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Key Points 
 
Question: How can the efficiency and accuracy of real-time intraoperative margin analysis for 
the removal of cutaneous squamous cell carcinoma (cSCC) be improved, and how can tumor 
differentiation be incorporated into this approach? 
 
Findings: A proof-of-concept deep learning algorithm was trained, validated, and tested on 
frozen section whole slide images (WSI) for a retrospective cohort of cSCC cases, demonstrating 
high accuracy in identifying cSCC and related pathologies. Histomorphology alone was found to 
be insufficient to delineate tumor from epidermis in histologic identification of well-
differentiated cSCC. Incorporation of surrounding tissue architecture and shape improved the 
ability to delineate tumor from normal tissue. 
 
Meaning: Integrating artificial intelligence into surgical procedures has the potential to enhance 
the thoroughness and efficiency of intraoperative margin analysis for cSCC removal. However, 
accurately accounting for the epidermal tissue based on the tumor's differentiation status requires 
specialized algorithms that consider the surrounding tissue context. To meaningfully integrate AI 
algorithms into clinical practice, further algorithmic refinement is needed, as well as the mapping 
of tumors to their original surgical site, and evaluation of the cost and efficacy of these 
approaches to address existing bottlenecks.   
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Abstract 
    Importance: Intraoperative margin analysis is crucial for the successful removal of cutaneous 
squamous cell carcinomas (cSCC). Artificial intelligence technologies (AI) have previously 
demonstrated potential for facilitating rapid and complete tumor removal using intraoperative 
margin assessment for basal cell carcinoma. However, the varied morphologies of cSCC present 
challenges for AI margin assessment. 
    Objective: To develop and evaluate the accuracy of an AI algorithm for real-time histologic 
margin analysis of cSCC. 
    Design: A retrospective cohort study was conducted using frozen cSCC section slides and 
adjacent tissues. 
    Setting: This study was conducted in a tertiary care academic center. 
    Participants: Patients undergoing Mohs micrographic surgery for cSCC between January and 
March 2020. 
    Exposures: Frozen section slides were scanned and annotated, delineating benign tissue 
structures, inflammation, and tumor to develop an AI algorithm for real-time margin analysis. 
Patients were stratified by tumor differentiation status. Epithelial tissues including epidermis and 
hair follicles were annotated for moderate-well to well differentiated cSCC tumors. A 
convolutional neural network workflow was used to extract histomorphological features 
predictive of cSCC at 50-micron resolution. 
    Main Outcomes and Measures: The performance of the AI algorithm in identifying cSCC at 
50-micron resolution was reported using the area under the receiver operating characteristic 
curve. Accuracy was also reported by tumor differentiation status and by delineation of cSCC 
from epidermis. Model performance using histomorphological features alone was compared to 
architectural features (i.e., tissue context) for well-differentiated tumors. 
    Results: The AI algorithm demonstrated proof of concept for identifying cSCC with high 
accuracy. Accuracy differed by differentiation status, driven by challenges in separating cSCC 
from epidermis using histomorphological features alone for well-differentiated tumors. 
Consideration of broader tissue context through architectural features improved the ability to 
delineate tumor from epidermis. 
    Conclusions and Relevance: Incorporating AI into the surgical workflow may improve 
efficiency and completeness of real-time margin assessment for cSCC removal, particularly in 
cases of moderately and poorly differentiated tumors/neoplasms. Further algorithmic 
improvement is necessary to remain sensitive to the unique epidermal landscape of well-
differentiated tumors, and to map tumors to their original anatomical position/orientation. Future 
studies should assess the efficiency improvements and cost benefits and address other 
confounding pathologies such as inflammation and nuclei. 
    Funding sources: JL is supported by NIH grants R24GM141194, P20GM104416 and 
P20GM130454. Support for this work was also provided by the Prouty Dartmouth Cancer Center 
development funds. 
    Keywords: general dermatology; medical dermatology; oncology; Mohs micrographic 
surgery; clinical research; artificial intelligence 
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Introduction 

Cutaneous squamous cell carcinoma (cSCC) is the second most common form of skin cancer, 

with more than one million cases diagnosed in the United States each year 1,2. While many 

tumors are isolated to the skin, advanced disease is not uncommon with a metastasis rate of 4% 

and a disease-specific death estimate of 2.8% 3. When tumors occur on the head and neck or 

other high-risk sites, Mohs micrographic surgery (MMS) is the treatment of choice. MMS allows 

for real-time margin analysis resulting in low rates of recurrence. A recent study by Motley et al., 

found recurrence rates of cSCC of 3% when treated with MMS and 8% when treated with 

standard excision, despite a higher proportion of high risk tumors in the MMS group 4.   

