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Abstract  24 

 25 

Background: Diseases diagnosed in adulthood may have antecedents throughout – including 26 

prenatal – life. Gaining a better understanding of how exposures at different stages in the 27 

lifecourse influence health outcomes is key to elucidating the potential benefits of specific 28 

disease prevention strategies. However, confounding is highly likely in studies with earlier life 29 

or time-varying exposures. Mendelian randomisation (MR) is therefore increasingly used to 30 

estimate causal effects of exposures across the lifecourse on later life outcomes.  31 

Methods: This systematic literature review aims to identify MR methods used to perform 32 

lifecourse investigations and review previous work that has utilised MR to elucidate the effects 33 

of factors acting at different stages of the lifecourse. We conducted a systematic search in 34 

PubMed, Embase, Medline and MedRXiv databases to comprehensively obtain lifecourse 35 

epidemiology studies that have employed MR.  36 

Results: Thirteen methodological studies were identified. Four studies focused on the impact 37 

of time-varying exposures on the interpretation of “standard” MR techniques, five presented 38 

methods for analysing repeat measures of the same exposure, and four described novel 39 

methodological approaches to handling parental exposures in relation to offspring outcomes. 40 

A further 84 studies presented the results of an applied research question with relevance to 41 

lifecourse epidemiology. Over half of these estimated effects in a single generation and were 42 

largely confined to the exploration of questions regarding body composition. Of the one 43 

generational studies employed in this review, 59% estimated the effect of exposures at birth, 44 

birth to/and childhood, birth to/and adolescence or birth to/and adulthood, 30% at childhood, 45 

childhood to/and adolescence or childhood to/and adulthood, and 11% at adolescence or 46 

adulthood. The remaining looked across two generations. These estimated effects of maternal 47 
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exposures, with one study additionally examining paternal exposures, in relation to offspring 48 

outcomes.  49 

Conclusion: There is a growing body of research focused on the development and application 50 

of MR methods to address lifecourse research questions. The possibility that genetic effects 51 

have different levels of importance in the progression of an exposure at different ages should 52 

be more commonly considered for application in an MR context. Limitations exist, however, 53 

specifically regarding data constraints.  54 

 55 
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Introduction: 72 

 73 

Diseases diagnosed in adulthood often have antecedents throughout – including prenatal – life 74 

(1). A lifecourse approach recognises the contribution of physical or social exposures acting 75 

during gestation, childhood, adolescence, and earlier or adult life or across generations to long-76 

term biological, behavioural, and psychosocial processes that link adult health and disease risk 77 

(2, 3). Gaining a better understanding of how exposures at different stages in the lifecourse 78 

influence health outcomes is key to elucidating the potential benefits of specific disease 79 

prevention strategies. However, confounding is highly likely in studies with earlier life and time-80 

varying exposures and later life health outcomes (4), particularly time-varying confounding and 81 

intermediate (or mediator-outcome) confounding (5). Intergenerational and family level 82 

factors may also contribute to further distinctive sources of confounding in multigenerational 83 

studies. Approaches to interrogate causality by minimising confounding are therefore of 84 

importance to strengthen causal inference in a lifecourse setting (6, 7).  85 

 86 

Mendelian randomisation (MR) exploits the random assortment of genetic variants, 87 

independent of other traits, to enable analyses that largely mitigate against distortions 88 

resulting from confounding and reverse causality (8). This is a key motivation behind using a 89 

MR approach, which estimates the causal effect of modifiable risk factors under three 90 

assumptions; the instrumental variables used must i) be associated with the exposure of 91 

interest (‘relevance’), ii) not share common causes with the outcome (‘independence’ or 92 

‘exchangeability’) and iii) not affect the outcome other than through the exposure (‘exclusion’). 93 

Several statistical methods have been proposed for MR with individual-level as well as 94 

summarised data. In a one-sample setting with individual-level data, a causal effect estimate is 95 



 

5 

 

often obtained using the two-stage least-squares (2SLS) method (9). It is more common for 96 

two-sample investigations to use summarized data. In addition, at the introduction of MR, it 97 

was recognised that the association of genetic variants with exposures could change with age, 98 

which needed to be taken into account in interpretation (10, 11). 99 

 100 

The application of MR to lifecourse research questions has two key challenges. Firstly, we are 101 

interested in isolating the causal effects of age-specific exposures. MR studies typically use a 102 

single measurement of an exposure to estimate its effects on an outcome (henceforth termed 103 

