Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Inferring Skin-Brain-Skin Connections from Infodemiology Data using Dynamic Bayesian Networks

Marco Scutari, Delphine Kerob, Samir Salah
doi: https://doi.org/10.1101/2023.05.15.23290003
Marco Scutari
1Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: scutari{at}bnlearn.com
Delphine Kerob
2La Roche-Posay Dermatological Laboratories, Levallois-Perret, France
3Department of Dermatology, AP-HP Saint-Louis Hospital, Paris, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samir Salah
2La Roche-Posay Dermatological Laboratories, Levallois-Perret, France
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Background The relationship between skin diseases and mental illnesses has been extensively studied using cross-sectional epidemiological data. Typically, such data can only measure association (rather than causation) and include only a subset of the diseases we may be interested in.

Objective In this paper, we complement the evidence from such analyses by learning an overarching causal network model over twelve health conditions from the Google Search Trends Symptoms public data set.

Methods We learned the causal network model using a dynamic Bayesian network, which can represent both cyclic and acyclic causal relationships, is easy to interpret and accounts for the spatio-temporal trends in the data in a probabilistically rigorous way.

Results The causal network confirms a large number of cyclic relationships between the selected health conditions and the interplay between skin and mental diseases. For acne, we observe a cyclic relationship with anxiety and attention deficit hyperactivity disorder (ADHD) and an indirect relationship with depression through sleep disorders. For dermatitis, we observe directed links to anxiety, depression and sleep disorders and a cyclic relationship with ADHD. We also observe a link between dermatitis and ADHD and a cyclic relationship between acne and ADHD. Furthermore, the network includes several direct connections between sleep disorders and other health conditions, highlighting the impact of the former on the overall health and well-being of the patient. The average R2 for a condition given the values of all conditions in the previous week is 0.67: in particular, 0.42 for acne, 0.85 for asthma, 0.58 for ADHD, 0.87 for burn, 0.76 for erectile dysfunction, 0.88 for scars, 0.57 for alcohol disorders, 0.57 for anxiety, 0.53 for depression, 0.74 for dermatitis, 0.60 for sleep disorders and 0.66 for obesity.

Conclusions Mapping disease interplay, indirect relationships, and the key role of mediators, such as sleep disorders, will allow healthcare professionals to address disease management holistically and more effectively. Even if we consider all skin and mental diseases jointly, each disease subnetwork is unique, allowing for more targeted interventions.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Footnotes

  • Revised the manuscript upon resubmission, clarifying the assumptions between the causal network model.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted April 09, 2024.
Download PDF
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Inferring Skin-Brain-Skin Connections from Infodemiology Data using Dynamic Bayesian Networks
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Inferring Skin-Brain-Skin Connections from Infodemiology Data using Dynamic Bayesian Networks
Marco Scutari, Delphine Kerob, Samir Salah
medRxiv 2023.05.15.23290003; doi: https://doi.org/10.1101/2023.05.15.23290003
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Inferring Skin-Brain-Skin Connections from Infodemiology Data using Dynamic Bayesian Networks
Marco Scutari, Delphine Kerob, Samir Salah
medRxiv 2023.05.15.23290003; doi: https://doi.org/10.1101/2023.05.15.23290003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (756)
  • Anesthesia (221)
  • Cardiovascular Medicine (3298)
  • Dentistry and Oral Medicine (365)
  • Dermatology (280)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1173)
  • Epidemiology (13384)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5157)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3274)
  • Health Policy (1143)
  • Health Systems and Quality Improvement (1193)
  • Hematology (432)
  • HIV/AIDS (1019)
  • Infectious Diseases (except HIV/AIDS) (14636)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (478)
  • Medical Ethics (127)
  • Nephrology (525)
  • Neurology (4930)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (886)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (727)
  • Orthopedics (282)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (544)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (551)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4218)
  • Public and Global Health (7512)
  • Radiology and Imaging (1708)
  • Rehabilitation Medicine and Physical Therapy (1016)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (498)
  • Sports Medicine (424)
  • Surgery (549)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)