Early diagnosis and treatment of cutaneous tumors is essential. Currently, patient demand 

far outweighs the capacity of the dermatology workforce (Association of American Medical 

Colleges; AAMC), making early treatment more difficult 5. Machine learning models exist to 

detect basal cell carcinoma (BCC) 5–7, but given the complexities and variable morphologies of 

cSCC, similar algorithms are yet to be developed for this tumor type 8. Our study presents an 

algorithm to detect cSCC on whole slide images (WSI) of frozen sections obtained in MMS 9.  

Developing such algorithms may ameliorate the physician deficit by improving access to expert 

histologic assessment with the potential for broad application across numerous surgical 

specialties that treat various forms of cSCC.  

 

Methods 
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A retrospective study was designed, with WSI scanning (20X resolution using the Aperio AT2 

image scanner) of 95 frozen section slides, each containing 3-5 tissue sections, followed by 

manual annotation of benign tissue structures, inflammation, and tumor by three dermatologists.  

WSIs were then split into 256 x 256-pixel image patches (i.e., 50-micron resolution). 

Patches were randomly distributed into training, testing, and validation sets in an 80:10:10 

arrangement, ensuring patches from the same patient were partitioned to the same set (e.g., 

restricting all patches across all tissue sections for one patient to the validation set). To classify 

tumors at the patch level, a convolutional neural network (CNN) workflow was implemented, 

using a ResNet101 model that was pre-trained and selected after comparing multiple neural 

network architectures (e.,g., SWIN-Transformer, EfficientNet) 10. The CNN workflow 

dynamically extracts histomorphological features at each 50-micron location, generating a 

probability score for cSCC between 0 and 1 11. After the model was trained and validated, its 

performance characteristics were evaluated across the validation and testing sets using the Area 

Under the Receiver Operating Characteristic Curve (AUC), a performance metric that 

summarizes algorithmic sensitivity and specificity across a range of decision thresholds, with 

95% confidence intervals reported using 1000-sample non-parametric bootstrapping.  

Distinguishing cSCC from epithelial tissue based on histomorphology alone (i.e., what 

can be learned by a CNN) can be challenging, particularly in moderate-well to well differentiated 

squamous cell tumors, we hypothesized that the algorithm would not perform as well in these 

cases. To test this hypothesis, we annotated the epithelial tissue within the well-differentiated 

tumors in our cohort and compared the sensitivity and specificity of cSCC detection at 50-micron 

locations containing either cSCC or epithelium alone. To improve algorithmic performance in 

distinguishing cSCC from epithelium in well-differentiated tumors, we incorporated larger-scale 
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architectural features beyond histomorphology. Specifically, we examined topological and shape 

descriptors, referred to as "architectural features", of cSCC and epithelial tissue across the 

training, validation, and test sets 12,13. Topological and shape (i.e., architectural) features capture 

the relationships between tissue architectures and their shape properties. For instance, when 

viewed under a microscope, the epidermis typically appears flat or slightly curved, and may also 

have ridge-like features in certain areas; in contrast, cSCC is often characterized by a more 

discohesive and infiltrative growth pattern. The architectural features are numerical descriptors 

which encapsulate topological and shape differences and were used to train a random forest (RF) 

model for the purpose of distinguishing between SCC and epithelium. In addition, we 

incorporated a graph neural network (GNN) to consider contextual information from adjacent 

image patches 14,15. A graph neural network (GNN) is a type of neural network designed to 

operate on graphs and capture complex relationships and interactions between the nodes and 

edges of a graph. Unlike traditional neural networks that operate on vectorized inputs, GNNs can 

process structured data, which is useful for a variety of tasks such as node classification, link 

prediction, and graph clustering. For example, GNN increases the probability of classifying an 

image patch as epithelium if the surrounding patches were also classified as epithelial. We 

compared the performance of the architectural and GNN models to that of the CNN workflow to 

show how using the surrounding tissue architecture improves the accuracy of distinguishing SCC 

from epithelium in well differentiated tumors. 

Table 1: Performance characteristics for SCC algorithm, considering histomorphological 
(CNN), architectural (topology/shape) and contextual (GNN) features across the validation and 
test sets, broken down by overall performance, tumor differentiation status, and restricting to 
SCC/epithelium within well-differentiated test set tumors; 95% confidence intervals reported 
using 1000-sample non-parametric bootstrapping 

Dataset Algorithm AUC 2.5% CI 97.5% CI 
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Validation Set: Overall CNN/Morphology 0.981 0.980 0.982 
Test Set: Overall CNN/Morphology 0.935 0.934 0.936 

