therefore set out to develop open-source, easily customizable software designed to

support ECG/VCG research with high-throughput, automated, and reproducible ECG and

VCG analysis with the Beth Israel Analysis of Vectors of the Heart (BRAVEHEART)

software library.

BRAVEHEART addresses the limitations of existing software as a modular software

library meant to perform reproducible annotations and ECG and VCG measurements for

scientific analysis on standard 12-lead ECGs acquired in a digital format. The design goals

of BRAVEHEART include:

� A customizable, modular, and easily extensible design makes it simple to add new

measurements or ECG formats as needed.

� Signal filtering and baseline correction performed in a physiologically appropriate way.

� Automated operation that is robust to non-dominant beats (premature ventricular

contractions [PVCs], aberration, ventricular pacing, etc.), artifact, and noise.

� Reproducible ECG/VCG annotation, signal segmentation, and measurements.

� Automatic and efficient batch processing of ECGs with parallel processing capability.

� Open source MATLAB (MathWorks, Natick, MA) code as well as compiled

executable code for researchers without access to MATLAB.

2. Methods/Software Description

BRAVEHEART is a software package which performs automated ECG/VCG analysis

for research purposes. It takes a digital 12-lead ECG signal in a variety of formats, and

provides automatic signal filtering, QRST fiducial point annotation, median beat alignment

and construction, and measurement of a variety of ECG/VCG parameters on the median

beat. It is also designed to be easily customizable. BRAVEHEART currently runs on
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MATLAB versions above R2022a. Matlab source code, compiled executables for Windows

and Mac operating systems, and a detailed user guide can be found at

http://github.com/BIVectors/BRAVEHEART. The source code is distributed under the

General Public License (GPL) version 3.

2.1. BRAVEHEART Overview:

BRAVEHEART ECG processing proceeds via the following steps:

1. Reading in the digital ECG in a variety of formats.

2. Wavelet-based filtering for high-frequency and low-frequency (baseline wander) noise

removal.

3. VCG construction.

4. Peak thresholding for heart rate (HR) estimation and locating QRS complexes.

5. Baseline offset correction of the VCG leads.

6. Median filtering for estimation of QRS width and automatic pacemaker spike

detection and removal.

7. Preliminary heuristic fiducial point (QRS onset [Qon], QRS offset [Qoff], and T wave

offset [Toff]) annotation.

8. Non-dominant QRST morphology (PVC, ventricular pacing, or aberration) detection:

non-dominant beats can be analyzed separately or automatically excluded from

subsequent analyses.

9. Outlier beat detection: outlier beats can be automatically excluded.

10. Median beat VCG construction.

11. Median beat fiducial point (Qon, Qoff, and Toff) annotation using a custom neural

network (NN).

12. VCG signal and annotation quality assessment.

13. Graphical display and analysis of the VCG median beat.

14. Export of ECG/VCG measurement data to an external file for analysis.

2.2. Reading Digital ECG Formats:

BRAVEHEART is able to read a variety of common digital ECG formats, including

extensible markup language (XML), from a variety of ECG recording system
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manufacturers such as General Electric (GE), Philips, and Mortara Instruments. HL7

XML is also supported. Other currently readable formats include Digital Imaging and

Communications in Medicine (DICOM), International Society for Holter and Noninvasive

Electrocardiology (ISHNE) .ecg files, GE Marquee .mrq files, GE Prucka format .txt files,

and unformatted numeric lead data in text files. Each file format has its own load module,

and it is therefore easy to integrate new file formats as needed.

2.3. ECG Signal Filtering:

Once ECG signals are loaded, wavelet-based filtering is performed to remove

noise/artifacts which can hamper ECG segmentation and processing. For high-pass

filtering of each ECG lead, a discrete wavelet decomposition is computed. The

approximated baseline signal is then reconstructed using wavelet decomposition levels

below a configurable bandpass which is nominally set to 0.24 Hz. This low frequency signal

which approximates baseline wander and respiration effects without influencing the main

frequencies contained in the QRST complex (0.5-40 Hz) [16], is then subtracted from the

original signal.

Low-pass filtering is achieved for each lead using a maximal overlap discrete wavelet

decomposition using a level which is nominally set to the 62.5 Hz bandpass with a soft

thresholding scheme to remove high frequency noise above this threshold. For both high-

and low-pass filtering, the wavelet and level used as a frequency cutoff are adjustable by

the user, although the nominal settings of high-pass at 0.24 Hz and low-pass of 62.5 Hz

work well for most applications. Certain ECGs with significant baseline wander or high

frequency artifact may require adjustment of these settings. Filtering can also be disabled

if needed for specific applications. An example of ECG filtering and baseline wander

removal using this methodology is shown in Figure 1.

2.4. Vectorcardiogram (VCG) Construction:

A 3× n VCG matrix (V) with orthogonal X, Y, and Z leads as its rows is constructed

from a n× 8 ECG matrix (E) with the 8 independent ECG leads (I, II, V1-V6) as its
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columns using a 3× 8 transformation matrix (M):

V = MET (1)

The Kors transformation matrix [17] is nominally used for M, although other

transformation matrices [2] (such as the inverse Dower transformation [18]) can be

substituted. The vector magnitude (VM) lead is then constructed by taking the Euclidean

norm of the VCG X, Y, and Z leads:

VM(t) =
√

X(t)2 +Y(t)2 + Z(t)2 (2)

The VM signal is used for all subsequent annotations as it represents the global electrical

activation of the heart as a combination of all 8 independent leads [19], and it is always

positive which simplifies signal processing and annotation.