“standard” MR) and genes are invariable across the lifecourse. As such, results obtained are 104 

often interpreted as the average lifetime effect of the genetically predicted exposure, or 105 

genetic liability for an exposure if that exposure is binary (12). Whilst this approach is sufficient 106 

for some exposures, it requires extension to address lifecourse questions. This extension is 107 

possible in cases where inherited genetic variants have different effects at different timepoints 108 

in the lifecourse (within a population), allowing us to separate time-varying effects of certain 109 

exposures (13-15). Secondly, some lifecourse research questions involve the exploration of 110 

parental exposures. The inclusion of multiple generations brings additional analytical and 111 

methodological challenges due to common confounding and genetic relatedness.   112 

 113 

This systematic literature review has two core aims. Firstly, to identify MR methods that have 114 

been developed to evaluate or conduct lifecourse epidemiological investigation and secondly, 115 

to systematically review previous work that has utilised MR to elucidate the impacts of risk 116 

factors from different stages of the lifecourse on later life outcomes. These studies fulfil the 117 

criteria outlined in the STROBE-MR guidelines, and specifically respond to the criterion of 118 
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whether effect estimates previously derived would generalise to other exposure periods (16, 119 

17).  120 

 121 

Methods: 122 

 123 

1. Search strategy and eligibility criteria 124 

 125 

The protocol for this systematic literature review was registered in the International 126 

Prospective Register of Systematic Reviews (PROSPERO) as CRD42022314287 and was 127 

conducted in line with the 2020 Preferred Reporting Items for Systematic Reviews and Meta-128 

Analyses (PRISMA) guidelines (18). We searched for lifecourse epidemiology studies, defined 129 

as studies investigating biological, behavioural, and psychosocial processes that link health and 130 

disease risk to exposures that take place in a preceding life stage. For example, studies relating 131 

pre-gestation, gestation, early life, childhood, or adolescence exposures to adult outcomes 132 

would be included. Studies linking adult exposures to adult outcomes would be included if the 133 

adult exposure is related to a particular stage/phase of adulthood, such as menopause, as long 134 

as this stage/phase predates the outcome under study.  We also include in our definition of 135 

lifecourse studies the effects of repeated measures of the same time-varying exposure on a 136 

later outcome (See Supplementary Material 1) (19). Studies were eligible from any 137 

geographical location, with individuals from any age group and which included a MR study 138 

design (i.e., a study using genetic variants to determine whether there is a causal relationship 139 

between a modifiable risk factor and an outcome). We include as an “MR study” any study that 140 

uses genetic variants related to an exposure of interest to understand the causal nature of the 141 

relationship between that exposure and an outcome of interest. This includes studies where 142 
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the genetic variants are used as an instrumental variable, and those where the association 143 

between the genetic variants and the outcome under study is analysed outside of an 144 

instrumental variable framework. Searches included any papers published prior to 4 March 145 

2022 in MEDLINE (PubMed), Embase (Ovid), Medline (Ovid) and MedRXiv. The search and full-146 

text review were restricted to articles published in English. Outcome measures were any 147 

measure of health status or disease from a life stage after the exposure was measured. Study 148 

designs that do not use MR methods were not appraised. Treatment guidelines documents 149 

were excluded (Supplementary Material 2).  150 

 151 

2. Data extraction and analysis 152 

Within the final list of papers, we separated methodological manuscripts that presented or 153 

tested an approach to lifecourse MR from applied papers that only presented the results of a 154 

specific lifecourse analysis. For data collected from methodological manuscripts that presented 155 

or tested an approach to lifecourse MR we recorded: author, baseline year of data collection, 156 

aim, methodological approach, challenges in methodological application, simulation scenarios, 157 

sample size, and assumptions, and when an applied element was included in the manuscript, 158 

exposure, exposure age(s) in years, outcome and outcome age(s) in years were collected. We 159 

extracted the following from applied studies that presented the results of a specific lifecourse 160 

analysis: author, baseline year of data collection, aim, exposure, exposure age(s) in years, 161 

outcome and outcome age(s) in years.  Title and abstract and then full-text screening was 162 

conducted in duplicate by two investigators (G.M.P and P.P.) and extraction in duplicate by two 163 

investigators (G.M.P and C.P.). Discrepancies were resolved by consensus. A narrative synthesis 164 

was performed. The evaluation of study quality by conducting a bias assessment was not 165 
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considered relevant here, since we were not collating evidence to answer one applied question 166 