Poor/Mod-Poor/Mod-
Diff 

CNN/Morphology 0.968 0.953 0.980 

Mod-Well/Well-Diff CNN/Morphology 0.895 0.837 0.943 
cSCC versus Epidermis 
within Mod-Well/Well-
Diff  

CNN/Morphology 0.626 0.594 0.658 
RF/Architecture 0.760 0.728 0.792 
GNN/Context 0.764 0.729 0.796 

 
Figure 1: Example display output of cSCC prediction probabilities at 50-micron resolution 
for example test-set WSI: A) Original WSI; B) Ground truth cSCC; C) cSCC algorithm 
predictions. 
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Figure 2: Example display output of cSCC prediction probabilities at 50-micron resolution 
for cSCC/Epithelium predictions across example test-set WSI for well-differentiated 
tumor: A) Original WSI; B) Ground truth cSCC; C) cSCC CNN algorithm predictions 
(histomorphology); D) Topological and shape features (architecture); E) GNN predictions 
(contextual) 

 

Results 

The algorithm achieved an AUC of 0.981 (95% CI [0.980-0.982]) and 0.935 (95% CI [0.934-

0.936]) for predicting cSCC when applied to the validation and test sets respectively. As 

expected, the model performed better on poorly to moderately differentiated tumors 

(AUC=0.968, 95% CI [0.953-0.980]) than on well differentiated tumors (AUC=0.895, 95% CI 

[0.837-0.943]) (Table 1, Figure 1, Supplementary Figures 1-3). The difficulty in 

distinguishing normal epidermis from cSCC contributed to these deficiencies, yielding an AUC 

of 0.626 (95% CI [0.594-0.658]) when distinguishing cSCC from epithelium alone in well 

differentiated tumors (Figure 1). However, incorporating architectural (AUC=0.760; 95% CI 
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[0.728-0.792]) and contextual (GNN; AUC=0.764; 95% CI [0.729-0.796]) features significantly 

improved the algorithm's performance in delineating cSCC from epidermis (Table 1, Figure 2). 

 

Discussion 

Our study provides an example of a deep learning algorithm used to identify cutaneous 

squamous cell carcinoma on frozen section slides in MMS. Reducing rate limiting steps to 

intraoperative margin assessment of cSCC tumors can improve the efficiency and completeness 

of tumor removal, reducing the burden on laboratory staff while reducing tumor recurrence and 

repeat procedures 16,17. When evaluating this study, it should be acknowledged that all slides 

were obtained from a single MMS clinic and scanned images, not slides, were used for training, 

which may limit generalizability and real-world implementation. Application of this algorithm 

requires complete, high-quality tissue sections devoid of tears, holes, and other artifacts which 

may preclude histological margin assessment. Our data provide evidence supporting the 

identification of cSCC on frozen section slides, which has historically proven challenging. The 

algorithm's successful performance in this study suggests its potential for broader use in 

providing real-time complete margin analysis of cSCC in various body parts. In the future, the 

focus will be on refining and improving the algorithm's accuracy to enable more detailed 

identification of various associated pathologies, including single cell analysis, follicles, actinic 

keratosis, and incidental diagnoses. Additionally, efforts will be made to map tumors to their 

original anatomical position/orientation and evaluate the efficiency improvements and cost 

benefits of this algorithmic approach.  
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Conclusion 

This study not only established the general feasibility of histomorphological cSCC detection, but 

also demonstrated challenges in effectively distinguishing epithelium tissue from cSCC in well-

differentiated cases. Therefore, algorithms that consider the surrounding tissue architecture could 

be useful for these tumors, although further research is necessary to improve the ability to utilize 

spatial cues. Furthermore, different tumor types may necessitate different algorithms.  Future 

research will also address other confounding pathologies, such as inflammation, nuclei, follicles, 

architecture, and keratinocyte differentiation, by considering nuclei and large-scale architectural 

features. 
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Supplementary Material 

 

 

Supplementary Figure 1: Performance characteristics of cSCC CNN algorithm: A) Receiver 
operating characteristic (ROC) curves for validation and test set cases at 50-micron resolution; B) 
Boxplots demonstrating distribution of slide-level AUC values from training set slides, broken down by 
differentiation status; C) Boxplots demonstrating distribution of slide-level AUC values from 
validation/test set slides, broken down by differentiation status 
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Supplementary Figure 2: Example display output of sSCC prediction probabilities at 50-micron 
resolution for example validation-set WSI (poor-moderately differentiated): A) Original WSI; B) 
Ground truth cSCC; C) cSCC algorithm predictions 
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Supplementary Figure 3: Example display output of cSCC prediction probabilities at 50-micron 
resolution for example validation-set WSI (poor-moderately differentiated): A) Original WSI; B) 
Ground truth cSCC; C) cSCC algorithm predictions 
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