2.5. QRS Peak Thresholding:

QRS complexes are detected in the VM lead by looking for peaks nominally in the top

5% of values, subject to a maximum HR constraint which helps in cases where there is

significant fractionation of the QRS complex or very large amplitude T waves. The

threshold parameter and maximum HR constraint may be manually adjusted in order to

process ECGs that feature high-amplitude measurement artifacts, very peaked T waves,

large differences in amplitude between native QRS complexes and PVCs, or paced QRS

complexes. Peak thresholding is illustrated in Figure 2.

2.6. Baseline Offset Correction of the Vectorcardiogram:

ECG machines usually assign the zero voltage reference to a point that is not

necessarily the physiological zero voltage. This may be computationally advantageous

during ECG signal acquisition using an ECG machine where visual inspection of the

baseline rather than exact voltage measurement relative to zero voltage is performed in

most cases and for most clinical purposes. However, when measurements are being made

on ECG leads, especially measurements involving area under the QRST complex, an
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Figure 1: Example of utilizing wavelet decomposition to remove significant low-frequency artifact from an
ECG with a sampling rate of 500 Hz. The original ECG signal is in black and the filtered signal is in red.
In this case the significant baseline wander, as illustrated by the dashed blue line, is estimated and then
subtracted out of the final signal so that the baseline is flat. In this example, modest high-frequency noise
is also reduced.

inaccurate baseline zero voltage reference can lead to large errors in these measurements

(See Supplemental Figure 1). Filtering can introduce baseline offsets as well. Therefore, in

order to ensure accurate measurements, a method of finding the physiologic zero voltage

reference after filtering is needed.

During the TP interval, after ventricular repolarization is complete and before start of

atrial depolarization (in sinus rhythm), the heart is electrically silent, and therefore the

voltage in all ECG leads should approximate 0 mV. While each ECG lead does undergo

baseline wander correction during high-pass filtering as noted above, and this can remove

large constant (0 Hz) shifts, there is often still a residual baseline offset which can be due

to noise, respiration, or amplifier drift. The high-pass filter does not use any physiologic

information and has no way of ensuring that the TP segment of the signal equals 0 mV.

When these offset ECG leads are then projected onto X, Y, and Z coordinates, the residual
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A

B

Figure 2: Example of VM lead peak thresholding with HR constraints. A: Parts of the signal which are above
the 98th percentile are highlighted in green. R peaks are chosen as the dominant peak within a window (odd:
red, even: blue, with width set by a chosen maximal HR). In this example the R peaks are significantly
larger than the T waves and there are not any significant extra peaks in the QRS complex, and R peak
detection is therefore straightforward. B: In this example there are 2 peaks in each QRS complex and a
PVC. The threshold was artificially lowered below what would nominally be chosen for illustrative purposes.
Even with a lower than normal threshold of 90%, only a single peak is found for each QRST complex, and
the second minor QRS peak and the PVC T wave are ignored. Had the PVC been more tightly coupled the
maximum HR constraint could be increased.
Abbreviations: PVC - premature ventricular contraction, VM - vector magnitude, HR - heart rate.

offsets can add up to an even larger baseline offset [20, 21].

In order to optimize the VCG for quantitative measurements such as area and angle

measurements, it is essential to zero the ECG lead baselines in a physiologically meaningful

way by adding a constant offset so that the TP segment approximates 0 mV voltage. This

re-zeroing process can be performed at any time before or after transformation of the ECG

into a VCG, but doing so after VCG construction is advantageous as fewer leads need to be

corrected (3 vs 8), and the ECG baseline offsets have no effect on the transformation from

ECG to VCG other than introducing a new offset in the transformed signals (matrix

multiplication is distributive for constants).

For each lead, this offset is determined by the following procedure: First, the signal is

smoothed with a 4th order Savitzky-Golay filter with window size equal to 10% of the

average cardiac cycle length which has the effect of smoothing out sharp features of the
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ECG signal. Next, the set of points corresponding to flat regions of the ECG signal is

determined by finding the set of points where the slope of the filtered signal is less than 2%

of the maximum slope. Finally, for each lead, the median of this set of points is

determined, which is then the offset by which the lead is subsequently shifted. This

baseline offset procedure is robust to noisy signals and atrial fibrillation, and functions as

long as the HR is not so tachycardic that there is no appreciable TP segment (or TQ

segment in atrial fibrillation) which would render the ECG difficult to quantitatively

analyze for other reasons. An example of baseline correction is shown in Figure 3.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Samples
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V

Effect of Baseline Correction on Lead X

  Unfiltered
  High-pass Filtered
  Filtered + Baseline Corrected
  0 mV

Figure 3: Example of baseline correction after filtering. The dashed black line corresponds to 0 mV. The
green signal is the raw unfiltered ECG signal (lead X) with 0 mV voltage assigned by the ECG recording
system. The blue signal is lead X after high-pass filtering; most of the baseline offset is removed by filtering,
but the TP segment is not appropriately set to zero voltage. The red signal is lead X after additional baseline
correction as described in the methods. After baseline correction the TP segment lead X now approximates
0 mV.