(20, 21).  167 

 168 

Results: 169 

 170 

Our search generated 317 published records. Two additional records were identified through 171 

conversations with experts in the field. After screening titles and abstracts, 135 manuscripts 172 

were assessed for eligibility. Of these, 97 articles were deemed eligible for inclusion in this 173 

systematic review (Figure 1). Thirteen studies presented or tested an approach to lifecourse 174 

MR (12-15, 22-30) and 84 presented the results of a specific lifecourse analysis without an 175 

emphasis on exploring or explaining a methodological approach (31-114). If a study fit the 176 

criteria for the former section, it was not included in the latter.  177 

 178 

Figure 1. PRISMA flow chart illustrating selection of studies. PRISMA, Preferred Reporting Items 179 

for Systematic Reviews and Meta-Analyses 180 

 181 
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Section 1: Studies presenting or testing an approach to lifecourse MR 182 

 183 

Of the 13 studies presenting and/or testing approaches to lifecourse MR, four focused on the 184 

impact of time-varying exposures on the interpretations of “standard” MR techniques (12, 23, 185 

26, 27). These additionally outline methods to assess and/or lessen potential bias. Five 186 

presented methods for analysing repeat measures of the same exposure. These comprised 187 

functional principal component (FPC) analysis through conditional expectation (PACE), 188 

multivariable MR (MVMR), G-estimation of structural nested cumulative failure models 189 

(SNCFTMs) and G-estimation of structural mean models (SMM) (13, 15, 22, 25, 28). Our 190 

definition of lifecourse studies, which includes the effects of repeated measures of the same 191 

time-varying exposure on a later outcome, connects lifecourse MR to G-estimation, which has 192 

been applied in several studies to adjust for time-varying confounding in traditional 193 

epidemiological settings (115, 116). Furthermore, four studies described novel methods that 194 

have been developed for intergenerational studies investigating a parental or grandparental 195 

exposure whilst the outcome of interest is assessed in offspring. These have used structural 196 

equation models (SEM) or the statistically equivalent linear mixed model (LMM) (14, 24, 29).  197 

 198 

1. Implications of time-varying exposures for the interpretation of “standard” MR  199 

 200 

There are potential limitations regarding the use of “standard” MR techniques to interpret 201 

exposure-outcome relationships. D’Urso et al. (2020) highlight issues when using MR to assess 202 

the validity of hypotheses relating to the Developmental Origins of Health and Disease 203 

(DOHaD), such as the Barker hypothesis, which proposes that the origins of chronic diseases of 204 

adult life lie in foetal responses to the intrauterine environment (26). “Standard” MR methods 205 
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do not take into account the relationship between maternal and offspring genotypes and, as a 206 

result, may produce inflated type 1 error rates. Standard errors may be too small in the 207 

presence of cryptic relatedness due to there being less genetic variation in the sample. A 208 

conditional analysis framework is recommended using an unweighted or weighted maternal 209 

allele score corrected for offspring genotypes (26).  210 

 211 

Results from “standard” MR techniques are often interpreted as average lifetime effects of the 212 

exposure, i.e., the cumulative effect of the exposure level from conception and through the 213 

lifecourse. Labrecque et al. propose an alternative interpretation for exposures that vary over 214 

time. They suggest the effect should be interpreted using a counterfactual framework 215 

approach, shifting the entire exposure trajectory by one unit of time k (a timepoint of 216 

observation, where k=0 at conception) (23).  Labrecque et al. argue that different effects would 217 

be estimated at different exposure time points if the relationship between the genetic variants 218 

and the exposure changes over time. Thus, a “standard” MR approach may produce biased 219 

results.  They initially provided an empirical example to estimate the lifetime effect of body 220 

mass index (BMI) on systolic blood pressure using the rs9939609 variant. They then simulated 221 

a longitudinal relationship to estimate BMI as an exposure at age 30 and 50 years and 222 

concluded that when the genetic variable-exposure relationship was constant over time, 223 

estimates were unbiased with respect to the lifetime effect at both ages. In all other scenarios, 224 

however, they show the estimate differed, and this bias was sensitive to the strength of 225 