2.7. Median Filtering for Pacemaker Spike Detection:

For each peak detected in the VM lead, pacemaker spikes are identified (if present) with

the following procedure: first, the signal is smoothed with a 4 ms median filter. The start

and end of each R peak previously detected in the VM signal (see Section 2.5) is annotated

by marching out from the peak forwards and backwards and marking where the signal first

crosses an adjustable threshold which is nominally set at 20% of the peak height.

Candidate QRS peaks that are less than a certain threshold in width (default: 20 ms) are

marked as pacing spikes, as these spikes occur over time intervals that are not physiologic

for a QRS complex. If pacing spikes are found they are simply ignored and the
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QRS-finding procedure is repeated. The HR is then estimated as the mean distance

between R peaks (RR intervals) over the entire ECG.

2.8. Heuristic First Pass VCG Fiducial Point Annotation:

It has been shown that performing calculations on median beats is preferable to

calculating a quantity on each beat individually and then finding the mean or median of

measurements [19, 22]. Accurate annotation of each individual QRST complex is therefore

important primarily to allow accurate alignment of each individual beat to create an

accurate median beat which will be used for all subsequent measurements. For this reason,

it is less critical that each individual beat be perfectly annotated, as small errors in fidicual

point annotation do not preclude accurate median beat creation which relies primarily on

aligning the major features of the QRS complex/peaks rather than aligning beats based on

the exact location of fiducial points.

To allow rapid computation of fiducial points with a simple way of visualizing the

annotation algorithm and troubleshooting problematic ECGs or ECGs with atypical QRST

complexes, first pass QRST annotation utilizes standard signal processing methods on the

VM lead. For each R peak that is present, the QRS width is first estimated (similarly to

the previous step in Section 2.7) using a 40 ms median filter with an adjustable threshold

nominally set at 20%. A QRS search window is then defined around each R peak. The

adjustable QRS search window is set to be equal in duration to twice the estimated QRS

width, centered around the R peak. The adjustable T wave search window starts by

default 100 ms after the end of the located S-wave/Qoff and nominally extends forward to

45% of the mean RR interval. Rarely, it is necessary to adjust this percentage based on

HR, QT interval, and QRST morphology. The onset and offset of the QRS complex are

determined by an algorithm that is described in detail in the “Heuristic Annotation

Details” section of the Supplemental Methods (Supplemental Section 1.1). Details on the

search windows and an example of first pass annotation is shown in Figure 4.

T-wave offset detection can use baseline crossing, the tangent method [23], or a

validated method that is more robust to abnormal T wave morphology that estimates

minima of the T wave “energy” and which is more accurate than these other methods,
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* - R peak

| - bounds of QRS search window

[ - detected QRSonset

] - detected QRSoffset

( - start of T-wave window

) - end of T-wave window

} - detected Toffset
- estimated QRS width
- points corresponding to 

location of 20% of QRS max
*

* * *

QRS search window = 
2 x estimated QRS width 

100 ms

45% mean RR

Figure 4: Example of first pass heuristic annotation. The upper panel shows 3 sequential beats, and the
lower panel is zoomed in on beat 1. Search windows and the methodology for fiducial point detection are
described in detail in the text. Using nominal settings, the QRS search window (blue arrow and blue |
symbols) is set as 2 times the estimated QRS width (yellow bar) centered around the QRS peak. The T
wave search window (red arrows and blue parentheses) nominally starts 100 ms after QRS offset, and extends
forward 45% of the mean RR interval. These nominal parameters are adjustable.

especially in ECGs with low amplitude or notched T waves [24]. After first pass

annotation, beats too close to the start or end of the ECG so that an entire QRST complex

is not present are removed from analysis.

2.9. Non-dominant Beat (PVC, Pacing, and Aberration) Detection:

PVCs or other non-dominant beat classes, which include intermittent QRS aberration

or intermittent ventricular pacing, are detrimental to median beat construction, especially

when frequent non-dominant beats are present. For example, in cases of ventricular

bigeminy where there are equal numbers of PVCs and normal QRST complexes, unless

PVCs are removed, the median QRST complex will be be a superposition of the PVC and

normal QRST morphologies, with a morphology that is similar to neither (see Figure 5).

For this reason it is also not always possible to simply compare individual beats to the

median beat for non-dominant beat detection. BRAVEHEART automatically identifies

and can remove non-dominant QRST morphologies. This process will identify any

non-dominant QRST morphology including PVCs, intermittent ventricular pacing, and

intermittent QRS aberration. All of these types of non-dominant QRST complexes are

considered “PVCs” for purposes of the following method description.
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Figure 5: Effect of ventricular bigeminy on median beat construction. If ventricular bigeminy is present and
the full ECG strip contains equal numbers of normal beats (red) and PVCs (black), the created median beat
(dashed blue line) will be a superposition between the normal QRST complexes and PVC QRST complexes,
and will result in incorrect measurements.
Abbreviations: PVC - premature ventricular contraction.

BRAVEHEART PVC detection utilizes normalized cross correlation (NCC) and root

mean squared error (RMSE) to perform a form of “template matching” between individual

QRST complexes. A detailed description of the PVC detection algorithm is available in the

“PVC Detection Algorithm Details” section of the Supplemental Methods (Supplemental

Section 1.2), Figure 6, and Supplemental Figures 2 and 3.

Using a single lead for PVC detection may limit the sensitivity and specificity of PVC

detection because PVCs can be similar in morphology to dominant, non-PVC QRST

complexes in one ECG lead, while having dramatically different morphology in other leads.

BRAVEHEART therefore performs the PVC identification algorithm on the 3 orthogonal

X, Y, and Z leads separately. A beat is ultimately identified as a PVC if it is identified as a

PVC in at least 2 of the 3 orthogonal leads. This also helps avoid artifact in a single lead

triggering incorrect PVC identification. The beats identified as PVCs can be removed from

subsequent analyses, including median beat construction. The software also has the ability

to also keep PVCs and remove non-PVC QRST complexes should analysis of PVCs be
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desired.

BRAVEHEART assumes the following templates:

Beats 1, 2, 4 (D1,D2, D4 = 1) are dominant morphology 

Beat 3 (D3 = 0) is a “PVC” 

Number of “Normal” beats is > Ntotal/2 + 1 so 

“Normal” beats have been correctly identified

First occurrence of 

max value (6) is 

in row 1

A C

PVC indices = → Beat 3 is a PVC

1 2 3 4

NCC Matrix

RMSE Matrix

Template Matrix

Dominant Matrix

B

Figure 6: Example of how the BRAVEHEART PVC detection algorithm works on an ECG with a single
PVC. A: A subset of 4 beats (3 sinus and 1 PVC) are analyzed for illustrative purposes, but the algorithm
would have the same result if all 9 beats were analyzed. B: After trimming, each beat is aligned with
the remaining beats, and normalized cross correlation (NCC) and root mean squared error (RMSE) are
calculated. C: Values of NCC and RMSE are placed in matrices C and R, respectively, and then thresholds
are applied as described in the text. The template matrix T is formed by adding C + R and summing the
rows. The dominant matrix D is formed by taking the first row of T that has the maximum row sum value,
and then performing additional thresholding. BRAVEHEART starts by assuming that values of 1 in D are
the dominant morphology and values of 0 in D are PVCs. In this case, since the number of beats with
dominant morphology is > n/2 + 1, the algorithm is complete and the indices of PVCs are found by taking
values of 0 in matrix D (beat 3).
Abbreviations: PVC - premature ventricular contraction.

2.9.1. Non-dominant Beat Detection Performance:

The performance of the BRAVEHEART PVC detector was assessed in a sample of 286

sequential ECGs obtained from persons with a history of PVCs, totaling 3,488 total beats

and 508 PVCs/ventricularly paced/aberrant beats (14.6%). Not all ECGs contained PVCs.

Ground truth was assigned by manual review of the ECGs and labeling beats as

“dominant” or “PVC”. We excluded 26 beats where focal artifact/noise significantly

distorted what was likely a normal beat to the degree that it was morphologically distinct

enough that it would be reasonable to consider it a “PVC” and to remove it from the
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analysis.

BRAVHEART’s PVC detection algorithm was then used to process this ECG dataset

with various values of NCC and RMSE. Summary statistics, including sensitivity,

specificity, positive predictive value, negative predictive value, F1 score, and overall

accuracy were recorded. Performance was further assessed using bootstrapping using 1,000

replications to obtain confidence intervals for these measurements. PVC detection

performance is presented in the Results Section (Section 3.1).

2.10. Outlier Detection/Removal:

After PVCs, paced beats, and aberrant beats are removed, remaining beats with

artifact that preclude accurate fiducial point annotation are likewise detrimental to

accurate median beat construction. Although most beats with enough artifact to

significantly change their QRST morphology compared to the dominant beat morphology

will be removed via PVC detection, some beats will retain the dominant QRST

morphology but have enough artifact so that they cannot be aligned with other beats

accurately. They may also introduce undesired noise into median beat construction. Noisy

beats of the dominant morphology can also escape PVC detection if there is focal artifact

towards the end of the T wave that makes annotation difficult or impossible because the

PVC detection adjusts the ends of the QRST complexes to make them all equal length (see

Supplemental Section 1.2).

To deal with this situation, BRAVEHEART has an algorithm to identify and remove

outlier beats within the dominant QRST morphology. For each beat, the QR and RT

intervals are computed. A modified Z-score (Zi) for each of these quantities is then

computed [25]. Details of modified Z-score calculation can be found in the “Outlier

Detection Using Modified Z–Scores” section of the Supplemental Methods (Supplemental

Section 1.3).

Nominally, any beat where the absolute value of Zi for either the QR or RT interval is

greater than 3.5 is marked as an outlier [25]. These outliers are nominally removed

automatically. The modified Z-score threshold that reliably detects outliers depends on the

total number of beats being compared and can be adjusted as needed; in cases of
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bradycardia, it may be necessary to slightly increase the threshold to avoid tagging

acceptable beats as outliers [25]. It is also possible to automatically adjust the modified

Z-score threshold based on HR (and the number of beats in the ECG) for this purpose.