relationship between the genetic variant and exposure as well as the timing of measurement 226 

of both exposure window and outcome.  227 

 228 
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Previous studies have explored whether age modifies the relationship between the genetic 229 

variants and exposure (10), however, investigations are limited. Most studies that have 230 

addressed this have investigated body composition, BMI or other measures of body size. To 231 

assess how time-varying genetic effects may impact MR effect estimates, Labrecque et al. and 232 

others suggest looking at a statistical interaction between the genetic variant and age in 233 

relation to the exposure  (13, 81, 82, 117-119). Following this, Labracque et al. propose plotting 234 

the relationship between the genetic instrument and the exposure stratified by age in samples 235 

with sufficient variation in age. They additionally show that patterns in age-varying genetic 236 

relationships may be exposure specific (27). This has been shown in applied studies (10, 13, 81, 237 

82, 117-119).  238 

 239 

Morris et al. clarify the causal estimates that are estimated by MR when applied to a single 240 

measure of a time-varying exposure with time-varying genetic effects (12). They consider a 241 

situation where there is one genetic instrument, a time-varying continuous exposure assessed 242 

on two occasions, and a single measure of an outcome. They also note the genetic instrument 243 

cannot affect the exposure measured at different occasions in isolation. Instead, they argue 244 

that the instrument underlies all possible exposure measurements across the lifecourse 245 

through a genetic liability, so a change in genotype changes both measures of the exposure. 246 

Simulations demonstrate that the Wald Ratio MR estimator recovers the correct causal effect 247 

in all scenarios assessed, even where time-varying genetic associations were present. Morris 248 

et al. claimed that MR estimates differ between measurements of time-varying exposures 249 

because MR is estimating the total effect of the exposure trajectory on the outcome rather 250 

than the effect of the exposure at a specific point in time. Further details of each of these 251 

approaches can be found in Supplementary Table 1. 252 



 

12 

 

 253 

2. Methodological approaches to analysing repeat measures of the same exposure over 254 

the lifecourse in an MR framework. 255 

 256 

MR methods proposed to estimate the effects of repeat measures of the same exposure across 257 

the lifecourse have been developed in response to the concern that a single measurement of 258 

a time-varying exposure may not be adequate in capturing all time-varying information: a 259 

single measure of a time-varying exposure could underestimate the relationship between the 260 

exposure variable and the outcome variable, both due to the measurement error in the 261 

exposure and the failure to capture long-term change (120). Importantly, in this context, later 262 

stages of lifecourse exposures often depend on the earlier stages of the same exposure, whilst 263 

the reverse is not true.  264 

 265 

Cao et al. developed two methods to combine functional data analysis (to describe the 266 

trajectory of the exposure) with MR, to test the causal effect of a time-varying exposure on a 267 

binary outcome (22). They use functional principal component (FPC) analysis through 268 

conditional expectation (PACE) to model the exposure trajectories, and then test whether a 269 

summary measure of the trajectory is related to the outcome using the two-stage residual 270 

inclusion (2SRI) approach. Their methods examine the evidence against the null hypothesis of 271 

no causal effect, but do not estimate the causal effect.  The first method (PACE + 2SRI) assumes 272 

that the time-varying exposure variable has a cumulative effect on the risk of disease, and that 273 

the genetic effects on the exposure do not vary over time. The cumulative value of the 274 

exposure between two timepoints can be obtained by integration. The first stage obtains the 275 

residuals from regressing this cumulative exposure on the instrument (and any non-time-276 
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varying covariates). The second stage then relates these residuals to the outcome via a logistic 277 

regression model. For the second method (PACE+2SFRI), they allow a time-varying genetic 278 

effect on the exposure variable but assume that the effect of the exposure and the fitted 279 

residual on the outcome are constant over time. In this case, the first stage is a functional linear 280 

model for the time-varying exposure, and the second stage relates the outcome to the fitted 281 

residuals and to the detrended exposure (functional residual inclusion). The authors showed 282 

that this method outperformed “standard” MR analysis with a single measurement at one time 283 

point, with higher statistical power in simulation studies using the functional data analysis-284 

based methods, even when the disease outcome was simulated to depend not on the 285 

cumulative exposure, but on the first three functional principal component scores from PACE.  286 