2.11. Median VCG Construction:

The n remaining beats, which should now be all of a single morphology and free of

excessive noise/artifact are aligned to create a median beat which is subsequently used for

all calculations and measurements. Although BRAVEHEART has the ability to align the

individual QRST complexes based on their R peak locations, this method is, in general,

less reliable as it is highly influenced by artifact and noise. To overcome this limitation and

obtain more robust beat alignment, we calculate the “center of voltage” (CoV) of each of

the remaining n QRS complexes in each lead in a manner analogous to calculating center

of mass. For a given QRS complex, let Si be sample i within it. The CoV of this QRS

complex is then given by:

CoV =

∑
i iSi∑
i Si

(3)

For each of the n QRST complexes, the CoVs are then used as the fiducial point for

alignment. The signal duration incorporated into the median beat prior to the CoV is the

maximum Q-CoV interval of all beats + 40 ms and the signal duration incorporated into

the median beat after the CoV is the maximum CoV-T interval of all beats + 60 ms. The

window is expanded like this so that small errors in the prior heuristic annotation will not

result in cutting off the true Qon or Toff before being passed into the final median beat

annotation algorithm (see Section 2.12 below). Once all beats are the same duration and

aligned properly, the median beat is obtained by computing the median voltage value on

these aligned samples (see Figure 7). Median X, Y, and Z leads are computed. The median

VM lead is then calculated from the median X, Y, and Z leads as previously described in

Equation 2.

2.12. Median Beat Annotation:

Accurate annotation of the median beat is critical for accurate measurement of

ECG/VCG parameters. We found that the same heuristic methods for ECG annotation
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Figure 7: Example of median beat construction. Individual QRST complexes (black dashed lines) are aligned
on their center of voltage, and the median of the aligned samples is calculated to obtain the median beat
(red).

used in first pass annotation would often fail at annotating the median beat with enough

accuracy for this purpose, especially in cases with atypical QRS complex morphology or

when T waves were low amplitude or of abnormal morphology. We therefore created a

custom bidirectional long short term memory neural network (NN) specifically for

BRAVEHEART to accurately annotate fiducial points on VM median beat QRST

complexes with a high degree of accuracy.

Details of NN architecture, training, and testing have previously been reported [26], and

are also available in the Supplemental Methods Sections 1.4, 1.5, and 1.6. In brief, the NN

takes in a variable length VM median beat signal and outputs probabilities of each sample

of the signal being a “QRS complex”, “T wave”, or “other”. Transitions between “other”

to “QRS complex” are taken as the location of Qon, transitions between “QRS complex” to

“T wave” are taken as the location of Qoff, and transitions between “T wave” to “other”

are taken as the location of Toff. See Figure 8 for an illustration of this process. In rare

cases where the NN output results in multiple locations where the definition for one of the

fiducial points was satisfied, logic based on the physiologic properties and order of QRST

signals attempts to identify the correct fiducial point location.
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A

B

Figure 8: Signal processing and labeling for NN training/output. A: For NN training, 12-Lead ECGs
were transformed to VCGs and the median VM beat was constructed (black signal). Qon, Qoff, and Toff

were annotated by a cardiac electrophysiologist as shown (black dashed, dotted, and dash-dotted lines,
respectively). A categorical signal (red, green, and blue lines/shading) was constructed based on the location
of Qon, Qoff, and Toff. The QRS complex was labeled between Qon and Qoff (green). The T wave was labeled
between Qoff and Toff (blue). The remainder of the signal was labeled as “other” (red). The labeled
categorical signal was used for NN training/testing. See the text for details. B: Example of NN output. The
probabilities of “QRS complex” (green), “T wave” (blue), and “other” (red) labels are shown relative to the
median VM beat signal and the predicted fiducial points which are assigned at transitions between fiducial
point probabilities as described in the text.
Abbreviations: ECG - electrocardiogram, VCG - vectorcardiogram, VM - vector magnitude, NN - neural
network, Qon - QRS complex onset, Qoff - QRS complex end, Toff - T wave end.

2.12.1. Median Beat Neural Network Annotation Performance:

NN performance was assessed primarily based on calculating the mean and standard

deviation of difference between NN predicted locations of Qon, Qoff, and Toff and measured

QRS duration and QT interval, and ground truth annotations performed by a board
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certified cardiac electrophysiologist (JWW). Given that there were 3 output classes,

micro-averaged F1 was reported. As this was a multi-class labeling problem, the recall

(specificity), precision (positive predictive value), and F1 (the harmonic mean of precision

and recall) – see Supplemental Statistical Methods (Supplement Section 1.8) are all equal,

and therefore only F1 was reported.

The included NN was tested on 189 median beats which were randomly allocated for

testing during NN training. Given that BRAVEHEART users care most about the

performance of the included weights and biases rather than overall theoretical model

performance which has previously been described [26], we also validated NN performance

on a second independent dataset of 200 sequentially obtained and manually annotated

median beats. Details of NN performance is described in the Results Section 3.2.

2.13. ECG/VCG Parameter Calculations:

BRAVEHEART has easily customizable modules that calculate a variety of ECG and

VCG measurements on the median beat. Parameters include standard measurements such

as HR, QRS duration, and QT interval, morphological measurements for each of the 16

leads such as R wave, S wave, and T wave magnitude (see Figure 9), and a variety of

vectorcardiographic parameters including spatial QRS-T angle [5], TCRT [6], and peak and

area vectors for the QRS complex, T wave, and entire QRST complex (spatial ventricular

gradient [3]). VCG speed, loop coplanarity (how well the loops fit into a best fit plane),

roundness (how circular vs oval), length, and area are also calculated. Further details and

equations for calculated parameters are available in the “Equations” section of the

Supplemental Methods and Supplemental Tables 1, 2, and and 3.

The software is designed to facilitate easy addition of new parameters as needed; new

parameters and the calculations for these parameters can be added to one of the existing

result classes, and the software automatically adjusts the output files to accommodate the

new variables. Adding a new parameter requires minimal extra code beyond that used to

compute the result (further details can be found in the BRAVEHEART User Guide which

is available on the BRAVEHEART GitHub).
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Figure 9: Lead morphology measurements including the magnitude of R, S, and T waves for all 16 leads are
shown.

2.14. VCG Signal and Annotation Quality Checks:

BRAVEHEART was designed for batch processing of large numbers of ECGs with

mininmal need for human oversight and without the need to manually review every ECG

that is processed for signal quality, beat labeling, or removal of PVCs/outliers. The

program can also take advantage of MATLAB’s parallel processing abilities which can

significantly speed up processing of large ECG datasets. As ECG quality varies, especially

when using clinical ECGs that were not collected specifically for research purposes, some

lower quality ECG recordings are more likely to have errors in fiducial point annotation or

median beat construction, usually due to significant artifact. In large studies it may not

always be feasible to manually review every ECG that is processed, and we therefore

designed ways of highlighting ECGs that are most likely to be problematic and require
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either exclusion from the dataset due to overall poor signal quality, automatic reannoation

with other annotation parameters, or in very rare cases, manual ECG processing.

Further details of the quality checking methodology can be found in the “Quality

Labeling Methods” section of the Supplemental Methods (Supplemental Section 1.7).

Briefly, annotated median beats are automatically checked for possible processing errors or

missannotation by checking a variety of metrics including the QT interval, QRS duration,

T peak to QT ratio, T wave magnitude, average NCC between beats that make up the

median beat, HR, number of beats included in the median beat construction, number of

beats removed during PVC and outlier exclusion, presence of likely missing leads, and low

neural network annotation confidence. If any of these values are outside of a nominal range

(which can be easily adjusted via an external file as needed and based on the

characteristics of the ECGs being processed), then the ECG is flagged for review. To

streamline the review process, a separate file listing these flagged ECGs is generated, and

figures from flagged ECGs can be automatically saved to a separate folder to facilitate

review of flagged ECGs without needing to review the output of the entire dataset.

We also created a logistic regression based on a set of 481 sequentially processed

ECGs/median beats which were manually labeled as “good” quality or “needs review”

which can be used to predict the probability that the ECG being processed requires

manual review (See Results Section 3.3, Supplemental Methods Section 1.7, Supplemental

Results Section 2.1, Figure 10, and Supplemental Figure 4). ECGs that have a low

probability of being “good” quality (based on an adjustable cutoff) can be flagged for

review. This quality checking system is nominally designed to be specific, in that ECGs

that have no flags are very unlikely to have any quality issues. Some ECGs that are

flagged, however, may be perfectly fine after manual review or a minor adjustment. The

thresholds for flagging ECGs can be adjusted by the user as needed if more specificity or

more sensitivity is needed for a specific project (see Figure 10) and based on the types of

ECGs being processed (e.g. are there frequent PVCs that will be removed or are all ECGs

bradycardic), or the overall quality of the ECG recordings. This quality checking system

can also be used to select ECGs with specific features (such as QRS duration > 150 ms or

large amplitude T waves) from an unlabeled ECG dataset.

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 24, 2023. ; https://doi.org/10.1101/2023.05.17.23290060doi: medRxiv preprint 

https://doi.org/10.1101/2023.05.17.23290060
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

10

20

30

40

50

60

70

80

90

100

%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Prediction Cut Point

Sensitivity Specificity

Quality Prediction Sensitivity and Specificity

Figure 10: Sensitivity and specificity of the quality regression for predicting “good” quality ECGs. A cut
point of 0.8 was set as nominal based on the relatively high and equal sensitivity and specificity at this point.
No ECGs had a predicted probability of exactly 0 or exactly 1.00, so the point near “0.00” on the X-axis is
for a cut point of 0.01, and the point near “1.00” on the X-axis is for a cut point of 0.99.

2.15. Graphical Display of VCG Median Beats and Export of Measurement

Data:

The BRAVEHEART software pipeline automatically produces a figure illustrating and

summarizing the annotation process for each ECG/VCG, and example summary figures

are shown in Figure 11 and Supplementary Figure 5. These summary figures can be

quickly inspected to determine the number of beats included/excluded, why beats were

excluded (PVC detection, outlier detection, manually removed, or missed), the accuracy

and quality of median beat construction (via average NCC for all of the beats that made

up the X, Y, and Z median beats), and the location of the median beat fiducial points. A

detailed graphical user interface (GUI) that allows more specific adjustments and multiple
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additional visualizations is also available (see below).
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Figure 11: Example of summary figure output. The X, Y, Z, and VM median beats and fiducial point
annotations are show in the top panel, and the full VCG is shown in the bottom half of the figure. Beats
included in the median beat have an orange circle at their R peak. Beats excluded from the median beat
(none in this example) would be annotated with the reason for exclusion (PVC or outlier). Cross correlation
represents the average normalized cross correlation between all pairs of beats (in the X, Y, and Z leads) that
make up the median beat and represents the quality of median beat construction with values very close to
1 indicating excellent beat alignment.
Abbreviations: ECG - electrocardiogram, VCG - vectorcardiogram, VM - vector magnitude,