 287 

Another method employed to assess repeat measures of the same exposure over the 288 

lifecourse is multivariable MR (MVMR) (13, 15). MVMR can be used to estimate the 289 

independent direct effects of several highly correlated exposures on an outcome, conditional 290 

on all the other exposures included in the model. It is useful in the context of mediation analysis 291 

(121), to estimate the effects of several repeated measures of the same exposure, or to isolate 292 

the effects of related phenotypes. Sanderson et al. explore the use of MVMR to estimate the 293 

direct effect of a single exposure at different time points in an individual’s lifetime on an 294 

outcome (Figure 2) (15). For multiple measurements to be included in a MVMR the genetic 295 

variants must have different effects on each exposure included in the model and these effects 296 

must not be a linear function of the others. The interpretation of the estimate is the effect of 297 

having a liability associated with a unit higher level of exposure at one occasion while keeping 298 

the liability for exposure at a separate occasion constant. Richardson et al. applied this 299 

approach to evaluate whether body size in early life has an independent effect on risk of 300 
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disease in later life, or whether the effect seen is a result of body size in childhood being 301 

mediated by body size in adulthood (13).  They use univariable MR to estimate total effects of 302 

early body size, and MVMR to estimate direct effects of early and adult body size. This 303 

approach suggests univariable analyses cannot identify critical or sensitive periods of exposure 304 

but can detect an effect of a difference in the cumulative lifetime exposure, which is a notion 305 

critiqued by Labrecque et al., highlighted earlier in this review (23, 27). If measures of the 306 

exposure at different time periods are available, and genetic instruments capable of reliably 307 

separating time-varying effects exist, it is possible to identify whether the exposure effects are 308 

stable over time or whether sensitive/critical periods exist in the lifecourse using MVMR. In 309 

theory the more timepoints we have should allow more granular inference into critical 310 

windows. However, whilst this method can narrow down or exclude periods, it cannot strictly 311 

identify important periods if the genetic effects on the periods included are correlated with 312 

genetic effects on excluded periods.  313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 

 322 

Figure 2. Latent exposure model with two periods of exposure (adapted from Sanderson et 323 

al.). G1 is a set of genetic variants associated with earlier liability (L1), G2 is a set of genetic 324 
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variants associated with later liability (L2), G12 is a set of genetic variants associated with 325 

both L1 and L2.  326 

 327 

The application of G-estimation of structural nested cumulative failure models (SNCFTMs) and 328 

G-estimation of structural mean models (SMM) was proposed by Shi et al. for the estimation 329 

of MR models with a time-varying exposure (Figure 3) (25, 28). Again, the interpretation of 330 

results from estimation for these models depends on the availability of data for the time-331 

varying exposure. SNCFTMs can be used to estimate the causal effect of a time-varying 332 

treatment on a failure time outcome under the assumption that all time-varying confounders 333 

have been measured and that failure is rare under all possible treatment values (122). Shi et 334 

al. describe an adaptation of this use of SNCFTMs, incorporating IV-type assumptions 335 

(25). Whilst confirmation of the validity of the method was achieved via simulations, analyses 336 

indicated that MR with time-varying treatments and failure time outcomes using SNCFTMs 337 

require large sample sizes (n = 10,000; n = 25,000 or n = 50,000). In addition, authors note that 338 

this method should only be used with rare outcomes. In the application of g-estimation of 339 

SMMs to MR analyses, Shi et al. consider three types of causal effects that can be targeted 340 

when the exposure is time-varying: the effect of exposure at a single time point on the 341 

outcome (point effect), the effect of exposure during a period on the outcome (period effect), 342 

and the effect of exposure throughout the lifetime on the outcome (lifetime effect) (28). This 343 

approach highlighted two key challenges in estimating and interpreting period effects from MR 344 

analyses. The first is defining the period of interest. The second is the choice of time scale (e.g., 345 

time since conception or time since enrolment). In the context of additive causal effects for 346 

continuous outcomes, the authors note that g-estimation of SMMs and two-stage least 347 

squares (2SLS) MR yield similar estimates. SMMs can be naturally extended to many settings, 348 
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including accommodating binary and failure-time outcomes and estimating effects on the 349 

multiplicative scale. SMMs are also semiparametric, and therefore avoid some of the 350 

parametric assumptions of 2SLS. Further details on these methodological approaches 351 

discussed along with their limitations are presented in Supplementary Table 1.  352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

Figure 3. Causal diagram for instrumental variable analyses representing a scenario with a 362 

time-varying exposure (adapted from Shi et al. 2022).  363 

 364 

3. Novel methodological approaches to handling parental exposures in relation to 365 

offspring outcomes.  366 

 367 

Whilst “standard” MR approaches are largely sufficient for studies interested in estimating the 368 

causal effect of an early life exposure on a later life outcome, novel methods have been 369 

developed for intergenerational studies investigating a parental or grandparental exposure 370 

whilst the outcome of interest is assessed in offspring. All of the studies we identified in this 371 

section relate maternal genotypes to offspring outcomes and establish the causal effect of a 372 
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maternal exposure, e.g., smoking during pregnancy, on offspring health. Yang et al. used a 373 

proxy gene-by-environment (G × E) MR approach to explore maternal effects on offspring 374 

phenotypes where maternal genetic information was unavailable (30). They validated this 375 

approach by replicating a known effect of maternal smoking heaviness on offspring birthweight 376 

using the rs16969968 variant in CHRNA5. They then applied it to explore effects of maternal 377 

smoking heaviness on offspring later life outcomes and on birthweight of participant’s 378 

children. Yang et al. demonstrated how G × E MR can be used to test transgenerational causal 379 

effects. Further studies included in this section emphasise the need to condition on offspring 380 

genotype to avoid including its effect on the outcome of interest. Earlier non-MR human 381 

genetic association studies have estimated maternal genetic effects on offspring phenotypes 382 

through conditional genetic association analysis of genotyped mother–offspring pairs 383 

(123). This separation of genetic effects into maternal and offspring components is important 384 

as maternal and offspring genotypes are correlated. Consequently, any association between 385 

maternal genotype and offspring outcome may be mediated by offspring genotype (Figure 4) 386 

(14, 29). Thus, as described above, naïve two-sample MR approaches in unrelated sets of 387 

individuals without accounting for the correlation between maternal and foetal genotype 388 

effects may result in erroneous conclusions regarding causality.  389 
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 390 

Figure 4. Four credible ways in which maternal single nucleotide polymorphisms (SNPs) can be 391 

related to offspring birthweight and offspring cardiometabolic risk factors.  Blue crosses 392 

indicate the act of conditioning on maternal or offspring genotype, blocking the association 393 

between maternal and offspring variables. Dotted paths show paths in which the maternal 394 

genotype can be related to offspring phenotype that are not to do with intrauterine growth 395 

restriction (adapted from Moen et al.). 396 

 397 

Two MR approaches, described by Warrington et al. and Evans et al. use structural equation 398 

modelling (SEM) to account for the correlation between maternal and foetal genotypes (14, 399 

29). Evans et al. developed a statistical model that can be used to estimate the effect of 400 

maternal genotypes on offspring outcomes, conditional on offspring genotype using both 401 

individual-level and summary data. The authors demonstrate this approach using the following 402 

example: birthweight of the mothers, birthweight of the mother’s offspring, and the mother’s 403 

own genotype (SNP). The genotypes of the individual’s mother (their offspring’s grandmother) 404 
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and the genotype of the individual’s offspring are considered latent unobserved variables. The 405 

total variance of the latent phenotype that relates to the genotype for the individual’s mother 406 

and offspring and for the observed SNP variable are estimated from the data. The causal path 407 

between the individual’s own genotype and both their mother and offspring’s latent genotype 408 

is set to 0.5, according to quantitative genetics theory. The estimated maternal and offspring 409 

effects of the SNP path coefficients, which refer to maternal and offspring genetic effects on 410 

birthweight, are also estimated. The resulting effects can be combined with SNP-exposure 411 

estimates for the maternal exposures that the investigator is interested in, in a two-sample MR 412 

framework. 413 

 414 

Warrington et al. ran GWAS of own foetal genetic variants in relation to birthweight, and 415 

maternal genetic variants in relation to their offspring’s birthweight. They then partitioned the 416 

lead SNPs, representing independent association signals, into categories based on maternal 417 

and/or foetal genetic contributions to birth weight. To achieve this, they use SEM to account 418 

for the correlation between foetal and maternal genotypes to provide unbiased estimates of 419 

maternal and foetal genetic effects on birthweight. This method gives an indication as to which 420 

genetic associations are driven by the maternal and which by the foetal genomes. To extend 421 

the estimates of adjusted maternal and foetal effects genome wide, the authors developed a 422 

weighted linear model (WLM) which yields a good approximation of the SEM but is less 423 

computationally intensive. They used WLM-adjusted estimates in downstream analyses to 424 

identify foetal and maternal specific mechanisms that regulate birthweight and to investigate 425 

genetic links between birthweight and adult traits. Subsequently, the authors applied two-426 

sample MR to estimate causal effects of intrauterine exposures on offspring birthweight. 427 