Measurement data for the processed ECG/VCG, which include the ECG

filtering/processing settings used, are then exported to a file (.csv or .xlsx). ECGs

processed in the same batch output their data to a single file for further analysis. The

software can also save the ECG, VCG, and median beat signal data and ECG annotations

to a separate file for additional processing/analysis outside of BRAVHEART.
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The BRAVEHEART GUI (Figure 12) allows granular control of each step in ECG

processing, including filtering, baseline correction, VCG construction, and beat removal,

and can be quite helpful for troubleshooting ECGs which result in errors, or to better

visualize each step in ECG/VCG processing. The GUI also allows visualization of different

steps in ECG/VCG processing and additional figures, including standard 12-lead ECGs

and VCGs, rotatable 3-dimensional VCG loops (Supplemental Figure 6), ECG/VCG lead

morphology (Figure 9), and various figures describing the filtering and signal quality.

2.16. Software Formats:

BRAVEHEART is implemented in MATLAB and requires a version of at least R2022a.

We have provided 2 packages that will suit different users. braveheart batch.m is a

command line driven program that is designed for rapid, batch processing of ECGs with no

graphical interface. Parameters are set in an external file, a directory is chosen for source

ECG files, and the program processes the ECGs. The summary figure (Figure 11 and

Supplimental Figure 5), ECG, VCG, and median beat signal data stored as .mat files, and

annotation files (.anno) which contain the parameters used for ECG processing and

individual beat fiducial point annotations for each processed ECG can be saved if specified

by the user. ECGs that are not successfully processed by the completely automatic method

and nominal settings can have their parameters manually adjusted, and individual beats

can be removed/edited without the need for a GUI by editing an annotation (.anno) file

that is placed in the same directory as the corresponding ECG. If the program notes the

presence of an .anno file with the same name as the ECG being processed, the annotation

parameters and fiducial point locations (if included) are read from the .anno file for that

specific ECG. This allows the user control over ECGs that require non-nominal settings

without requiring the use of the GUI.

We also provide a detailed GUI (braveheart gui.m) (Figure 12) that can perform both

batch and individual ECG processing. The GUI is designed to give the user very fine

control over each step of ECG processing including very granular control over beat

annotation and removal. The GUI also allows additional visualizations of both ECG/VCG

signal data and resulting measurements. A detailed overview of the GUI is available in the
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User Guide which is available on the BRAVEHEART GitHub repository. For users who do

not have access to MATLAB, we have provided executable files for both the command line

and GUI versions of BRAVEHEART for both Windows and Mac operating systems.

Figure 12: BRAVEHEART GUI. Further details on using the GUI can be found in the online User Guide.

The complete BRAVEHEART MATLAB source code, executable files for Windows and

Mac, and a detailed user guide, are available for download from GitHub

http://github.com/BIVectors/BRAVEHEART under version 3 of the GPL license.

BRAVEHEART uses the MATLAB signal processing, wavelet, and deep learning

toolboxes. The parallel computing toolbox is optional to improve the speed of processing

large batches of ECGs in parallel.

2.17. Statistical Analysis:

All ECG processing and NN training were performed using MATLAB 2020b

(Mathworks, Natick, MA, USA). Statistical analysis and data manipulation were

performed using Stata 17 (StataCorp, College Station, TX, USA). The study was approved

by the Institutional Review Board of Beth Israel Deaconess Medical Center.
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3. Results

3.1. PVC Detection Performance:

Supplemental Table 4 shows performance of the BRAVEHEART non-dominant QRST

morphology (PVC) detector using various cutoffs of NCC and RMSE based on the

summary performance of 1,000 replications of bootstrapping. In general, the best

performance was found using a NCC of ≥ 95%, and a RMSE = 0.1, which is why these

values were chosen for nominal settings. Performance was also excellent when NCC was

disabled, and decisions on similarity were based on RMSE alone. With NCC = 95% and

RMSE = 0.1, sensitivity was 98.2%, specificity was 99.5%, and F1 was 97.7% for PVC

detection. Although PVC detection performance was excellent using a RMSE cutoff of 0.1

with or without use of NCC in certain cases it can be advantageous to utilize both NCC

and RMSE, as a beat with excellent matches by both NCC and RMSE may be a better

template beat than if only matched by RMSE (See Supplemental Figure 12).

3.2. Neural Network Performance:

Supplemental Table 5 shows the features/diagnoses of ECGs used for NN training and

testing during NN development. There were overall no significant differences in ECG

features between the training and testing datasets with the exception of a borderline lower

rate of left bundle branch block ECGs in the testing dataset (3.2 vs 7.1 %, p=0.046). Table

1, Figure 13 and Supplemental Figures 7, 9, and 8 show the accuracy of NN fiducial point

annotations when compared to ground truth human annotations for the 189 ECGs set

aside during NN training. There was excellent agreement between NN predicted and

ground truth fiducial point locations (Qon, Qoff, and Toff) and ECG intervals (QRS duration

and QT interval) with mean differences < ± 2 ms for all fidual points/intervals, and all

measurement error distributions were well within established acceptable limits for

automated ECG annotation [27, 28, 29, 30]. Microaveraged F1 (µF1 - See Supplemental

Statistical Methods in Supplement Section 1.8) was 97.95%. The NN did not miss locating

any fiducial points, and only 1 ECG was found to have more an extra fiducial point (1 Toff)

detected which was appropriately dealt with using logic that accounts for the order of
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fiducial points. Supplemental Figure 7 shows intraclass correlation coefficients for all

fiducial points and intervals were very close to 1.0. Supplemental Figure 8 shows the

percent of annotations that were within different intervals of accuracy; more than 99% of

Qon and Qoff annotations and more than 98% of Toff annotations were within 20 ms of

ground truth. Bland-Altman plots for NN performance are available in Supplemental

Figure 9.
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Figure 13: Mean and standard deviation and histograms for results of NN testing for the initial 189 ECG
testing dataset. Bins where the difference between NN predictions and ground truth fiducial points were
≤ ± 4 ms are shown in green.