Authors selected SNPs associated with each exposure and regressed the WLM-adjusted 428 
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maternal effects on birthweight for those SNPs against the effect estimates for the maternal 429 

exposure, weighting by the inverse of the variance of the maternal exposure effect estimates. 430 

Similarly, the authors used WLM-adjusted foetal effects to estimate the causal effect of the 431 

offspring’s genetic potential on their own birthweight and compare the results with the 432 

estimated maternal causal effects.  433 

 434 

Moen et al. investigate whether a genetic risk score (GRS) of maternal SNPs associated with 435 

offspring birthweight is also associated with offspring cardiometabolic risk factors, after 436 

controlling for offspring GRS. They use a large dataset and explore father-offspring pairs to 437 

investigate whether there is evidence for a postnatal environmental effect (genetic nurture or 438 

dynastic effects) rather than an intrauterine environmental effect. In executing these analyses, 439 

the authors employ a LMM which accounts for the non-independence between siblings. They 440 

modelled offspring cardiometabolic risk factors as the outcome and included offspring 441 

birthweight, offspring birthweight squared, offspring age, offspring sex and measurement 442 

occasion as fixed effects. The non-independence between siblings and relatedness between 443 

parents and offspring was modelled using a genetic relatedness matrix in the random effects 444 

part of the model. This is described in detail (24). The authors performed primary analyses 445 

testing the relationship between maternal genetic risk scores (GRS) and each of the offspring 446 

risk factors, whilst conditioning on the offspring GRS. Further detail on applied results, 447 

assumptions and limitations for these methods are provided in Supplementary Table 1.  448 

 449 

Section 2: Applied MR studies presenting results of a lifecourse analysis 450 

 451 



 

21 

 

Of the 84 studies applying lifecourse MR methods, included in this review, 50% (42/84) 452 

estimated effects in just one generation, 45% (38/84) looked across two generations and 5% 453 

(4/84) estimating both. Of the one (and one and two) generational studies employed in this 454 

review, 59% (27/46) estimated the effect of exposures at birth, birth to/and childhood, birth 455 

to/and adolescence or birth to/and adulthood, 30% (14/46) at childhood, childhood to/and 456 

adolescence or childhood to/and adulthood, and 11% (5/46) at adolescence or adulthood. 457 

Within those focused on single generational effects, 50% (23/46) looked at birth weight, 46% 458 

(21/46) comprised body composition measures, including adiposity traits, BMI, body size, 459 

obesity, waist-to-hip ratio, and body fat percent. Single generation studies additionally 460 

included estimating the genetically predicted effects of age at menarche, pubertal age (timing), 461 

first sexual intercourse, sleep duration, offspring fasting glucose and type 2 diabetes, genetic 462 

liability to juvenile idiopathic arthritis, disordered eating pattern, alcohol consumption and 463 

DNA methylation at the HLA locus. Amongst the studies that estimated effects across two 464 

generations, 21% (9/42) examined body composition as exposure measures. These included 465 

maternal and paternal BMI as well as maternal adiposity, central obesity, and height. Other 466 

exposures examined in a two-generational setting are included in Supplementary Table 2. All 467 

of the two-generational studies estimated effects of maternal exposures, with one study also 468 

examining paternal exposures (124). Outcomes addressed in the studies incorporated in this 469 

review are varied and can be found in Supplementary Table 2. 470 

 471 

Discussion: 472 

 473 

In this systematic literature review, we extracted and summarised findings from studies 474 

presenting and/or testing approaches to lifecourse MR as well as those presenting results of a 475 
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specific lifecourse analysis. Among the former, we focused on papers addressing time-varying 476 

or lifecourse processes through interpretations of results from “standard” MR techniques. 477 

“Standard” MR techniques have focused on estimating lifetime effects of an exposure, i.e., the 478 

cumulative effect of the exposure level from conception and through the lifecourse. Labrecque 479 

et al. propose that MR estimates of the same exposure assessed at different ages vary in the 480 

presence of time-varying genotype-exposure associations, and this represents bias in 481 

estimates of a lifetime causal effect. In response, Morris et al. proposed that “standard” MR is 482 

not estimating the causal effect of an exposure as it manifests at a given timepoint, but the 483 

causal effect of the underlying exposure liability. Thus, a hypothetical change in genotype 484 

would affect all manifestations of the exposure. In addition, papers comprising methodological 485 

approaches for intergenerational effects or pregnancy/birth exposures emphasised the 486 

importance of a statistical model that can estimate the effect of maternal genotypes on 487 

offspring outcomes, conditional on offspring genotype. On a related note, carrying out MR of 488 

own birthweight using only genetic variants of the individual is likely to result in inaccuracies. 489 

This is because foetal growth and subsequently birthweight may be influenced by both foetal 490 

and correlated maternal genotypes (57).  491 

 492 

We summarised papers employing a methodological approach for repeat measures of the 493 

same exposure over the lifecourse. The methods described here enhance capability for causal 494 

inference of lifecourse effects, however, there are clear limitations. One method comprised 495 

the FPC analysis through PACE. Authors generated this for hypothesis testing, not for causal 496 

effect size estimation, and thus this may not provide consistent estimates. Another technique 497 

utilised was MVMR, which can separate influences across the lifecourse under some but not 498 

all causal scenarios. Moreover, estimates used in the studies presented are based solely on 499 
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body size and BMI data from the UK Biobank (125, 126). These findings need to be evaluated 500 

in future cohorts when sample sizes make this possible. This is particularly important as it has 501 

been shown that UK Biobank participants are highly selected, which can be problematic for 502 

instrumental variables analyses (125, 126). In addition, a G-estimation of SNCFTMs was 503 

explored. If the rare failure assumption does not hold, however, estimates from this approach 504 

may be invalid. Informative MR analyses will additionally require sample sizes much larger than 505 

those presented in this paper. A G-estimation of SMM was also described. Due to wide 506 

variations in age at first visit and short duration of follow-up in the data used, authors were 507 

limited to using time since enrolment in the study as the time scale, which implies the added 508 

assumption that the period effect is homogeneous across age. The plausibility of this 509 

assumption is not only specific to the exposure–outcome relationship of interest, but also 510 

depends on the variability in age.  511 

 512 

Among the studies presenting results of specific lifecourse analyses, data availability limitations 513 

were apparent. Studies focusing on one generational research are largely confined to the 514 

exploration of questions regarding body composition, since these have the strongest 515 

instrumental variables. In addition, these data are often more commonly available on a large 516 

scale in most longitudinal cohorts. This emphasizes the need for pooling data across studies to 517 

maximise power, highlighting the value of a Lifecourse MR consortium, which will enable the 518 

testing of key epidemiological hypotheses that have been advanced regarding critical period 519 

and cumulative effects on disease risk. For some phenotypes, however, lifecourse MR may not 520 

be able to usefully contribute. This could either be due to the lack of identified genetic variants 521 

allowing meaningful separation of measures at different life stages or because these simply do 522 

not exist. If the effects IV-exposure effects are relatively constant, “standard” MR may 523 
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therefore be sufficient. Awareness of this may change over time as more data becomes 524 

available. The collection of these data is likely to be useful to improve MR overall. For example, 525 

stratifying analyses by age could be of value for testing other MR assumptions. An instrument 526 

that has very little effect on the earlier life exposure whilst influencing a later-life exposure and 527 

associating with an early-life outcome may be indicative of violations of horizontal pleiotropy, 528 

correlated pleiotropy, as well as the gene-environment equivalence (‘consistency’) 529 

assumption. In addition, lifecourse data may be used for evidence of substantial in utero effects 530 

of variants on processes suggesting developmental trajectories. Future work is required to 531 

develop guidance on how best to implement MR methods with the data that may be available, 532 

within a lifecourse epidemiology framework.  533 

 534 

Conclusions 535 

 536 

There is a growing body of research focused on the development of lifecourse MR techniques 537 

and methods which are increasingly being applied to address lifecourse research questions. 538 

The possibility that genetic effects have different levels of importance in the development of 539 

an exposure at different time points should be more commonly considered for application 540 

when conducting MR investigations. Clear limitations persist, however, specifically regarding 541 

data constraints.  542 

543 
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