Supplemental Table 6 shows the features/diagnoses of ECGs included in the second,

independent testing dataset of 200 sequentially obtained ECGs. Table 2 shows that the NN

performed similarly on this second dataset, with mean differences < ± 2 ms for all fiducial

points/intervals. More than 99% of all fiducial points and intervals were within 20 ms of

ground truth. µF1 was 98.03%. The NN did not miss locating any fiducial points, and only
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Table 1: Results from NN testing using the initial 189 ECG testing dataset.

Result Qon Qoff Toff QRS duration QT interval
Mean ± SD (ms) -0.3 ± 3.9 -1.2 ± 5.1 -0.1 ± 7.0 -0.9 ± 6.2 0.2 ± 7.9
Missed Points 0 0 0 N/A N/A
Extra Points 0 0 1 N/A N/A
% Annotations ± 10 ms 98.4 95.2 92.6 93.7 92.1
% Annotations ± 20 ms 99.5 99.5 98.4 98.9 96.8

Table 2: Results from NN testing using the second 200 ECG testing dataset.

Result Qon Qoff Toff QRS duration QT interval
Mean ± SD (ms) -0.1 ± 3.3 -1.7 ± 4.0 1.2 ± 5.8 -1.6 ± 5.4 1.3 ± 6.7
Missed Points 0 0 0 N/A N/A
Extra Points 0 0 1 N/A N/A
% Annotations ± 10 ms 99.5 98.5 93.5 94.0 89.5
% Annotations ± 20 ms 100.0 100.0 99.0 100.0 99.5

1 ECG was found to have an extra fiducial point (1 Toff) detected which was appropriately

dealt with using logic that accounts for the order of fiducial points. Figures summarizing

the performance of the second dataset are shown in Supplemental Figures 10 and 11.

3.3. Quality Labeling Results:

Figure 10 and Supplemental Figure 4 show the results for identifying an ECG/median

beat as “good quality” or “needs review” using the previously discussed logistic regression

(See Supplemental Sections 1.7 and 2.1). The cutoff used to distinguish “good quality” and

“needs review” ECGs can be adjusted as needed for a specific project to increase/decrease

sensitivity or specificity. In general, a cutoff of ∼80% tends to have a good mix of

sensitivity and specificity, with both values >90%. Cutoff values >90% have higher

specificity at the expense of lower sensitivity, and cutoff values <70% have higher

sensitivity at the expense of lower specificity. The ROC curve for the quality regression is

shown in Supplemental Figure 4 and had an area under the ROC of 0.973 indicating

excellent agreement between prediction and manual labeling. Further details can be found

in the Supplemental Methods/Results (Supplemental Sections 1.7 and 2.1).
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4. Discussion

We present BRAVEHEART, an easy to use and easily customizable research software

package for ECG and VCG analysis. BRAVEHEART satisfies an important need in the

development of ECG/VCG research by providing open-source software that performs all

signal processing and analyses itself without the need for separate programs to process or

annotate ECG signals. The software accepts a wide variety of ECG formats, and is easily

customizable with minimal extra programming. We also have provided executable versions

of the software for those without access to MATLAB. Extensive documentation is available

in a user guide to help users familiarize themselves with the software. Although other

ECG/VCG processing software does exist [8, 9, 12, 13, 10, 11], these other software

packages either are not publically available, not open-source, or provide partial

functionality without allowing complete processing from ECG to VCG and final

measurements. We are aware of the importance of being able to modify the software and

add additional measurements based on specific research needs, and have taken care to

make it easy to add new measurements with minimal effort and coding (see the online user

guide).

Pre-release versions of BRAVHEART have been used in research investigating

associations between VCG parameters (primarily the SVG) and drug induced ventricular

arrhythmias [31], antiarrhythmic drug administration [20], post pulmonary embolism risk

stratification [32], and chemotherapy-induced cardiotoxicity [33], and the current release

version of BRAVEHEART is being used for ECG/VCG analysis in multiple ongoing

studies. We hope that members of the community will help improve BRAVEHEART over

time by suggesting or adding new or improved features.

5. Limitations/Future Directions

BRAVEHEART currently does not support P wave annotation. We plan to add this as

a feature in the near future.
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6. Conclusion

BRAVEHEART is an open-source, easily customizable ECG/VCG analysis software

package that reproducibly processes digitial 12-lead ECG files without the need for

external software libraries or signal pre-processing. Source code, executables, and a

detailed user guide are available at http://github.com/BIVectors/BRAVEHEART where it

is distributed under the General Public License (GPL) version 3.
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